Éléments propres.

- **1.** Soit $E = \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions de classe \mathcal{C}^{∞} de \mathbb{R} vers \mathbb{R} , soit l'endomorphisme $\Phi : f \mapsto f''$. Déterminer ses éléments propres.
- **2.** Soient u et v deux endomorphismes d'un \mathbb{K} -espace vectoriel E.
 - a. Montrer que, si $\lambda \in \mathbb{K}^*$ est valeur propre de $u \circ v$, alors λ est aussi valeur propre de $v \circ u$.
 - **b.** Si E est de dimension finie, montrer que $\mathrm{Sp}(v \circ u) = \mathrm{Sp}(u \circ v)$.
 - c. Si E est de dimension infinie, montrer que 0 peut être valeur propre de $u \circ v$ sans être valeur propre de $v \circ u$. On pourra, dans $E = \mathbb{K}[X]$, considérer l'opérateur de dérivation $D: P \mapsto P'$ et un "opérateur de primitivation" $\Phi: P \mapsto \int_{0}^{X} P(t) dt$.
- 3. Déterminer les valeurs propres de l'endomorphisme f de l'espace vectoriel $E = \mathbb{R}[X]$ défini par $f: P \mapsto (X^2 1) P'' + 2X P'.$
- **4.** Déterminer les valeurs propres et les vecteurs propres de l'endomorphisme f de $E = \mathbb{R}_n[X]$ défini par $f(P) = (X^2 1)P' nXP$.
- 5. Soit f l'endomorphisme de l'espace vectoriel $E=\mathbb{C}^{\mathbb{N}}$ défini par f(u)=v avec

$$v_0 = u_0$$
 et $\forall n \in \mathbb{N}^*$ $v_n = \frac{u_{n-1} + u_n}{2}$.

Déterminer les valeurs propres et les vecteurs propres de f.

- **6.a.** Soit u un endomorphisme de \mathbb{K}^n , soit $A \in \mathcal{M}_n(\mathbb{K})$ la matrice canoniquement associée. Soit par ailleurs H un hyperplan de \mathbb{K}^n d'équation cartésienne $v_1x_1 + \cdots + v_nx_n = 0$, avec v_1, \dots, v_n scalaires non tous nuls. Montrer que H est stable par u si et seulement le vecteur $V = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ est vecteur propre de la matrice A^{\top} .
 - **b.** Soit u l'endomorphisme de \mathbb{R}^3 canoniquement représenté par la matrice $A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$. Déterminer tous les sous-espaces vectoriels de \mathbb{R}^3 stables par u.
- 7. Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ une matrice strictement stochastique, i.e. telle que

$$\forall (i,j) \in [1,n]^2$$
 $a_{i,j} > 0$;
 $\forall i \in [1,n]$ $\sum_{j=1}^n a_{i,j} = 1$.

- **a.** Montrer que 1 est valeur propre de A.
- **b.** Montrer que $\forall \lambda \in \operatorname{Sp}(A) |\lambda| < 1$.
- **c.** Montrer que, si $\lambda \in \operatorname{Sp}(A)$ est de module 1, alors $\lambda = 1$.
- 8. Soit E un \mathbb{K} -espace vectoriel, soit $u \in \mathcal{L}(E)$ nilpotent, soit $v \in \mathcal{L}(E)$ commutant avec u. On pose f = u + v. Montrer que f et v ont les mêmes valeurs propres.

Polynôme caractéristique.

- 9. Montrer que la matrice $\begin{pmatrix} 1 & 1 & 0 & \cdots & 0 \\ 2 & 0 & 1 & \cdots & 0 \\ 3 & \vdots & \ddots & & \vdots \\ \vdots & \vdots & & \ddots & 1 \\ n & 0 & \cdots & \cdots & 0 \end{pmatrix}$ admet une unique valeur propre réelle strictement positive.
- 10. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice inversible, soit $B = A^{-1}$. Quelle relation y a-t-il entre les polynômes caractéristiques χ_A et χ_B ?
- 11. Soit E un espace vectoriel de dimension finie n. Soit $f \in \mathcal{L}(E)$ un endomorphisme de rang 2. Exprimer son polynôme caractéristique χ_f à l'aide de $\operatorname{tr}(f)$ et $\operatorname{tr}(f^2)$.
- 12. Soient $A \in \mathcal{M}_n(\mathbb{K})$, $B \in \mathcal{M}_n(\mathbb{K})$. Soient les matrices $M = \begin{pmatrix} \lambda I_n & A \\ B & I_n \end{pmatrix}$, $M' = \begin{pmatrix} I_n & 0 \\ -B & I_n \end{pmatrix}$, $M'' = \begin{pmatrix} I_n & 0 \\ -B & \lambda I_n \end{pmatrix}$ dans $\mathcal{M}_{2n}(\mathbb{K})$. En effectuant les produits matriciels MM' et M''M, montrer que les matrices AB et BA ont le même polynôme caractéristique: $\chi_{AB} = \chi_{BA}$.

Diagonalisation (pratique).

- **13.** Sans écrire aucun calcul, déterminer les éléments propres de la matrice $A = \begin{pmatrix} 1 & 2 & -3 \\ 4 & 8 & -12 \\ -2 & -4 & 6 \end{pmatrix}$.
- **14.** Diagonaliser la matrice $A = \begin{pmatrix} 9 & 0 & 0 \\ -5 & 4 & 0 \\ -8 & 0 & 1 \end{pmatrix}$. En déduire toutes les matrices $M \in \mathcal{M}_3(\mathbb{R})$ telles que $M^2 = A$.
- **15.** Rechercher toutes les matrices $M \in \mathcal{M}_2(\mathbb{R})$ vérifiant $M^2 + M = J$, avec $J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. On pourra exploiter le fait qu'une telle matrice M commute nécessairement avec J.
- **16.** Soient n+1 nombres complexes distincts x_0, \dots, x_n , soit le polynôme $B = \prod_{k=0}^n (X x_k)$. Soit d'autre part $A \in \mathbb{C}_n[X]$ un polynôme. On considère l'application φ qui, à tout polynôme P de $\mathbb{C}_n[X]$, associe le reste de la division euclidienne du polynôme AP par B.
 - a. Montrer que φ peut être considéré comme un endomorphisme de l'espace vectoriel $\mathbb{C}_n[X]$.
 - **b.** On note (L_0, \dots, L_n) la base de Lagrange associée aux points d'interpolation x_0, \dots, x_n . Calculer $\varphi(L_k)$ pour tout $k \in [0, n]$. En déduire que l'endomorphisme φ est diagonalisable.
- 17. Soit $E = \mathbb{R}_n[X]$, soient a et b deux réels distincts. Pour $P \in E$, on pose

$$\varphi(P) = (X - a)(X - b)P' - nXP.$$

Montrer que φ est un endomorphisme de E, et qu'il est diagonalisable.

18. Soit
$$A_n = \begin{pmatrix} 0 & 1 & & (0) \\ 1 & \ddots & \ddots & \\ & \ddots & \ddots & 1 \\ (0) & & 1 & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$$
, soit P_n son polynôme caractéristique.

- **a.** Calculer P_1 et P_2 . Pour $n \geq 3$, exprimer P_n en fonction de P_{n-1} et P_{n-2} .
- **b.** Soit $x \in]-2,2[$. Montrer que

$$P_n(x) = \frac{\sin((n+1)\alpha)}{\sin(\alpha)}$$
, avec $\alpha = \arccos(\frac{x}{2})$.

- **c.** En déduire que A_n est diagonalisable sur \mathbb{R} .
- **19.** Soit $A = \begin{pmatrix} 1 & 3 & 0 \\ 3 & -2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$. Combien y a-t-il de matrices M telles que $M^2 = A$ dans $\mathcal{M}_n(\mathbb{C})$? Et dans $\mathcal{M}_n(\mathbb{R})$?
- **20.** Soit la matrice $A = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 4 & 2 \\ -1 & 1 & 3 \end{pmatrix}$.
 - a. Montrer que A est diagonalisable.
 - **b.** Montrer qu'il existe une infinité de matrices $R \in \mathcal{M}_3(\mathbb{R})$ telles que $R^2 = A$.
 - **c.** Soit $R \in \mathcal{M}_3(\mathbb{R})$ telle que $R^2 = A$. Montrer que R est diagonalisable sur \mathbb{R} .
- **21.** Soit a un réel, soit la matrice $L = \begin{pmatrix} 1 \\ \vdots \\ 1 \\ a & 1 & \cdots & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$
 - \mathbf{a} . À quelle condition sur le réel a la matrice L est-elle diagonalisable ?
 - **b.** Calculer les puissances de L.

Diagonalisation (théorie).

22. Soit $A \in \mathcal{M}_n(\mathbb{C})$, soit f l'endomorphisme de $\mathcal{M}_n(\mathbb{C})$ défini par

$$\forall M \in \mathcal{M}_n(\mathbb{C}) \qquad f(M) = AM \ .$$

Montrer que Sp(f) = Sp(A), et déterminer les sous-espaces propres de f en fonction de ceux de A. Montrer que f est diagonalisable si et seulement si A l'est.

- **23.** Soit $A \in \mathcal{M}_n(\mathbb{K})$ diagonalisable. Montrer que $M = \begin{pmatrix} A & A \\ A & A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$ est également diagonalisable. On utilisera la diagonalisation de la matrice $J = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$.
- **24.** Soient A, B dans $\mathcal{M}_n(\mathbb{R})$, avec B diagonalisable. Montrer que

$$AB^3 = B^3A \Longrightarrow AB = BA$$
.

- **25.** Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice de rang 1.
 - **a.** Démontrer la relation $A^2 = \operatorname{tr}(A) \cdot A$.
 - **b.** En déduire une condition nécessaire et suffisante pour que A soit diagonalisable.
 - **c.** Montrer que A est diagonalisable si et seulement si $\mathbb{K}^n = \text{Ker}(A) \oplus \text{Im}(A)$.
- **26.** Soit E un \mathbb{K} -espace vectoriel de dimension n. Soit u un endomorphisme de E ayant n valeurs propres distinctes.
 - a. Soit $P = \sum_{k=0}^{d} a_k X^k \in \mathbb{K}[X]$ un polynôme. Montrer que l'endomorphisme f = P(u) est diagonalisable. A-t-il n valeurs propres distinctes?
 - **b.** Soit v un endomorphisme de E qui commute avec u. Montrer que tout vecteur propre de u est aussi vecteur propre de v. La réciproque est-elle vraie (tout vecteur propre de v est-il vecteur propre de u)? Montrer que u et v sont codiagonalisables (i.e. diagonalisables dans une même base).
- **27.** Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^3 = A + I_n$. Montrer que A est diagonalisable sur \mathbb{C} . Montrer que $\det(A) > 0$.
- **28.** Soit $M \in \mathcal{M}_n(\mathbb{C})$ telle que $M^2 + M^{\top} = I_n$.
 - **a.** Montrer que M est inversible si et seulement si $1 \notin \operatorname{Sp}(M)$.
 - **b.** Montrer que M est diagonalisable.
- **29.** Soit E un espace vectoriel de dimension n, soit $p \in \mathcal{L}(E)$ un projecteur. Étudier les éléments propres et la diagonalisabilité de l'endomorphisme $\varphi : u \mapsto p \circ u u \circ p$ de l'espace vectoriel $\mathcal{L}(E)$.
- **30.** Soit E un \mathbb{K} -espace vectoriel de dimension finie n, soient F et G deux sous-espaces supplémentaires dans E. On note p le projecteur sur F parallèlement à G, et s la symétrie par rapport à F et parallèlement à G. Pour $f \in \mathcal{L}(E)$, on pose $\varphi(f) = p \circ f \circ s$.
 - **a.** Montrer que φ est un endomorphisme diagonalisable de l'espace vectoriel $\mathcal{L}(E)$. On recherchera un polynôme annulateur.
 - **b.** Déterminer les éléments propres de l'endomorphisme φ .
- **31.** Soient f et g deux endomorphismes diagonalisables d'un \mathbb{K} -espace vectoriel E de dimension finie. Montrer que f et g commutent si et seulement s'ils sont simultanément diagonalisables (i.e. s'il existe une base de E constituée de vecteurs propres communs à f et g).
- **32.** Soit $A \in \mathcal{M}_n(\mathbb{C})$ vérifiant $\operatorname{rg}(A) = 2$, $\operatorname{tr}(A) = 0$ et $A^n \neq 0$. Montrer que la matrice A est diagonalisable.
- **33.** Soit E un \mathbb{K} -espace vectoriel de dimension n, soit u un endomorphisme de E, supposé diagonalisable. À quelle condition existe-t-il un vecteur x de E tel que la famille $\mathcal{F} = (x, u(x), u^2(x), \dots, u^{n-1}(x))$ soit une base de E? On écrira le déterminant de la famille \mathcal{F} relativement à une base \mathcal{B} de vecteurs propres de u.

- **34*.** Soit f un endomorphisme diagonalisable d'un \mathbb{K} -espace vectoriel E de dimension n. On note \mathcal{C}_f l'ensemble des endomorphismes qui commutent avec f.
 - **a.** Montrer que C_f est un sous-espace vectoriel de $\mathcal{L}(E)$.
 - **b.** Montrer qu'un endomorphisme g appartient à \mathcal{C}_f si et seulement si chaque sous-espace propre de f est stable par g.
 - c. En déduire que

$$\dim(\mathcal{C}_f) = \sum_{\lambda \in \mathrm{Sp}(f)} m_{\lambda}^2 ,$$

où m_{λ} est l'ordre de multiplicité de la valeur propre λ .

- **d.** On suppose que les valeurs propres de f sont simples. Montrer que $(\mathrm{id}_E, f, f^2, ..., f^{n-1})$ est une base de \mathcal{C}_f .
- **35.** Soit $a \in \mathbb{R}$, soit $n \geq 2$. Pour $P \in \mathbb{R}_n[X]$, on pose

$$\varphi(P)(X) = (X - a) (P'(X) - P'(a)) - 2 (P(X) - P(a)).$$

- a. Montrer que φ est un endomorphisme de l'espace vectoriel $\mathbb{R}_n[X]$.
- **b.** Déterminer ses valeurs propres. Est-il diagonalisable ? On pourra utiliser le fait que la famille $(1, X a, (X a)^2, \dots, (X a)^n)$ est une base de $\mathbb{R}_n[X]$.
- **36.** Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $B \in \mathcal{M}_n(\mathbb{K})$ qui commutent, soit $M = \begin{pmatrix} A & B \\ 0 & A \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{K})$.
 - a. Montrer que

$$\forall P \in \mathbb{K}[X] \qquad P(M) = \begin{pmatrix} P(A) & P'(A) \, B \\ 0 & P(A) \end{pmatrix} \, .$$

- b. En déduire une condition nécessaire et suffisante sur A et B pour que M soit diagonalisable.
- 37. Soit E un \mathbb{R} -espace vectoriel de dimension finie, soit $u \in \mathcal{L}(E)$ un endomorphisme diagonalisable dont toutes les valeurs propres sont strictement positives.
 - a. Montrer que tout endomorphisme v de E vérifiant $v^2 = u$ est diagonalisable.
 - **b*.** Montrer qu'il existe un unique endomorphisme v de E tel que $v^2 = u$ et $\mathrm{Sp}(v) \subset \mathbb{R}_+^*$.

Trigonalisation.

38. Trigonaliser
$$A = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}$$
.

39. Soit
$$A \in \mathcal{M}_n(\mathbb{C})$$
, soit $P \in \mathbb{C}[X]$. On suppose que $\chi_A = \prod_{k=1}^n (X - \lambda_k)$. Déterminer $\chi_{P(A)}$.

- **40*.** Soient A, B dans $\mathcal{M}_n(\mathbb{C})$ telles que AB = 0.
 - **a.** Montrer que A et B ont un vecteur propre commun.
 - **b.** Montrer que A et B sont simultanément trigonalisables.
- **41*.** Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer l'équivalence

A est nilpotente
$$\iff \forall k \in [1, n] \quad \operatorname{tr}(A^k) = 0$$
.

Théorème de Cayley-Hamilton.

- **42.** Soit $M \in \mathcal{M}_n(\mathbb{C})$, on suppose que les matrices M et 2M sont semblables. Montrer que M est nilpotente. On montrera que $\mathrm{Sp}(M) = \{0\}$.
- **43*.** Soit f un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie. Montrer qu'il existe une droite ou un plan de E stable par f. Est-ce encore vrai en dimension infinie ?
- **44.** Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{C})$. On suppose qu'il existe une matrice $M \in \mathcal{M}_n(\mathbb{C})$, non nulle, telle que AM = MB. Montrer que A et B ont une valeur propre commune (on pourra montrer que, pour tout polynôme $P \in \mathbb{C}[X]$, on a P(A) M = M P(B)). Étudier la réciproque.
- **45.** Soit $A = \begin{pmatrix} 0 & -b & a \\ b & 0 & -c \\ -a & c & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$ une matrice antisymétrique.
 - **a.** A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$?
 - **b.** A est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{C})$?
 - c. Soit $B = A + \lambda I_3$ avec λ réel non nul. Montrer que B est inversible et que l'on peut écrire $B^{-1} = \alpha A^2 + \beta A + \gamma I_3$, où α , β , γ sont des réels (dépendant de λ).
- **46.** Soit $A \in \mathcal{M}_2(\mathbb{C})$ une matrice non scalaire, admettant une unique valeur propre a. Montrer que A est semblable à $M = \begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$.

Exercices avec Python.

- **47.** Soit la matrice $A = \begin{pmatrix} -7 & -3 & 0 \\ 54 & 8 & -36 \\ 3 & -3 & -10 \end{pmatrix}$. Soit le vecteur $X_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.
 - a. Pour tout entier naturel n, on note X_n le n-ième itéré de X_0 par A (ou par l'endomorphisme canoniquement associé), c'est-à-dire $X_n = A^n X_0$. Faire afficher les X_n pour n de 0 à 15 (valeurs approchées). Que remarque-t-on ?
 - **b.** Pour travailler avec des valeurs numériques "raisonnables", on norme les X_n à chaque étape, autrement dit on construit une suite de vecteurs (Y_n) , avec $Y_0 = \frac{X_0}{\|X_0\|}$, puis $Y_{n+1} = \frac{AY_n}{\|AY_n\|}$. Pour n de 1 à 15, afficher le vecteur Y_n ainsi que le produit scalaire $(AY_n|Y_n)$. Conclusion?
 - c. Tester avec d'autres vecteurs "initiaux" X_0 construits aléatoirement.
 - **d.** En prenant $X_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, qu'obtient-on avec 20 itérations ? avec 40 itérations ?
 - e. Utiliser les fonctions du module numpy.linalg pour diagonaliser la matrice A.
 - **f.** Comment interpréter les résultats des calculs précédents ? Les notations $(\cdot|\cdot)$ et $\|\cdot\|$ représentent respectivement le produit scalaire canonique et la norme euclidienne canonique sur \mathbb{R}^n .