CORRIGÉ du D.S. de MATHÉMATIQUES numéro 1 PSI2 2025-2026

PROBLÈME 1 d'après Centrale 2024, filière PC

PARTIE A. Formules de Taylor

A.1. Initialisation: pour n = 0, si f est de classe C^1 sur [a, b], il résulte du **théorème fondamental de l'analyse** que $f(b) - f(a) = \int_a^b f'(t) dt$, ce qu'il fallait prouver.

Hérédité: Supposons la formule vraie pour $n \in \mathbb{N}$, soit $f : [a,b] \to \mathbb{K}$ de classe \mathcal{C}^{n+2} . Alors f est a fortiori de classe \mathcal{C}^{n+1} , l'hypothèse de récurrence donne donc la relation

(*):
$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \int_a^b \frac{(b-t)^n f^{(n+1)}(t)}{n!} dt$$
.

On effectue alors une intégration par parties dans le "reste intégral" en posant

$$\begin{cases} u(t) = f^{(n+1)}(t) \\ v'(t) = \frac{(b-t)^n}{n!} \end{cases}, \quad \text{soit} \quad \begin{cases} u'(t) = f^{(n+2)}(t) \\ v(t) = -\frac{(b-t)^{n+1}}{(n+1)!} \end{cases}, \quad \text{ainsi}$$

$$\int_{a}^{b} \frac{(b-t)^{n} f^{(n+1)}(t)}{n!} dt = \left[-\frac{(b-t)^{n+1}}{(n+1)!} f^{(n+1)}(t) \right]_{a}^{b} + \int_{a}^{b} \frac{(b-t)^{n+1} f^{(n+2)}(t)}{(n+1)!} dt$$
$$= \frac{f^{(n+1)}(a)}{(n+1)!} (b-a)^{n+1} + \int_{a}^{b} \frac{(b-t)^{n+1} f^{(n+2)}(t)}{(n+1)!} dt.$$

En réinjectant dans (*), on obtient la formule voulue au rang n+1.

A.2. Comme f est de classe C^{n+1} , la fonction $|f^{(n+1)}|$ est continue sur le segment [a,b], d'où l'existence de M_{n+1} par le **théorème des bornes atteintes**. Il suffit alors de majorer **en valeur absolue** le reste intégral obtenu en **A.1.**:

$$\left| \int_{a}^{b} \frac{(b-t)^{n} f^{(n+1)}(t)}{n!} dt \right| \leq \int_{a}^{b} \frac{(b-t)^{n} \left| f^{(n+1)}(t) \right|}{n!} dt \leq M_{n+1} \int_{a}^{b} \frac{(b-t)^{n}}{n!} dt = \frac{M_{n+1} (b-a)^{n+1}}{(n+1)!} ,$$

ce qu'il fallait prouver

A.3. La fonction $f: x \mapsto \ln(1+x)$ est de classe \mathcal{C}^{∞} sur [0,1]. Par une récurrence facile, on obtient $f^{(k)}(x) = \frac{(-1)^{k-1} (k-1)!}{(1+x)^k}$ pour tout $k \in \mathbb{N}^*$ et $x \in [0,1]$. En particulier, f(0) = 0 et, pour k entier naturel non nul, $\frac{f^{(k)}(0)}{k!} = \frac{(-1)^{k-1}}{k}$.

Par ailleurs, $M_{n+1} = \max_{x \in [0,1]} |f^{(n+1)}(x)| = n!$, l'inégalité de Taylor-Lagrange ci-dessus donne alors, pour tout n entier naturel, la majoration

$$\left| \ln(2) - \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k!} \right| = \left| f(1) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} (1-0)^{k} \right| \le \frac{M_{n+1}}{(n+1)!} = \frac{1}{n+1} .$$

En notant $S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k!}$ la somme partielle d'ordre n de la série harmonique

alternée, on vient de montrer que $\lim_{n\to+\infty} \left(\ln(2) - S_n\right) = 0$, la série mentionnée est donc convergente (ce qui résulte aussi du **théorème spécial des séries alternées**) et sa somme est

$$\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k!} = \lim_{n \to +\infty} S_n = \ln(2) .$$

PARTIE B. La méthode de Héron

- **B.1.** C'est clair pour n = 0, et l'hérédité est immédiate aussi!
- **B.2.** On calcule

$$c_{n+1}(a)^{2} - a = \frac{1}{4} \left(c_{n}(a) + \frac{a}{c_{n}(a)} \right)^{2} - a = \frac{1}{4} \left(c_{n}(a)^{2} - 2a + \frac{a^{2}}{c_{n}(a)^{2}} \right)$$
$$= \frac{1}{4 c_{n}(a)^{2}} \left(c_{n}(a)^{4} - 2a c_{n}(a)^{2} + a^{2} \right).$$

Finalement,

$$\forall n \in \mathbb{N}$$
 $c_{n+1}(a)^2 - a = \frac{\left(c_n(a)^2 - a\right)^2}{4 c_n(a)^2} \ge 0$,

donc (décalage d'indice) $c_n(a)^2 \ge a$ pour tout $n \in \mathbb{N}^*$ et, comme $c_n(a)$ et \sqrt{a} sont des réels positifs, $c_n(a) \ge \sqrt{a}$.

B.3. On observe que, pour $n \in \mathbb{N}^*$

$$c_{n+1}(a) - c_n(a) = \frac{1}{2} \left(\frac{a}{c_n(a)} - c_n(a) \right) = \frac{1}{2 c_n(a)} \left(a - c_n(a)^2 \right) \le 0$$

la suite $(c_n(a))_{n\in\mathbb{N}}$ est donc décroissante à partir du rang 1. Comme elle est minorée (par 0, ou encore par \sqrt{a}), elle est convergente. Sa limite l est positive et vérifie l'équation "aux points fixes" $l=\frac{1}{2}\left(l+\frac{a}{l}\right)$, soit $l^2=a$, donc $l=\sqrt{a}$.

- **B.4.** On a $c_1(2) = \frac{3}{2}$, et on prouve la majoration demandée par récurrence sur $n \in \mathbb{N}^*$:
 - pour n=1, on a $c_1(2)^2-2=\frac{1}{4}=8\times\left(\frac{1}{32}\right)^{2^0},$ l'inégalité à prouver est donc alors une égalité ;
 - si l'inégalité est vraie à un rang $n \in \mathbb{N}^*$ donné alors, en utilisant la minoration $c_n(2)^2 \geq 2$,

$$c_{n+1}(2)^2 - 2 \le \frac{\left(c_n(2)^2 - 2\right)^2}{4c_n(2)^2} \le \frac{1}{8} \left(8 \times \left(\frac{1}{32}\right)^{2^{n-1}}\right)^2 = 8 \times \left(\frac{1}{32}\right)^{2^n},$$

ce qui prouve l'hérédité.

B.5. Enfin, en utilisant toujours $c_n(2) \ge \sqrt{2}$,

$$0 \le c_n(2) - \sqrt{2} = \frac{c_n(2)^2 - 2}{c_n(2) + \sqrt{2}} \le \frac{1}{2\sqrt{2}} \times 8 \times \left(\frac{1}{32}\right)^{2^{n-1}},$$

ce qui donne bien l'estimation annoncée.

En observant que, pour n=6, le nombre $8 \times \left(\frac{1}{32}\right)^{2^{n-1}}$ majorant l'erreur est de l'ordre de 10^{-48} , on voit que la méthode de Héron converge très très rapidement.

PARTIE C. La méthode de Newton

- **C.1.** La tangente à la courbe représentative de f au point d'abscisse a est la droite \mathcal{T} d'équation y = f(a) + f'(a) (x a). Elle rencontre l'axe Ox au point d'abscisse x = b annulant y dans l'équation précédente, soit f(a) + f'(a) (b a) = 0, donc $b = a \frac{f(a)}{f'(a)}$.
- **C.2.** Si f admettait un autre zéro d dans I, disons avec c < d, le **théorème de Rolle** affirmerait que la dérivée f' s'annule quelque part dans l'intervalle]c,d[, ce qui est contraire aux hypothèses.
- C.3. Si $r \in [0, \rho]$, alors $J_r \subset J_\rho \subset I$ et les fonctions |f'| et |f''| sont continues sur le segment J_r , d'où l'existence de s_r et de i_r par le théorème des bornes atteintes. Comme la valeur i_r "est atteinte", i.e. il existe $x \in J_r$ tel que $|f'(x)| = i_r$ et comme f' ne s'annule pas sur I, on a bien $I_r > 0$.
- **C.4.** Si $r' \leq r''$, alors $J_{r'} \subset J_{r''}$, d'où il résulte immédiatement que $s_{r'} \leq s_{r''}$ et que $0 < i_{r''} \leq i_{r'}$, donc par manipulation d'inégalités entre réels positifs,

$$K_{r'} = \frac{s_{r'}}{2 i_{r'}} \le \frac{s_{r''}}{2 i_{r''}} = K_{r''} ,$$

la fonction $r \mapsto K_r$ est donc croissante sur $[0, \rho]$. On a alors

$$\forall r \in [0, \rho]$$
 $0 \le r K_r \le r K_\rho$

et cet encadrement montre que $\lim_{r\to 0^+} r K_r = 0$. En prenant r>0 "assez petit", on aura alors $r K_r < 1$.

C.5. Comme f(c) = 0, on observe que

$$|c_{n+1} - c| = \left| c_n - \frac{f(c_n)}{f'(c_n)} - c \right| = \left| \frac{(c_n - c) f'(c_n) - f(c_n)}{f'(c_n)} \right| = \frac{\left| f(c) - \left(f(c_n) + (c - c_n) f'(c_n) \right) \right|}{\left| f'(c_n) \right|}.$$

On minore le dénominateur par i_r et l'inégalité de Taylor-Lagrange permet de majorer le numérateur par $\frac{s_r}{2}(c_n-c)^2$. On obtient finalement

$$|c_{n+1} - c| \le \frac{s_r}{2i_r} (c_n - c)^2 = K_r |c_n - c|^2$$
.

Comme $c_n \in J_r$, on a $|c_n - c| \le r$, puis $|c_{n+1} - c| \le K_r r |c_n - c| \le |c_n - c| \le r$ puisque $r K_r < 1$, et ceci prouve que $c_{n+1} \in J_r$.

C.6. La question précédente montre que, si $c_0 \in J_r$, c_n est bien défini pour tout n et $c_n \in J_r$. Pour n = 0, l'inégalité à prouver est immédiate et c'est alors une égalité.

Si l'inégalité est vraie pour un $n \in \mathbb{N}$ donné, alors

$$|c_{n+1} - c| \le K_r \frac{\left(K_r |c_0 - c|\right)^{2^{n+1}}}{K_r^2} = \frac{\left(K_r |c_0 - c|\right)^{2^{n+1}}}{K_r},$$

on a donc prouvé l'hérédité.

Comme $K_r|c-c_0| \leq r K_r < 1$, on déduit que $\lim_{n \to +\infty} (c_n-c) = 0$, donc $\lim_{n \to +\infty} c_n = c$ et cette convergence est très rapide (beaucoup plus rapide qu'une suite géométrique grâce à l'exposant 2^n).

C.7. Il suffit de prendre $I = \mathbb{R}_+^*$ et $f: x \mapsto x^2 - a$ et on retrouve la suite $(c_n(a))$ de la partie **B.**

PROBLÈME 2

PARTIE A.

A.1. On intègre sur le segment $\left[0,\frac{\pi}{2}\right]$ une fonction continue, positive et non partout nulle, son intégrale W_n est donc strictement positive (**théorème de stricte positivité**). On écrit

$$W_{n+1} = \int_0^{\frac{\pi}{2}} \cos^{2n} t \, (1 - \sin^2 t) \, dt = W_n - \int_0^{\frac{\pi}{2}} (\cos^{2n} t \, \sin t) \, \sin t \, dt \, .$$

Une intégration par parties donne alors, avec $u(t) = \sin(t)$ et $v(t) = -\frac{\cos^{2n+1}(t)}{2n+1}$,

$$W_{n+1} = W_n + \left[\frac{\sin(t) \cos^{2n+1}(t)}{2n+1} \right]_0^{\frac{\pi}{2}} - \frac{W_{n+1}}{2n+1}$$

ce qui conduit à la relation

$$\forall n \in \mathbb{N} \qquad (2n+2) W_{n+1} = (2n+1) W_n ,$$

ce qu'il fallait prouver

A.2. On a $W_0 = \int_0^{\frac{\pi}{2}} dt = \frac{\pi}{2}$, puis $W_{n+1} = \frac{2n+1}{2n+2} W_n$, d'où

$$W_n = \frac{1 \times 3 \times 5 \times \dots \times (2n-1)}{2 \times 4 \times 6 \times \dots \times (2n)} W_0 = \frac{(2n)!}{2^{2n} (n!)^2} \frac{\pi}{2}$$

(multiplier numérateur et dénominateur par $2 \times 4 \times 6 \times \cdots \times (2n) = 2^n n!$).

NB. La réponse étant donnée, on peut aussi se contenter de vérifier par récurrence.

A.3. Comme en **A.1.**, en intégrant par parties, on trouve (2n+3) $W'_{n+1} = (2n+2)$ W'_n puis, avec $W'_0 = 1$ et comme en **A.2.**, on en déduit $W'_n = \frac{2 \times 4 \times \cdots \times (2n)}{3 \times 5 \times \cdots \times (2n+1)} = \frac{2^{2n} (n!)^2}{(2n+1)!}.$

$$W'_{n} = \frac{2 \times 4 \times \dots \times (2n)}{3 \times 5 \times \dots \times (2n+1)} = \frac{2^{2n} (n!)^{2}}{(2n+1)!}$$

A.4. Pour $t \in \left[0, \frac{\pi}{2}\right]$, on a $0 \le \cos t \le 1$, d'où $\cos^{2n+2} t \le \cos^{2n+1} t \le \cos^{2n} t$. En intégrant ces inégalités sur le segment $\left[0, \frac{\pi}{2}\right]$, on obtient $W_{n+1} \leq W_n' \leq W_n$. On a donc $\frac{W_{n+1}}{W_n} \leq \frac{W_n'}{W_n} \leq 1$ pour tout n. D'autre part, $\frac{W_{n+1}}{W_n} = \frac{2n+1}{2n+2} \longrightarrow_{n \to +\infty} 1$. Le théorème d'encadrement donne

$$\lim_{n \to +\infty} \frac{W_n'}{W_n} = 1, \text{ c'est-à-dire } W_n' \sim W_n.$$

A.5. L'équivalence $W_n' \sim W_n$ s'écrit $\frac{2^{2n} (n!)^2}{(2n+1)!} \sim \frac{(2n)!}{2^{2n} (n!)^2} \frac{\pi}{2}$, ce qui peut encore s'écrire

$$\pi \sim 2 \times \frac{2^{4n} (n!)^4}{(2n)! (2n+1)!} = 2 \times \frac{2^{4n} (n!)^4}{\left((2n)!\right)^2 (2n+1)} \sim \frac{2^{4n} (n!)^4}{n ((2n)!)^2}$$

c'est-à-dire $\lim_{n \to +\infty} \frac{2^{4n} (n!)^4}{n ((2n)!)^2} = \pi.$

A.6.a. On calcule:

$$b_n - b_{n-1} = \ln\left(\frac{a_n}{a_{n-1}}\right) = \ln\left(\frac{n!}{(n-1)!} \times e \times \frac{(n-1)^{n-1}}{n^n} \times \frac{\sqrt{n-1}}{\sqrt{n}}\right)$$
$$= \ln\left[e \cdot \left(\frac{n-1}{n}\right)^{n-\frac{1}{2}}\right] = 1 + \left(n - \frac{1}{2}\right) \ln\left(1 - \frac{1}{n}\right).$$

b. Puis on développe (calculs laissés au lecteur ou à la lectrice), on obtient :

$$b_n - b_{n-1} = 1 + \left(n - \frac{1}{2}\right) \left(-\frac{1}{n} - \frac{1}{2n^2} - \frac{1}{3n^3} + o\left(\frac{1}{n^3}\right)\right) = -\frac{1}{12n^2} + o\left(\frac{1}{n^2}\right),$$
 soit $b_n - b_{n-1} \underset{n \to +\infty}{\sim} -\frac{1}{12n^2}.$

- c. En prenant l'expression opposée, on a $b_{n-1} b_n \sim \frac{1}{n \to +\infty} \frac{1}{12n^2}$. En vertu du critère des équivalents pour les séries à termes positifs, comme la série $\sum \frac{1}{12n^2}$ converge, on déduit la convergence de la série de terme général $b_{n-1} b_n$, donc la série de terme général opposé $b_n b_{n-1}$ est convergente. Comme c'est la série télescopique associée à la suite (b_n) , cette suite est donc convergente, c'est-à-dire admet une limite réelle B, puis par continuité de l'exponentielle, $a_n = e^{b_n}$ converge vers $A = e^B$, qui est un réel strictement positif.
- **A.7.** On a $\lim_{n \to +\infty} \frac{n! \ e^n}{n^n \sqrt{n}} = A$, ce qui s'écrit encore $n! \sim A \sqrt{n} \left(\frac{n}{e}\right)^n$. En reportant dans la formule de Wallis, on trouve $\frac{2^{4n} \ (n!)^4}{n \ ((2n)!)^2} \sim \frac{2^{4n} \ A^4 \ n^2 \left(\frac{n}{e}\right)^{4n}}{n \ A^2 \ (2n) \left(\frac{2n}{e}\right)^{4n}} = \frac{A^2}{2}$, et cette expression doit tendre vers π lorsque n tend vers l'infini, donc $\frac{A^2}{2} = \pi$ et, A étant positif, $A = \sqrt{2\pi}$: on obtient la formule de Stirling (cette formule fait désormais partie de votre cours, mais doit être utilisée avec modération, c'est-à-dire uniquement en dernier recours):

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

- **A.8.** La relation $u_n \sim v_n$ s'écrit aussi $\lim_{n \to +\infty} \frac{v_n}{u_n} = 1$. Si on se donne $\varepsilon > 0$, il existe alors un rang N à partir duquel $\left| \frac{v_n}{u_n} 1 \right| \leq \varepsilon$, ce qui s'écrit encore $(1 \varepsilon)u_n \leq v_n \leq (1 + \varepsilon)u_n$. Pour $n \geq N$, par sommation de ces inégalités pour k allant de n+1 à l'infini (les séries sont supposées convergentes), on a alors $(1 \varepsilon)R_n \leq R'_n \leq (1 + \varepsilon)R_n$. On a donc prouvé l'existence d'un rang N à partir duquel $\left| \frac{R'_n}{R_n} 1 \right| \leq \varepsilon$, et ceci quel que soit $\varepsilon > 0$, ce qui montre que $\lim_{n \to +\infty} \frac{R'_n}{R_n} = 1$, soit $R'_n \sim R_n$.
- **A.9.** Pour tout $k \geq 2$, on a, par décroissance de l'application $t \mapsto \frac{1}{t^2}$ sur \mathbb{R}_+^* , l'encadrement

$$\int_{k}^{k+1} \frac{\mathrm{d}t}{t^2} \le \frac{1}{k^2} \le \int_{k-1}^{k} \frac{\mathrm{d}t}{t^2} .$$

On somme pour k allant de n+1 à un certain entier naturel N (avec N>n):

$$\frac{1}{n+1} - \frac{1}{N+1} = \int_{n+1}^{N+1} \frac{\mathrm{d}t}{t^2} \le \sum_{k=n+1}^{N} \frac{1}{k^2} \le \int_{n}^{N} \frac{\mathrm{d}t}{t^2} = \frac{1}{n} - \frac{1}{N} .$$

Enfin, on fait tendre N vers l'infini, cela donne $\frac{1}{n+1} \leq \sum_{k=n+1}^{+\infty} \frac{1}{k^2} \leq \frac{1}{n}$. Comme les termes extrêmes sont équivalents entre eux, le théorème d'encadrement permet de conclure que $\sum_{k=n+1}^{+\infty} \frac{1}{k^2} \underset{n \to +\infty}{\sim} \frac{1}{n}.$

A.10. En **A.6.**, on a obtenu $b_{n-1} - b_n \underset{n \to +\infty}{\sim} \frac{1}{12n^2}$. La question **A.8.** s'applique alors et montre que $\sum_{k=n+1}^{+\infty} (b_{k-1} - b_k) \underset{n \to +\infty}{\sim} \sum_{k=n+1}^{+\infty} \frac{1}{12k^2}$. En posant $B = \lim_{n \to +\infty} b_n$, et en utilisant **A.9.** et la transitivité de la relation d'équivalence, on a donc $b_n - B \underset{n \to +\infty}{\sim} \frac{1}{12n}$, ce qui s'écrit aussi $b_n = B + \frac{1}{12n} + o\left(\frac{1}{n}\right)$. En prenant l'exponentielle,

$$a_n = e^{b_n} = e^B \cdot \exp\left(\frac{1}{12n} + o\left(\frac{1}{n}\right)\right) = \sqrt{2\pi} \left(1 + \frac{1}{12n} + o\left(\frac{1}{n}\right)\right).$$

Enfin,

$$n! = \sqrt{n} \left(\frac{n}{e}\right)^n a_n = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + o\left(\frac{1}{n}\right)\right)$$

ce qui est le résultat attendu avec $C = \frac{1}{12}$

PARTIE B.

B.1. Une première intégration par parties, avec u'(t) = 1 et $v(t) = \cos^{2n}(t)$, donne

$$W_n = \int_0^{\frac{\pi}{2}} \cos^{2n}(t) \mathrm{d}t = \left[t \cos^{2n}(t) \right]_0^{\frac{\pi}{2}} + 2n \int_0^{\frac{\pi}{2}} t \sin(t) \cos^{2n-1}(t) \mathrm{d}t = 2n \int_0^{\frac{\pi}{2}} t \sin(t) \cos^{2n-1}(t) \mathrm{d}t \ .$$

Une deuxième intégration par parties, avec u'(t) = t et $v(t) = \sin(t) \cos^{2n-1}(t)$, donne

$$W_n = 2n \left[\frac{t^2}{2} \sin(t) \cos^{2n-1}(t) \right]_0^{\frac{\pi}{2}} - n J_n + 2n \left(n - \frac{1}{2} \right) \int_0^{\frac{\pi}{2}} t^2 \sin^2(t) \cos^{2n-2}(t) dt$$
$$= -n J_n + (2n^2 - n) (J_{n-1} - J_n).$$

Finalement, la relation obtenue peut s'écrire $W_n = -2n^2 J_n + n(2n-1) J_{n-1}$.

B.2. Divisons par W_n la relation obtenue ci-dessus :

$$1 = -2n^2 \frac{J_n}{W_n} + n(2n-1) \frac{J_{n-1}}{W_{n-1}} \frac{W_{n-1}}{W_n} = -2n^2 \frac{J_n}{W_n} + 2n^2 \frac{J_{n-1}}{W_{n-1}}$$

(en tenant compte de la relation $\frac{W_{n-1}}{W_n} = \frac{2n}{2n-1}$, cf. question **A.1.**). Finalement,

$$\frac{1}{n^2} = 2\left(\frac{J_{n-1}}{W_{n-1}} - \frac{J_n}{W_n}\right).$$

- **B.3.a.** Sur l'intervalle $I=\left[0,\frac{\pi}{2}\right]$, la fonction sinus est concave puisque sa dérivée seconde $-\sin$ est négative. Le graphe de la fonction sinus est alors, sur ce segment, situé au-dessus de sa sécante, ce qui se traduit par l'inégalité $\sin(t) \geq \frac{2}{\pi}t$, équivalente à l'inégalité demandée.
 - **b.** On élève au carré l'inégalité précédente (les deux membres sont positifs), donc $t^2 \le \frac{\pi^2}{4} \sin^2(t)$ pour tout $t \in \left[0, \frac{\pi}{2}\right]$. On en déduit

$$0 \le J_n = \int_0^{\frac{\pi}{2}} t^2 \cos^{2n}(t) dt \le \int_0^{\frac{\pi}{2}} \frac{\pi^2}{4} \sin^2(t) \cos^{2n}(t) dt = \frac{\pi^2}{4} \int_0^{\frac{\pi}{2}} (1 - \cos^2 t) \cos^{2n}(t) dt,$$

soit $0 \le J_n \le \frac{\pi^2}{4} (W_n - W_{n+1})$. En remplaçant ensuite W_{n+1} par $\frac{2n+1}{2n+2} W_n$ (cf. question **A.1.**), on obtient $0 \le J_n \le \frac{\pi^2}{4} W_n \left(1 - \frac{2n+1}{2n+2}\right) = \frac{\pi^2}{8(n+1)} W_n$. Il est alors clair que

A.1.), on obtient $0 \le J_n \le \frac{1}{4} W_n \left(1 - \frac{1}{2n+2}\right) = \frac{1}{8(n+1)} W_n$. If est alors $J_n = o(W_n)$, soit encore que $\lim_{n \to +\infty} \frac{J_n}{W_n} = 0$.

B.4. D'après **B.2.**, on a

$$S_n = \sum_{k=1}^n \frac{1}{k^2} = 2 \sum_{k=1}^n \left(\frac{J_{k-1}}{W_{k-1}} - \frac{J_k}{W_k} \right) = 2 \left(\frac{J_0}{W_0} - \frac{J_n}{W_n} \right)$$

(somme télescopique). Comme $W_0 = \frac{\pi}{2}$ et $J_0 = \int_0^{\frac{\pi}{2}} t^2 dt = \frac{\pi^3}{24}$, il reste $S_n = \frac{\pi^2}{6} - 2 \frac{J_n}{W_n}$.

B.5. Comme $\lim_{n\to+\infty} \frac{J_n}{W_n} = 0$, la suite (S_n) des sommes partielles de la série est convergente, donc la série $\sum_{n\geq 1} \frac{1}{n^2}$ est convergente (de toute façon, c'est du cours), et

$$S = \sum_{k=1}^{+\infty} \frac{1}{k^2} = \lim_{n \to +\infty} S_n = \frac{\pi^2}{6}$$
.