DEVOIR SURVEILLÉ de MATHÉMATIQUES numéro 3 PSI2 2025-2026 Durée: 4 heures

EXERCICE

Soit $f: \mathbb{R} \to \mathbb{R}$ une application continue. On définit par récurrence une suite de fonctions (f_n) de IR vers IR par

$$f_0 = f$$
 et $\forall n \in \mathbb{N} \quad \forall x \in \mathbb{R} \quad f_{n+1}(x) = \int_0^x f_n(t) dt$.

- 1. Montrer que, pour tout k entier naturel, la fonction f_k est de classe \mathcal{C}^k sur \mathbb{R} .
- **2.** Si j et k sont deux entiers naturels tels que $0 \le j \le k$, montrer que $f_k^{(j)} = f_{k-j}$. Que vaut $f_k^{(j)}(0)$ si j < k?
- **3.** On fixe a > 0. Montrer qu'il existe une constante $M \in \mathbb{R}_+$ telle que

$$\forall k \in \mathbb{N} \quad \forall x \in [-a, a] \qquad \left| f_k(x) \right| \le M \frac{|x|^k}{k!} .$$

On pourra utiliser l'inégalité de Taylor-Lagrange.

4. En déduire que la série de fonctions $\sum_{n\geq 1} f_n$ converge simplement sur \mathbb{R} , on notera S la fonction somme:

$$\forall x \in \mathbb{R}$$
 $S(x) = \sum_{n=1}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} f_{n+1}(x)$.

- **5.** Montrer que la fonction S est de classe \mathcal{C}^1 sur \mathbb{R} , et exprimer S' à l'aide de f et de S.
- **6.** Que vaut S(0)?
- 7. Prouver la relation $\frac{\mathrm{d}}{\mathrm{d}x} \big(S(x) e^{-x} \big) = f(x) \ e^{-x}$. En déduire une expression de S(x) faisant intervenir une intégrale.
- **8.** Déterminer S lorsque f est la fonction $f: x \mapsto x^2$.
- 9. Soient $n \in \mathbb{N}$ et x réel. À l'aide de la formule de Taylor avec reste intégral, montrer que

$$f_{n+1}(x) = \int_0^x \frac{(x-t)^n}{n!} f(t) dt$$
.

- 10. Retrouver alors l'expression de $S(x) = \sum_{n=0}^{+\infty} f_{n+1}(x)$ obtenue à la question 7.
- 11. Soit $E = \mathcal{C}(\mathbb{R}, \mathbb{R})$ l'espace vectoriel des fonctions continues de \mathbb{R} vers \mathbb{R} . À toute fonction fde E, on associe une fonction notée $\psi(f)$ définie par

$$\forall x \in \mathbb{R}$$
 $\psi(f)(x) = e^x \int_0^x f(t) e^{-t} dt$.

- a. Montrer que ψ est un endomorphisme de l'espace vectoriel E.
- **b.** Montrer que ψ est injectif, non surjectif.
- c. Déterminer précisément le sous-espace vectoriel $\operatorname{Im}(\psi)$.

PROBLÈME

Dans tout ce problème, on fixe un entier naturel n avec $n \ge 2$. On identifie (comme d'habitude) les espaces vectoriels \mathbb{K}^n et $\mathcal{M}_{n,1}(\mathbb{K})$, autrement dit, si x_1, \dots, x_n sont n scalaires, les notations

$$(x_1, \dots, x_n) \in \mathbb{K}^n$$
 et $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{K})$ représentent le même objet.

On note $\mathcal{B}_0 = (E_1, \dots, E_n)$ la base canonique de \mathbb{K}^n , ainsi pour tout $i \in [1, n]$, E_i est la matrice-colonne de $\mathcal{M}_{n,1}(\mathbb{K})$ dont le *i*-ième coefficient vaut 1, les autres étant nuls.

Pour tout couple $(i, j) \in [1, n]^2$, la notation $E_{i,j}$ représente la matrice élémentaire, carrée d'ordre n, dont le coefficient d'indices (i, j) vaut 1, les autres étant nuls. On pourra utiliser sans démonstration les relations (la notation A^{\top} représente la transposée d'une matrice A):

(*):
$$\forall (i,j) \in [1,n]^2$$
 $E_i^{\top} E_j = \delta_{i,j}$; $E_i E_j^{\top} = E_{i,j}$,

où $\delta_{i,j}$ est le symbole de Kronecker, qui vaut 1 si i=j, et 0 sinon.

PARTIE A. Quelques préliminaires.

1. Des relations (*) ci-dessus, déduire la règle des dominos:

$$\forall (i, j, k, l) \in [1, n]^4$$
 $E_{i,j}E_{k,l} = \delta_{j,k}E_{i,l}$.

- **2.** Soit $A \in \mathcal{M}_n(\mathbb{K})$, soit un couple d'indices $(i,j) \in [1,n]^2$. Que représentent les produits matriciels AE_j et $E_i^{\top}A$? Exprimer le coefficient $a_{i,j}$ d'indices (i,j) de la matrice A à l'aide de A et des matrices-colonnes E_i et E_j .
- 3. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée d'ordre n, soit u_A l'endomorphisme de \mathbb{K}^n canoniquement associé. Pour tout $k \in [1, n]$, on note V_k le sous-espace vectoriel de \mathbb{K}^n défini par

$$V_k = \operatorname{Vect}(E_1, \cdots, E_k)$$
.

- a. Montrer que la matrice A est triangulaire supérieure si et seulement si, pour tout $k \in [1, n]$, le sous-espace V_k est stable par u_A .
- **b.** Énoncer de même une condition nécessaire et suffisante pour que A soit triangulaire inférieure, en termes de sous-espaces stables par u_A .
- **4.** En utilisant éventuellement la question **3.** ci-dessus (mais d'autres méthodes sont aussi envisageables), prouver les résultats suivants:
 - a. Le produit de deux matrices triangulaires supérieures de $\mathcal{M}_n(\mathbb{K})$ est encore une matrice triangulaire supérieure. Quels sont alors les coefficients diagonaux de la matrice produit ?
 - **b.** Si une matrice triangulaire supérieure est inversible, alors son inverse est encore triangulaire supérieure. Quels sont alors les coefficients diagonaux de la matrice inverse ?

PARTIE B. Opérations élémentaires de type transvection.

- Si $M \in \mathcal{M}_n(\mathbb{K})$ est une matrice carrée d'ordre n, et si $k \in [1, n]$, on appelle k-ième **mineur principal** de la matrice M le déterminant, noté $\Delta_k(M)$, de la matrice carrée d'ordre k extraite de M en ne conservant que ses k premières lignes et k premières colonnes.
- 5. Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice quelconque, soit $\lambda \in \mathbb{K}$ un scalaire, soient i et j deux indices appartenant à l'intervalle entier $[\![1,n]\!]$, avec i>j. On note A' la matrice obtenue à partir de A par l'opération élémentaire sur les lignes dont le codage est $L_i \leftarrow L_i + \lambda L_j$.
 - a. Montrer qu'il existe une matrice $T_{i,j}(\lambda) \in \mathcal{M}_n(\mathbb{K})$, dépendant seulement des indices i et j et du scalaire λ , telle que $A' = T_{i,j}(\lambda) \cdot A$, et exprimer cette matrice $T_{i,j}(\lambda)$ à l'aide de la matrice-identité I_n , du scalaire λ et de la matrice élémentaire $E_{i,j}$.
 - **b.** Montrer que $\Delta_k(A') = \Delta_k(A)$ pour tout $k \in [1, n]$. Les matrices $T_{i,j}(\lambda)$ introduites ci-dessus, avec $\lambda \in \mathbb{K}$ et $1 \leq j < i \leq n$, seront appelées matrices de transvection.
- **6.** Avec les notations de la question précédente, déterminer $(T_{i,j}(\lambda))^{-1}$.
- 7. Soit m un entier naturel non nul. Soient $\lambda_1, \dots, \lambda_m$ des scalaires, soient $(i_1, j_1), (i_2, j_2), \dots, (i_m, j_m)$ des couples d'entiers tels que $\forall k \in [\![1, m]\!] \quad 1 \leq j_k < i_k \leq n$.

 Montrer que la matrice L égale au produit $L = T_{i_m, j_m}(\lambda_m) \cdots T_{i_1, j_1}(\lambda_1)$ est triangulaire inférieure avec des coefficients diagonaux tous égaux à 1.
- 8. Soit la matrice $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 2 & 0 & -1 \end{pmatrix} \in \mathcal{M}_3(\mathbb{R})$. Montrer qu'il est possible de transformer A en une matrice triangulaire supérieure par une succession de trois opérations élémentaires sur les lignes de la forme $L_i \leftarrow L_i + \lambda L_j$ avec i > j. En déduire l'existence d'une matrice L qui est le produit de trois matrices de transvection, et d'une matrice U triangulaire supérieure, telles que A = LU. Expliciter ces matrices L et U.

PARTIE C. La décomposition LU.

Dans cette partie, on notera \mathcal{U} l'ensemble des matrices triangulaires supérieures de $\mathcal{M}_n(\mathbb{K})$. On notera aussi \mathcal{L} l'ensemble des matrices de $\mathcal{M}_n(\mathbb{K})$ qui sont triangulaires inférieures avec des coefficients diagonaux tous égaux à 1.

Si $A \in \mathcal{M}_n(\mathbb{K})$ est une matrice carrée d'ordre n, on appelle **décomposition LU** de la matrice A toute écriture de la matrice A sous forme de produit A = LU, avec $L \in \mathcal{L}$ et $U \in \mathcal{U}$.

Les lettres L et U signifient respectivement "lower" et "upper".

L'objectif de cette partie est d'obtenir des propriétés d'existence et d'unicité d'une telle décomposition, sous diverses hypothèses.

- 9. Soit $A \in GL_n(\mathbb{K})$ une matrice inversible. On suppose $A = L_1U_1 = L_2U_2$ avec $(L_1, L_2) \in \mathcal{L}^2$ et $(U_1, U_2) \in \mathcal{U}^2$. Montrer que $L_1 = L_2$ et $U_1 = U_2$. On pourra utiliser la **PARTIE A.**
- 10. Soit $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. Montrer que N admet une infinité de décompositions LU. 11. Montrer que la matrice $A = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$ n'admet pas de décomposition LU. Énoncer
- 11. Montrer que la matrice $A = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$ n'admet pas de décomposition LU. Énoncer une condition nécessaire et suffisante sur une matrice carrée d'ordre deux pour qu'elle admette une décomposition LU.

- 12. Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$, on suppose que tous les mineurs principaux de A sont non nuls.
 - a. Montrer qu'il est possible de transformer A en une matrice triangulaire supérieure, uniquement par des opérations élémentaires sur les lignes, du type transvection $L_i \leftarrow L_i + \lambda L_j$ avec i > j. On décrira un procédé algorithmique pour y parvenir.
 - **b.** En déduire que A admet une décomposition LU.
 - c. Cette décomposition LU est-elle unique ?
 - **d.** Donner, en fonction de la taille n de la matrice, une estimation de la complexité de l'algorithme décrit en ${\bf a}$.

PARTIE D. Cas d'une matrice tridiagonale.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice tridiagonale, c'est-à-dire de la forme

- 13. On pose $\delta_0 = 1$, puis $\delta_k = \Delta_k(A)$ pour tout $k \in [\![1,n]\!]$, c'est-à-dire le k-ième mineur principal de la matrice A. Calculer δ_1 , puis exprimer δ_k en fonction de δ_{k-1} et δ_{k-2} pour $2 \le k \le n$.
- 14. On suppose que les mineurs principaux δ_k $(1 \le k \le n)$ de la matrice A sont tous non nuls. Vérifier que la factorisation LU de la matrice A est donnée par A = LU, avec

15. Soit $Y \in \mathbb{K}^n$. On considère le système linéaire (S) d'écriture matricielle AX = Y et d'inconnue $X \in \mathbb{K}^n$. De ce qui précède, déduire qu'il est possible d'écrire un algorithme de résolution de ce système (S) dont la complexité est O(n).