Calculs de déterminants.

1. Calculer les déterminants d'ordre n:

$$D = \begin{vmatrix} 1 & n & \dots & \dots & n \\ n & 2 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & n-1 & n \\ n & \dots & & n & n \end{vmatrix}_{(n)} ; \quad \Delta = \begin{vmatrix} 1 & 1 & \dots & 1 & a \\ 1 & 1 & \dots & a & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & a & \dots & 1 & 1 \\ a & 1 & \dots & 1 & 1 \end{vmatrix}_{(n)}.$$

a. Pour calculer D, on retranche à chaque colonne la précédente : $C_j \leftarrow C_j - C_{j-1}$ $(2 \le j \le n)$, on développe ensuite par rapport à la dernière ligne, ce qui conduit au déterminant d'une matrice triangulaire inférieure (qui est donc le produit de ses éléments diagonaux) :

Donc $D = (-1)^{n+1} n!$

b. Pour calculer Δ , on fait agir sur les colonnes (ou lignes) une "permutation-miroir" $\sigma:(1,2,\cdots,n-1,n)\mapsto (n,n-1,\cdots,2,1)$, qui est le produit des $\left\lfloor\frac{n}{2}\right\rfloor$ "transpositions" échangeant j et n-j+1, avec $1\leq j\leq \left\lfloor\frac{n}{2}\right\rfloor$. Ainsi, les a se trouvent sur la diagonale prncipale. Ensuite, on peut observer que la somme des éléments de chaque colonne de la matrice est a+n-1, ce qui permettra de "sortir" ce facteur a+n-1 du déterminant après avoir effectué l'opération $L_1\leftarrow L_1+(L_2+\cdots+L_n)$. On effectuera ensuite les opérations $C_j\leftarrow C_j-C_1$ $(2\leq j\leq n)$ pour se ramener à une matrice triangulaire inférieure.

2. Calculer
$$D_n = \begin{vmatrix} 2 & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & n & 1 \\ 1 & \cdots & 1 & 1 \end{vmatrix}_{(n)}$$
, puis $\Delta_n = \begin{vmatrix} 2 & 1 & \cdots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & n & 1 \\ 1 & \cdots & 1 & n+1 \end{vmatrix}_{(n)}$. On exprimera le

résultat à l'aide du nombre $H_n = \sum_{k=1}^n \frac{1}{k}$.

• Les opérations $L_i \leftarrow L_i - L_{i-1}$ $(2 \le i \le n)$, suivies d'un développement par rapport à la dernière colonne, qui ramènent à une matrice triangulaire supérieure, donnent

$$D_{n} = \begin{vmatrix} 2 & 1 & \cdots & \cdots & 1 \\ -1 & 2 & 0 & \cdots & \cdots & 0 \\ 0 & -2 & 3 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & n-1 & 0 \\ 0 & \cdots & \cdots & 0 & -(n-1) & 0 \end{vmatrix}_{(n)} = (-1)^{1+n} (-1)^{n-1} (n-1)! = (n-1)!$$

• Ensuite, on décompose la dernière colonne de Δ_n en $\begin{pmatrix} 1 \\ \vdots \\ 1 \\ n+1 \end{pmatrix} = \begin{pmatrix} 1 \\ \vdots \\ 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ \vdots \\ 0 \\ n \end{pmatrix}$.

La linéarité du déterminant d'une matrice par rapport à sa dernière colonne donne alors

(*):
$$\Delta_n = D_n + \begin{vmatrix} 2 & 1 & \cdots & 1 & 0 \\ 1 & 3 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 1 & \vdots \\ \vdots & & \ddots & n & 0 \\ 1 & \cdots & \cdots & 1 & n \end{vmatrix}_{(n)} = (n-1)! + n \Delta_{n-1},$$

après un développement par rapport à la dernière colonne du deuxième déterminant obtenu. En divisant par n! la relation (*), on tire $\frac{\Delta_n}{n!} = \frac{\Delta_{n-1}}{(n-1)!} + \frac{1}{n}$, d'où l'on déduit par télescopage, que $\frac{\Delta_n}{n!} = \frac{\Delta_1}{1!} + \sum_{l=0}^n \frac{1}{k} = 2 + (H_n - 1)$. Finalement,

$$\Delta_n = n! \left(1 + H_n \right) .$$

3. Soient $a_1, a_2, \ldots, a_n, b, c$ des réels avec $b \neq c$. Montrer que le déterminant

$$D(x) = \begin{vmatrix} a_1 + x & c + x & \dots & c + x \\ b + x & a_2 + x & \ddots & \vdots \\ \vdots & \ddots & \ddots & c + x \\ b + x & \dots & b + x & a_n + x \end{vmatrix}_{(n)}$$

est une fonction affine du réel x. En déduire la valeur de D(0).

Transformons D(x) en effectuant les opérations élémentaires $L_i \leftarrow L_i - L_1 \ (2 \le i \le n)$. On

obtient alors
$$D(x) = \begin{vmatrix} a_1 + x & c + x & \dots & c + x \\ \alpha_{2,1} & \alpha_{2,2} & \cdots & \alpha_{2,n} \\ \vdots & \vdots & & \vdots \\ \alpha_{n,1} & \alpha_{n,2} & \cdots & \alpha_{n,n} \end{vmatrix}$$
, où les $\alpha_{i,j}$ $(2 \le i \le n, 1 \le j \le n)$ sont

des scalaires (indépendants de la variable x). En développant ce déterminant par rapport à la première ligne, on obtient alors

$$D(x) = (a_1 + x) \gamma_{1,1} + (c + x) \sum_{i=2}^{n} \gamma_{1,j} ,$$

où les cofacteurs $\gamma_{1,j}$ $(1 \leq j \leq n)$ sont indépendants de x. On voit alors que D(x) peut se mettre sous la forme Ax + B, où A et B sont des constantes, c'est donc une fonction affine de la variable x.

Remarquons que, pour les valeurs x=-b et x=-c, les matrices obtenues sont triangulaires, d'où le système

$$\begin{cases} D(-b) = -b \ \alpha + \beta = \prod_{i=1}^{n} (a_i - b) \\ D(-c) = -c \ \alpha + \beta = \prod_{i=1}^{n} (a_i - c) \end{cases},$$

qui conduit à

$$D(0) = \beta = \frac{1}{b-c} \left[b \cdot \prod_{i=1}^{n} (a_i - c) - c \cdot \prod_{i=1}^{n} (a_i - b) \right].$$

4. Soit la matrice $A = (a_{i,j})_{0 \le i,j \le n} \in \mathcal{M}_{n+1}(\mathbb{R})$, avec $a_{i,j} = \binom{i+j}{i}$. Calculer $\det(A)$.

On a
$$\det(A) = D_{n+1} = \begin{vmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \cdots & \begin{pmatrix} n \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \cdots & \begin{pmatrix} n+1 \\ 1 \end{pmatrix} \\ \vdots & \vdots & & \vdots \\ \begin{pmatrix} n \\ n \end{pmatrix} & \begin{pmatrix} n+1 \\ n \end{pmatrix} & \cdots & \begin{pmatrix} 2n \\ n \end{pmatrix} \end{vmatrix}_{(n+1)}$$

En vertu de la formule de Pascal $\binom{i+j}{i} - \binom{i+j-1}{i} = \binom{i+j-1}{i-1}$, si l'on effectue les opérations $C_j \leftarrow C_j - C_{j-1}$, pour j allant de n à 1 en décroissant, on obtient

$$D_{n+1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} & 0 & \cdots & 0 \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \cdots & \begin{pmatrix} n \\ 0 \end{pmatrix} \\ \vdots & \vdots & & \vdots \\ \begin{pmatrix} n \\ n \end{pmatrix} & \begin{pmatrix} n \\ n-1 \end{pmatrix} & \cdots & \begin{pmatrix} 2n-1 \\ n-1 \end{pmatrix} \end{pmatrix}_{(n+1)}$$

On développe alors par rapport à la première ligne, puis on effectue les opérations $L_i \leftarrow L_i - L_{i-1}$ pour i allant de n à 1 en décroissant. De nouveau avec la formule de Pascal, on obtient

$$D_{n+1} = \begin{vmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 2 \\ 0 \end{pmatrix} & \cdots & \begin{pmatrix} n \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \cdots & \begin{pmatrix} n \\ 1 \end{pmatrix} \\ \vdots & \vdots & & \vdots \\ \begin{pmatrix} n-1 \\ n-1 \end{pmatrix} & \begin{pmatrix} n \\ n-1 \end{pmatrix} & \cdots & \begin{pmatrix} 2n-2 \\ n-1 \end{pmatrix} \end{vmatrix}_{(n)}.$$

Comme les coefficients de la première ligne valent tous 1, on a finalement $D_{n+1} = D_n$. Avec $D_1 = 1$, on conclut que $D_n = 1$ pour tout n.

5. Calculer le déterminant d'ordre n:

$$D_n(x) = \begin{vmatrix} 2\cos x & -1 & & (0) \\ -1 & \ddots & \ddots & \\ & \ddots & \ddots & -1 \\ (0) & & -1 & 2\cos x \end{vmatrix}.$$

En développant par rapport à la première ligne, on obtient la relation de récurrence linéaire d'ordre deux:

(**R**) :
$$D_n(x) = 2 \cos x \cdot D_{n-1}(x) - D_{n-2}(x)$$
 pour $n \ge 3$.

L'équation caractéristique (C) : $r^2 - (2 \cos x) r + 1 = 0$ a deux racines **distinctes** e^{ix} et e^{-ix} si x est un réel non multiple de π ; les solutions de (R) s'expriment alors sous la forme

$$D_n(x) = A(x) e^{inx} + B(x) e^{-inx} = \lambda(x) \cos nx + \mu(x) \sin nx.$$

L'initialisation par $D_1(x) = 2 \cos x$ et $D_2(x) = 4 \cos^2 x - 1$ donne $\lambda(x) = 1$, $\mu(x) = \frac{\cos x}{\sin x}$ et, après simplifications,

$$\forall x \in \mathbb{R} \setminus \pi \mathbf{Z} \quad \forall n \in \mathbb{N}^* \qquad D_n(x) = \frac{\sin(n+1)x}{\sin x} .$$

Lorsque $x = k\pi$ avec $k \in \mathbb{Z}$, on peut :

- soit reprendre la méthode algébrique ci-dessus, mais l'équation caractéristique ayant cette fois une racine double (1 si k est pair, -1 si k est impair). Je rappelle l'expression de D_n dans ce cas (**elle est à connaître!!!**) : $D_n = (A + Bn) r_0^n$;
- soit utiliser le fait (après l'avoir justifié) que la fonction $x \mapsto D_n(x)$ est continue sur IR. On obtient $D_n(k\pi) = (-1)^{nk} (n+1)$.

Exercices théoriques.

6. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soit φ_A l'endomorphisme de $\mathcal{M}_n(\mathbb{K})$ défini par $M \mapsto AM$. Calculer la trace et le déterminant de φ_A .

Considérons la base canonique de $\mathcal{M}_n(\mathbb{K})$ constituée des matrices élémentaires $E_{i,j}$ $(1 \le i \le n, 1 \le j \le n)$, que nous allons ordonner de la façon suivante:

$$\mathcal{B} = (E_{1,1}, E_{2,1}, \cdots, E_{n,1}, E_{1,2}, E_{2,2}, \cdots, E_{n,2}, \cdots, E_{1,n}, E_{2,n}, \cdots, E_{n,n}).$$

Si
$$A = (a_{k,l}) = \sum_{k,l} a_{k,l} E_{k,l}$$
, on calcule

$$\varphi_A(E_{i,j}) = AE_{i,j} = \sum_{k,l} a_{k,l} E_{k,l} E_{i,j} = \sum_{k,l} a_{k,l} \delta_{i,l} E_{k,j} = \sum_{k=1}^n a_{k,i} E_{k,j} .$$

Le lecteur courageux, en représentant sur sa feuille de brouillon une grosse matrice de format $n^2 \times n^2$, s'apercevra que la matrice de l'endomorphisme φ_A relativement à la base \mathcal{B} de $\mathcal{M}_n(\mathbb{K})$ est diagonale par blocs, précisément constituée de n blocs diagonaux tous égaux à la matrice A. On en déduit que

$$\operatorname{tr}(\varphi_A) = n \cdot \operatorname{tr}(A)$$
 et $\operatorname{det}(\varphi_A) = (\operatorname{det} A)^n$.

- 7. Soit $A = \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}).$
 - **a.** Calculer AA^{\top} . En déduire $\det(A)$.
 - \mathbf{b}^* . Soient n et p deux entiers naturels. On suppose que n et p peuvent chacun s'écrire comme une somme de quatre carrés d'entiers naturels. Montrer que l'entier np est aussi somme de quatre carrés d'entiers naturels.

a. On calcule $AA^{\top} = (a^2 + b^2 + c^2 + d^2) I_4$. On a donc

$$\det(AA^{\top}) = \det(A) \, \det(A^{\top}) = (\det A)^2 = (a^2 + b^2 + c^2 + d^2)^4 \, .$$

Donc $\det(A) = \pm (a^2 + b^2 + c^2 + d^2)^2$. Par ailleurs, les réels b, c, d étant fixés, on voit que

$$\det(A) = \det(aI_4 - M) = \chi_M(a) , \quad \text{avec} \quad M = \begin{pmatrix} 0 & -b & -c & -d \\ b & 0 & d & -c \\ c & -d & 0 & b \\ d & c & -b & 0 \end{pmatrix} .$$

Le cours sur le polynôme caractéristique indique alors que $a \mapsto \det(A)$ est une fonction polynomiale de degré 4, unitaire, donc $\det(A) = (a^2 + b^2 + c^2 + d^2)^2$.

b. Supposons $n=a^2+b^2+c^2+d^2$ et $p=e^2+f^2+g^2+h^2$ avec $a,\,b,\,c,\,d,\,e,\,f,\,g,\,h$ entiers naturels. On a alors $n^2=\det(A)$ et $p^2=\det(B)$, avec

$$A = \begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} e & f & g & h \\ -f & e & -h & g \\ -g & h & e & -f \\ -h & -q & f & e \end{pmatrix}.$$

Le lecteur courageux vérifiera que AB=C, avec $C=\begin{pmatrix} x&y&z&t\\ -y&x&-t&z\\ -z&t&x&-y\\ -t&-z&y&x \end{pmatrix}$, en posant $\begin{cases} x=ae-bf-cg-dh\\ y=af+be+ch-dg\\ z=ag-bh+ce+df\\ t=ah+bg-cf+de \end{cases}$

Donc $(np)^2 = n^2p^2 = \det(A) \cdot \det(B) = \det(AB) = (x^2 + y^2 + z^2 + t^2)^2$ et, en considérant les signes, on voit que $np = x^2 + y^2 + z^2 + t^2$. Les nombres x, y, z, t étant des entiers relatifs, on conclut que np est la somme des carrés des quatre entiers naturels |x|, |y|, |z|, |t|.

8. Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $B \in \mathcal{M}_n(\mathbb{R})$ deux matrices réelles. On suppose que A et B sont semblables sur \mathbb{C} :

$$\exists P \in \mathrm{GL}_n(\mathbb{C}) \qquad PA = BP$$
.

En décomposant P en P = Q + iR, où Q et R sont des matrices réelles, et en considérant l'application $f: \lambda \mapsto \det(Q + \lambda R)$, montrer que A et B sont semblables sur \mathbb{R} , i.e.

$$\exists S \in \mathrm{GL}_n(\mathbb{R}) \qquad SA = BS$$
.

En prenant parties réelle et imaginaire de la relation PA = BP (qui est équivalente à $A = P^{-1}BP$), on obtient respectivement (1): QA = BQ et (2): RA = BR. La combinaison linéaire (1) + $\lambda \times$ (2) donne alors $(Q + \lambda R)A = B(Q + \lambda R)$ pour tout réel λ .

Si $z \in \mathbb{C}$, la matrice Q + zR a des coefficients $q_{i,j} + zr_{i,j}$ qui sont des fonctions polynomiales (en fait, affines, i.e. polynomiales de degré au plus 1) de la variable z. On sait qu'alors l'application $z \mapsto \det(Q + zR)$ est aussi polynomiale, i.e.

$$\exists F \in \mathbb{C}[X] \quad \forall z \in \mathbb{C} \qquad \det(Q + zR) = F(z) .$$

Ce polynôme F n'est pas le polynôme nul puisque, la matrice P=Q+iR étant supposée inversible, on a $F(i)=\det(P)\neq 0$. Le polynôme F a donc un nombre fini de racines, il existe donc au moins un réel λ (et même une infinité de tels λ) pour lequel $F(\lambda)\neq 0$, i.e. la matrice réelle $S=Q+\lambda R$ est inversible. La relation SA=BS, écrite plus haut, peut alors s'écrire sous la forme $A=S^{-1}BS$, avec $S=Q+\lambda R\in \mathrm{GL}_n(\mathbb{R})$, et cela prouve que les matrices A et B sont semblables sur \mathbb{R} .

9. Dans l'espace $E = \mathbb{R}^3$, montrer que quatre points A, B, C, D sont coplanaires (appartiennent

à un même "plan affine") si et seulement si le déterminant $\begin{vmatrix} 1 & x_A & y_A & z_A \\ 1 & x_B & y_B & z_B \\ 1 & x_C & y_C & z_C \\ 1 & x_D & y_D & z_D \end{vmatrix}$ est nul.

Les quatre points sont coplanaires si et seulement si les trois vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{AD} sont liés. Or,

$$\begin{vmatrix} 1 & x_A & y_A & z_A \\ 1 & x_B & y_B & z_B \\ 1 & x_C & y_C & z_C \\ 1 & x_D & y_D & z_D \end{vmatrix} = \begin{vmatrix} 1 & x_A & y_A & z_A \\ 0 & x_B - x_A & y_B - y_A & z_B - z_A \\ 0 & x_C - x_A & y_C - y_A & z_C - z_A \\ 0 & x_D - x_A & y_D - y_A & z_D - z_A \end{vmatrix}$$
$$= \begin{vmatrix} x_B - x_A & y_B - y_A & z_B - z_A \\ x_C - x_A & y_C - y_A & z_C - z_A \\ x_D - x_A & y_D - y_A & z_D - z_A \end{vmatrix}$$
$$= \det_{\mathcal{B}_0} \left(\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD} \right),$$

où \mathcal{B}_0 est la base canonique de \mathbb{R}^3 . La conclusion est immédiate.

Déterminant de Vandermonde.

10. Soient a_0, a_1, \ldots, a_n des éléments de \mathbb{K} deux à deux distincts. Montrer que la famille de polynômes (P_0, P_1, \ldots, P_n) où, pour tout $i \in [0, n]$, $P_i(X) = (X + a_i)^n$, est une base de $\mathbb{K}_n[X]$.

La famille $\mathcal{P}=(P_0,\cdots,P_n)$ est de cardinal n+1 dans l'espace $\mathbb{K}_n[X]$ de dimension n+1. Soit $\mathcal{X}=(X^n,X^{n-1},\cdots,X,1)$ la base canonique de \mathbb{K}^n (dans un ordre inversé pour que ça soit plus joli), on va montrer que le déterminant de la famille de vecteurs \mathcal{P} relativement à la base \mathcal{X} est non nul. Pour cela, développons les polynômes P_j par la formule du binôme de Newton :

$$P_{j} = (X + a_{j})^{n} = \sum_{i=0}^{n} {n \choose i} a_{j}^{n-i} X^{i} = \sum_{i=0}^{n} {n \choose n-i} a_{j}^{n-i} X^{i}.$$

On voit ainsi que

$$\det_{\mathcal{X}}(\mathcal{P}) = \begin{vmatrix} \binom{n}{0} & \binom{n}{0} & \cdots & \binom{n}{0} \\ \binom{n}{1} a_0 & \binom{n}{1} a_1 & \cdots & \binom{n}{1} a_n \\ \vdots & \vdots & & \vdots \\ \binom{n}{n} a_0^n & \binom{n}{n} a_1^n & \cdots & \binom{n}{n} a_n^n \\ \binom{n}{n} a_0^n & \binom{n}{n} a_1^n & \cdots & \binom{n}{n} a_n^n \end{vmatrix}_{(n+1)} = \begin{bmatrix} \prod_{k=0}^n \binom{n}{k} \end{bmatrix} V_{n+1}(a_0, a_1, \dots, a_n),$$

où $V_{n+1}(a_0, a_1, \cdots, a_n) = \prod_{0 \le i < j \le n} (a_j - a_i)$ est le déterminant de Vandermonde des n+1nombres a_0, \dots, a_n . Ces n+1 nombres étant deux à deux distincts, les coefficients binomiaux $\binom{n}{k}$ étant par ailleurs non nuls, on a $\det_{\mathcal{X}}(\mathcal{P}) \neq 0$, et la famille \mathcal{P} est une base de $\mathbb{K}_n[X]$.

11. Soit $E = \mathbb{R}_n[X]$, soient a_0, \dots, a_n des réels non nuls et deux à deux distincts. Pour $i \in [0, n]$, on définit une forme linéaire f_i sur E par

$$\forall P \in E$$
 $f_i(P) = \int_0^{a_i} P(t) dt$.

Montrer que la famille $\mathcal{F}=(f_0,\cdots,f_n)$ est une base de l'espace vectoriel $E^*=\mathcal{L}(E,\mathbb{R})$ des formes linéaires sur E.

Comme $\dim(E^*) = \dim(E) = \operatorname{Card}(\mathcal{F}) = n+1$, il suffit de montrer que la famille \mathcal{F} est libre. Soient $\lambda_0, \dots, \lambda_n$ des réels tels que $\sum_{i=0}^n \lambda_i f_i = 0$ (forme linéaire nulle sur E), on aura alors en particulier $\sum_{i=0}^n \lambda_i f_i(X^k) = 0$ (polynôme nul) pour tout $k \in [0, n]$. Or, on calcule

$$\sum_{i=0}^{n} \lambda_i f_i(X^k) = \sum_{i=0}^{n} \lambda_i \int_0^{a_i} t^k dt = \sum_{i=0}^{n} \frac{a_i^{k+1}}{k+1} \lambda_i.$$

Le (n+1)-uplet $(\lambda_0,\cdots,\lambda_n)$ est donc solution d'un système linéaire homogène de n+1équations à n+1 inconnues, dont le déterminant est

$$\begin{vmatrix} a_0 & a_1 & \cdots & a_n \\ \frac{a_0^2}{2} & \frac{a_1^2}{2} & \cdots & \frac{a_n^2}{2} \\ \vdots & \vdots & & \vdots \\ \frac{a_0^{n+1}}{n+1} & \frac{a_1^{n+1}}{n+1} & \cdots & \frac{a_n^{n+1}}{n+1} \end{vmatrix}_{(n+1)} = \frac{1}{(n+1)!} \left(\prod_{i=0}^n a_i \right) \cdot V_{n+1}(a_0, \dots, a_n) ,$$

où $V_{n+1}(a_0,\dots,a_n)$ est le déterminant de Vandermonde des nombres a_0,\dots,a_n , qui est non nul puisque les a_i sont distincts. Pour se ramener à un Vandermonde, on a mis en facteur a_j sur la (j+1)-ième colonne, et $\frac{1}{\cdot}$ sur la i-ième ligne. La matrice associée à ce système linéaire est donc inversible, on en déduit que les λ_i sont tous nuls, et donc que la famille \mathcal{F} est libre, puis qu'elle est une base de l'espace dual E^* .

Déterminants de matrices par blocs.

12. Soient $A \in \mathcal{M}_n(\mathbb{K}), B \in \mathcal{M}_{n,p}(\mathbb{K}), C \in \mathcal{M}_{p,n}(\mathbb{K}), D \in \mathcal{M}_p(\mathbb{K})$ des matrices. On suppose que A est inversible. On pose $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}_{n+p}(\mathbb{K})$. Montrer que

$$\det M = \det A \cdot \det(D - CA^{-1}B) .$$

Réponse parachutée :
$$M=\begin{pmatrix}I_n&0\\CA^{-1}&I_p\end{pmatrix}\begin{pmatrix}A&B\\0&D-CA^{-1}B\end{pmatrix}$$
, d'où le résultat!

13. Soit $A \in \mathcal{M}_n(\mathbb{R})$, soit $M = \begin{pmatrix} I_n & A \\ A & I_n \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$. À quelle condition la matrice M est-elle inversible? Donner son inverse si c'est possible.

• Des opérations élémentaires de type "transvection" (qui ne modifient pas le déterminant), effectuées d'abord sur les colonnes, puis sur les lignes, donnent

$$\det(M) = \det\begin{pmatrix} I_n + A & A \\ I_n + A & I_n \end{pmatrix} = \det\begin{pmatrix} I_n + A & A \\ 0 & I_n - A \end{pmatrix} = \det(I_n + A) \cdot \det(I_n - A) ,$$

puisque l'on se ramène à une matrice triangulaire par blocs. On en déduit que M est inversible **si et seulement si** les matrices $I_n + A$ et $I_n - A$ sont toutes deux inversibles (i.e. **ssi** $\operatorname{Sp}(A) \cap \{-1,1\} = \emptyset$).

- ullet Si cette condition est satisfaite, on peut envisager différentes méthodes pour inverser M, et ces différentes méthodes ne conduisent pas toujours (en tout cas, pas directement) à la même expression du résultat.
- \triangleright On peut rechercher M^{-1} sous la forme $N=\begin{pmatrix}E&F\\G&H\end{pmatrix},$ où les quatre blocs sont carrés d'ordre n. Alors

$$MN = I_{2n} \iff \begin{pmatrix} I_n & A \\ A & I_n \end{pmatrix} \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} I_n & 0 \\ 0 & I_n \end{pmatrix} \iff \begin{cases} E + AG = I_n & (\mathbf{1}) \\ F + AH = 0 & (\mathbf{2}) \\ AE + G = 0 & (\mathbf{3}) \\ AF + H = I_n & (\mathbf{4}) \end{cases}$$

Les combinaisons linéaires (1)+(3), (2)+(4), (1)-(3), (4)-(2) donnent

$$E + G = F + H = (I_n + A)^{-1}$$
 et $E - G = H - F = (I_n - A)^{-1}$,

d'où

$$E = H = \frac{1}{2} \Big((I_n + A)^{-1} + (I_n - A)^{-1} \Big)$$
 et $G = F = \frac{1}{2} \Big((I_n + A)^{-1} - (I_n - A)^{-1} \Big)$.

 \triangleright On aurait pu aussi inverser le système MX = X', en posant $X = \begin{pmatrix} Y \\ Z \end{pmatrix}$ et $X' = \begin{pmatrix} Y' \\ Z' \end{pmatrix}$. Les calculs sont laissés au lecteur (ouf!), qui devrait trouver

$$E = H = (I_n - A^2)^{-1}$$
 et $F = G = -A(I_n - A^2)^{-1}$.

Le même lecteur, s'il est toujours vivant, vérifiera que c'est en fait la même chose que ce que l'on obtient par la première méthode.

- 14. Soient u et v deux endomorphismes d'un \mathbb{K} -espace vectoriel E de dimension finie n. On suppose que u et v commutent, et que v est nilpotent. On souhaite montrer par récurrence sur l'entier n la propriété $\det(u+v) = \det(u)$.
 - **a.** Traiter le cas n = 1.
 - **b.** Pour $n \ge 2$ et $v \ne 0$, former les matrices de u et de v dans une base de E adaptée à $\mathrm{Im}(v)$.
 - c. Conclure en appliquant l'hypothèse de récurrence aux endomorphismes induits par u et v sur Im(v).
 - **a.** Le seul endomorphisme nilpotent en dimension 1 est l'endomorphisme nul (v = 0), donc la propriété est évidente.
 - **b.** Soit $r = \operatorname{rg}(v)$, soit $\mathcal{B} = (e_1, \dots, e_r, e_{r+1}, \dots, e_n)$ une base de E adaptée à $\operatorname{Im}(v)$. Comme u commute avec v, il laisse stable le sous-espace $\operatorname{Im}(v)$, donc $U = \operatorname{Mat}_{\mathcal{B}}(u)$ est de la forme $U = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$ avec A carrée d'ordre r. Enfin, $V = \operatorname{Mat}_{\mathcal{B}}(v)$ est de la forme $V = \begin{pmatrix} E & F \\ 0 & 0 \end{pmatrix}$ avec E carrée d'ordre r.
 - c. Raisonnons par récurrence forte (initialisée en a.). Soit $n \geq 2$, supposons la propriété vraie dans tout espace vectoriel de dimension k avec $1 \leq k \leq n-1$. Soient u et v deux endomorphismes d'un espace vectoriel E de dimension n, vérifiant les hypothèses de l'énoncé, avec $v \neq 0$ (sinon, c'est évident). Notons u' et v' les endomorphismes induits par u et v respectivement sur $\mathrm{Im}(v)$. Il est clair que u' et v' commutent, et que v' est nilpotent. Comme $\mathrm{Im}(v)$ est de dimension r avec $1 \leq r \leq n-1$ (un endomorphisme nilpotent ne peut être bijectif, il est donc de rang strictement inférieur à n), on peut appliquer l'hypothèse de récurrence qui affirme que $\mathrm{det}(u'+v')=\mathrm{det}(u')$. Matriciellement, avec les notations de la question \mathbf{b} ., cela se traduit par $\mathrm{det}(A+E)=\mathrm{det}(A)$. Comme $\mathrm{Mat}_{\mathcal{B}}(u+v)=U+V=\begin{pmatrix}A+E&B+F\\0&D\end{pmatrix}$, on a alors

$$\det(u+v) = \det(U+V) = \det(A+E) \cdot \det(D)$$
$$= \det(A) \cdot \det(D) = \det(U) = \det(U),$$

ce qui achève la récurrence.