EXERCICE

Pour
$$(P,Q) \in (\mathbb{R}[X])^2$$
, on pose $(P|Q) = \int_0^{+\infty} P(t) Q(t) e^{-t} dt$.

- 1.a. Vérifier la convergence de cette intégrale.
 - **b.** Montrer que $(\cdot|\cdot)$ est un produit scalaire sur l'espace vectoriel $\mathbb{R}[X]$.
 - **c.** Calculer $(X^k|1)$ pour tout k entier naturel.

Soit $n \in \mathbb{N}^*$. Pour $P \in \mathbb{R}_n[X]$, on pose $\varphi(P) = XP'' + (1 - X)P'$.

- **2.a.** Montrer que φ est un endomorphisme de l'espace vectoriel $\mathbb{R}_n[X]$.
 - b. Écrire la matrice de φ relativement à la base canonique de $\mathbb{R}_n[X]$.
 - $\mathbf{c.}$ Montrer que φ est diagonalisable.
- **3.** Soit $k \in [0, n]$.
 - **a.** Quelle est la dimension de l'espace vectoriel $V_k = \operatorname{Ker} \left(\varphi + k \operatorname{id}_{\mathbb{R}_n[X]} \right)$?
 - **b.** En déduire qu'il existe un unique polynôme $P_k \in \mathbb{R}_n[X]$, de coefficient dominant égal à 1, vérifiant $\varphi(P_k) = -k P_k$.
 - **c.** Montrer que $deg(P_k) = k$ pour tout k. Déterminer P_0 , P_1 et P_2 .
- **4.** Soient P et Q deux polynômes de $\mathbb{R}_n[X]$.
 - a. Calculer $\frac{\mathrm{d}}{\mathrm{d}t} (t \, P'(t) \, e^{-t})$, puis prouver l'égalité $(\varphi(P)|Q) = (P|\varphi(Q))$.
 - **b.** En déduire que la famille (P_0, \dots, P_n) est une base orthogonale de $\mathbb{R}_n[X]$.
- **5.a.** Montrer que, pour tout n entier naturel non nul, on a $\int_0^{+\infty} P_n(t) e^{-t} dt = 0$.
 - **b.** Soit $n \in \mathbb{N}^*$. Montrer que le polynôme P_n admet au moins une racine de multiplicité impaire dans \mathbb{R}_+^* .
 - c. Soient $x_1 < x_2 < \cdots < x_r$ les racines d'ordre impair de P_n dans \mathbb{R}_+^* , soit $Q = \prod_{k=1}^r (X x_k)$.

En considérant le produit scalaire $(P_n|Q)$, montrer que r=n. Quelle propriété des polynômes P_n a-t-on ainsi démontré ?

- **6.** Soit $n \in \mathbb{N}^*$. On note x_1, \dots, x_n les racines du polynôme P_n .
 - a. Montrer qu'il existe un unique n-uplet de réels $(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n$ tel que

$$\forall P \in \mathbb{R}_{n-1}[X] \qquad \int_0^{+\infty} P(t) e^{-t} dt = \sum_{i=1}^n \lambda_i P(x_i) . \qquad (*)$$

On commencera par montrer qu'il suffit que cette relation soit vraie pour les polynômes $1, X, \dots, X^{n-1}$ de la base canonique de $\mathbb{R}_{n-1}[X]$, et on écrira un système linéaire.

- **b.** Montrer qu'alors la relation (*) est satisfaite pour tout polynôme P de $\mathbb{R}_{2n-1}[X]$. On posera la division euclidienne de P par le polynôme P_n .
- c. Le polynôme $P = \prod_{k=1}^{n} (X x_k)^2$ vérifie-t-il la relation (*), avec les mêmes coefficients λ_i ?

PROBLÈME

PARTIE A. Une généralisation des séries entières.

Pour n entier naturel et x réel strictement positif, on pose

$$u_n(x) = \frac{n!}{x(x+1)\cdots(x+n)}$$
, $v_n(x) = \frac{1}{(n+1)^x}$, $w_n(x) = \frac{u_n(x)}{v_n(x)}$.

- **1.a.** Simplifier l'expression $\frac{w_n(x)}{w_{n-1}(x)}$ pour $n \in \mathbb{N}^*$ et $x \in \mathbb{R}_+^*$. En déduire la convergence de la série de terme général $\ln\left(\frac{w_n(x)}{w_{n-1}(x)}\right)$.
 - **b.** En déduire l'existence d'un réel strictement positif l(x), dépendant de x, tel que

$$\lim_{n \to +\infty} \frac{u_n(x)}{v_n(x)} = l(x) .$$

- 2. Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes, soit $x\in\mathbb{R}_+^*$. Montrer que la série $\sum_{n\geq 0}a_nu_n(x)$ converge absolument si et seulement si la série $\sum_{n\geq 0}a_nv_n(x)$ converge absolument.
- 3. On note \mathcal{A} l'ensemble des suites complexes $a=(a_n)_{n\in\mathbb{N}}$ telles que la série $\sum_{n\geq 0}a_nu_n(x)$ soit absolument convergente pour tout réel strictement positif x.
 - **a.** Donner un exemple d'élément a de \mathcal{A} avec a_n non nul pour tout n.
 - **b.** Donner un exemple de suite n'appartenant pas à \mathcal{A} .
- **4.** Si $a=(a_n)_{n\in\mathbb{N}}$ est une suite appartenant à \mathcal{A} , on note f_a la fonction définie sur \mathbb{R}_+^* par

$$\forall x \in \mathbb{R}_+^* \qquad f_a(x) = \sum_{n=0}^{+\infty} a_n \, u_n(x) \; .$$

- **a.** Montrer que la fonction f_a est continue sur \mathbb{R}_+^*
- **b.** Montrer que $\lim_{x \to +\infty} f_a(x) = 0$.

PARTIE B. Représentation intégrale.

5.a. Soit n un entier naturel. Pour tout $k \in [0, n]$, on pose $P_k = \prod_{0 \le i \le n, i \ne k} (X + i)$.

Montrer que la famille (P_0, \dots, P_n) est une base de l'espace vectoriel $\mathbb{R}_n[X]$.

b. En déduire l'existence de réels $\alpha_0, \dots, \alpha_n$ (indépendants de x) tels que

$$\forall x > 0$$
 $\frac{n!}{x(x+1)\cdots(x+n)} = \sum_{k=0}^{n} \frac{\alpha_k}{x+k}$.

Exprimer α_k en fonction de k et de n.

6. Pour $x \in \mathbb{R}_+^*$ et $k \in \mathbb{N}$, montrer l'existence de l'intégrale $\int_0^1 (1-y)^{x-1+k} \, \mathrm{d}y$, et calculer sa valeur en fonction de k et de x.

7. Montrer que

$$\forall x > 0 \quad \forall n \in \mathbb{N} \qquad \int_0^1 (1 - y)^{x - 1} y^n \, \mathrm{d}y = u_n(x) .$$

En déduire que, si $a \in \mathcal{A}$, alors

$$\forall x > 0$$
 $f_a(x) = \sum_{n=0}^{+\infty} a_n \int_0^1 (1-y)^{x-1} y^n \, dy$.

8. Soit $a \in \mathcal{A}$.

a. Montrer que la série entière $\sum_{n>0} a_n y^n$ a un rayon de convergence supérieur ou égal à 1.

Pour tout $y \in]-1,1[$, on pose $\varphi_a(y) = \sum_{n=0}^{+\infty} a_n y^n$.

b. Prouver la relation

$$\forall x \in \mathbb{R}_+^* \qquad f_a(x) = \int_0^1 (1 - y)^{x - 1} \varphi_a(y) \, dy.$$

9. Soit la suite $a = (a_n)$ avec $a_0 = 0$ et $a_n = \frac{1}{n}$ pour tout $n \in \mathbb{N}^*$. Montrer que $a \in \mathcal{A}$ et calculer $f_a(x)$ pour x > 0.

PARTIE C. Dérivation.

Soit $a = (a_n)_{n \in \mathbb{N}} \in \mathcal{A}$.

10.a. Montrer que la fonction f_a est de classe \mathcal{C}^1 sur \mathbb{R}_+^* , avec

$$\forall x > 0$$
 $f'_a(x) = \int_0^1 (1 - y)^{x-1} \varphi_a(y) \ln(1 - y) dy$.

b. Montrer que la fonction $\psi_a: y \mapsto \varphi_a(y) \ln(1-y)$ est développable en série entière sur l'intervalle]-1,1[.

On note $b = (b_n)_{n \in \mathbb{N}}$ la suite de coefficients tels que $\forall y \in]-1,1[\quad \psi_a(y) = \sum_{n=0}^{+\infty} b_n y^n.$

c. Déterminer b_0 . Pour tout $n \in \mathbb{N}^*$, exprimer b_n à l'aide des a_p $(0 \le p \le n-1)$.

11. Pour x > 0 et $N \in \mathbb{N}^*$, montrer que

$$\sum_{n=1}^{N} \frac{|b_n|}{(n+1)^x} \le \sum_{p=0}^{N-1} |a_p| \left(\sum_{k=1}^{N-p} \frac{1}{k(k+p+1)^x} \right).$$

12. Pour tout entier p tel que $0 \le p \le N-1$, montrer que

$$\sum_{k=1}^{N-p} \frac{1}{k(k+p+1)^x} \le \frac{1}{(p+1)^x} + \int_1^{+\infty} \frac{\mathrm{d}t}{t(t+p+1)^x} \ .$$

13. Montrer que $\sum_{k=1}^{N-p} \frac{1}{k(k+p+1)^x} \le \frac{\ln(p+1)}{(p+1)^x} + \left(1 + \frac{1}{x}\right) \frac{1}{(p+1)^x}.$

Par la relation de Chasles, on pourra découper l'intégrale en une intégrale sur [1, p+1], plus une intégrale sur $[p+1, +\infty[$.

14. En déduire que $b \in \mathcal{A}$ et que $f'_a = f_b$.