CONTRÔLE de MATHÉMATIQUES numéro 1

PSI2 2025-2026 Durée : 30 minutes environ 13/10/2025

ÉNONCÉ: Discuter en fonction du réel α la nature des intégrales suivantes:

$$I_{\alpha} = \int_{0}^{1} \frac{1 - \cos(t)}{t^{\alpha}} dt$$
 ; $J_{\alpha} = \int_{0}^{+\infty} t^{\alpha - 1} e^{-t} dt$; $K_{\alpha} = \int_{1}^{+\infty} \frac{\ln(t)}{(t - 1)^{\alpha}} dt$.

UN CORRIGÉ

Notons d'abord que les fonctions considérées sont toutes à valeurs positives sur les intervalles proposés. La convergence de l'intégrale équivaut donc à sa convergence absolue, et donc à l'intégrabilité de la fonction (l'intégrande) sur l'intervalle.

a. La fonction $f: t \mapsto \frac{1-\cos(t)}{t^{\alpha}}$ est continue et positive sur]0,1] et, de l'équivalent classique $1-\cos(t) \underset{t\to 0}{\sim} \frac{t^2}{2}$, on déduit l'équivalent $f(t) \underset{t\to 0}{\sim} \frac{1}{2} t^{2-\alpha} = \frac{1}{2} \times \frac{1}{t^{\alpha-2}}$. Le cours indique que la fonction $t \mapsto \frac{1}{t^{\alpha-2}}$ est intégrable en 0 (ou sur]0,1]) si et seulement si $\alpha-2<1$, i.e. $\alpha<3$. Par le critère des équivalents,

Bilan: l'intégrale I_{α} est convergente si et seulement si $\alpha < 3$.

- **b.** La fonction $g: t \mapsto t^{\alpha-1} e^{-t}$ est continue sur $\mathbb{R}_+^* =]0, +\infty[$. Deux études locales s'avèrent nécessaires:
 - en la borne 0, on a $g(t) \underset{t \to 0}{\sim} t^{\alpha-1} = \frac{1}{t^{1-\alpha}}$, d'où l'intégrabilité en 0 si et seulement si $1-\alpha < 1$, i.e. $\alpha > 0$.
 - en la borne $+\infty$, les résultats de croissance comparée donnent $t^2g(t)=t^{\alpha+1}e^{-t}$ $\underset{t\to+\infty}{\longrightarrow}$ 0, et ceci quel que soit le réel α ; on a donc, dans tous les cas, $g(t)=o\left(\frac{1}{t^2}\right)$ en $+\infty$, donc g est toujours intégrable en $+\infty$.

Bilan: l'intégrale J_{α} est convergente si et seulement si $\alpha > 0$.

- c. La fonction $h: t \mapsto \frac{\ln(t)}{(t-1)^{\alpha}}$ est continue sur $]1, +\infty[$. Deux études locales s'avèrent ici aussi nécessaires:
 - en la borne 1, par translation de la variable, on peut dire que h est intégrable en 1 si et seulement si la fonction $x\mapsto \frac{\ln(1+x)}{x^\alpha}$ est intégrable en 0 ; or, $\frac{\ln(1+x)}{x^\alpha} \underset{x\to 0}{\sim} \frac{1}{x^{\alpha-1}}$, d'où l'intégrabilité en 0 si et seulement si $\alpha-1<1$, soit $\alpha<2$.
 - en la borne $+\infty$, si l'on se souvient par exemple des intégrales de Bertrand (ou des séries de Bertrand) étudiées en exercice (mais le résultat de cette étude n'est pas au programme), on peut conjecturer que le facteur $\ln(t)$ ne va pas peser très lourd dans le comportement de l'intégrale. Il est alors raisonnable d'envisager la disjonction de cas suivante:

 \triangleright si $\alpha \le 1$, alors au voisinage de $+\infty$, $h(t) \ge \frac{1}{(t-1)^{\alpha}}$ et cette fonction minorante est positive et non intégrable en $+\infty$, donc par comparaison h n'est pas intégrable en $+\infty$;

 \triangleright si $\alpha > 1$, en introduisant un réel β tel que $1 < \beta < \alpha$, alors $t \mapsto \frac{1}{t^{\beta}}$ est intégrable en $+\infty$,

et $t^{\beta}h(t) \underset{t \to +\infty}{\sim} \frac{\ln(t)}{t^{\alpha-\beta}} \xrightarrow[t \to +\infty]{} 0$ par croissances comparées, soit encore $h(t) = o\left(\frac{1}{t^{\beta}}\right)$ en $+\infty$, d'où l'intégrabilité de h en $+\infty$.

Bilan: l'intégrale K_{α} est convergente si et seulement si $1 < \alpha < 2$.

COMMENTAIRES

Il y a de nombreuses erreurs de méthode à signaler:

- 1. Comme on recherche une condition <u>nécessaire et suffisante</u> sur α pour qu'une intégrale converge, il est pertinent d'utiliser le plus possible des <u>équivalents</u>. On sait en effet que, si $f(x) \underset{x \to a}{\sim} g(x)$, alors f est intégrable en a <u>si et seulement si</u> g est intégrable en a.
 - Une majoration, en revanche, ne pourra jamais donner qu'une condition <u>suffisante</u> pour qu'une fonction soit intégrable, et certainement pas une CNS! En effet, supposons que l'on ait $0 \le f \le g$ sur un intervalle I; alors l'intégrabilité de g sur I entraı̂ne celle de f, mais... si g n'est pas intégrable, cela ne fournit aucun renseignement sur l'intégrabilité de f. Il est donc impossible d'obtenir une <u>CNS</u> sur le paramètre α à partir d'une majoration. Idem pour l'utilisation des relations de comparaison locales o et O.
- 2. Dans le premier exemple, il ne fallait pas scinder l'intégrale en deux: $I_{\alpha} = \int_{0}^{1} \frac{\mathrm{d}t}{t^{\alpha}} \int_{0}^{1} \frac{\cos(t)}{t^{\alpha}} \, \mathrm{d}t$. En effet, la convergence de l'intégrale I_{α} n'est pas équivalente à la convergence des deux intégrales du second membre (ici encore, on n'a pas une CNS, mais seulement une condition suffisante). Pour certaines valeurs de α , précisément si $1 \le \alpha < 3$, l'intégrale I_{α} est convergente, alors que les intégrales du second membre sont toutes deux divergentes.
- 3. Éviter de se lancer dans des discussions a priori du style: "Premier cas: si $\alpha > 0$, deuxième cas: si $\alpha = 0$, troisième cas: si $\alpha < 0$ ". Il n'y a pas toujours de raison pour qu'une telle discussion soit pertinente! Une disjonction de cas n'est pertinente que si elle fait suite à une analyse préalable de la situation.
 - Par exemple, pour l'intégrale K_{α} au voisinage de $+\infty$, deux raisonnements différents permettent de conclure suivant que $\alpha > 1$ ou $\alpha \le 1$, cf. corrigé au verso où j'essaie d'expliquer un peu pourquoi je suis amené à considérer ces deux cas de figure.
- 4. Certains passent beaucoup de temps à chercher d'éventuels prolongements par continuité, ce qui ne sert pas à grand-chose dans ce genre de discussion. Quelques copies font alors du hors-sujet total.

BILAN

Le bilan de ce contrôle n'est pas très bon: une moyenne de 7,86, une médiane de 7, les notes allant de 0 à 19.

16 copies (sur 43) ont une note inférieure ou égale à 5. Les raisons:

- un manque de méthode (donc d'entraînement ?) inquiétant, comme le fait de penser qu'une majoration peut fournir une CNS d'intégrabilité, ou le fait de rechercher à tout prix un prolongement par continuité en certaines bornes ; la notion de condition <u>nécessaire et suffisante</u> est-elle bien comprise ? on peut parfois en douter!
- un manque de maîtrise de l'analyse, qu'il s'agisse du calcul asymptotique, des croissances comparées usuelles ou même parfois des propriétés opératoires des logarithmes et exponentielles :
- quelques copies aussi sont totalement inacceptables: des brouillons inextricables sans conclusion énoncée clairement, des ratures partout à tel point qu'on ne sait plus ce qu'il faut lire et ce qu'il ne faut pas lire. Ce sont des défauts majeurs, à corriger d'urgence avant que les écrits des concours ne soient trop proches!!!