Rayon de convergence.

- 1. Déterminer le rayon de convergence des séries entières $\sum a_n z^n$, avec
 - **a.** $a_n = \frac{n!}{n^n}$; **b.** $a_n = n^{(-1)^n}$; **c.** $a_n = \binom{2n}{n}$; **d.** $a_n = \lfloor 10^n \pi \rfloor 10 \times \lfloor 10^{n-1} \pi \rfloor$ (dans le **d.**, le coefficient a_n est la n-ième décimale du nombre π).
- **2.** On suppose que $\lim_{n\to+\infty} \sqrt[n]{|a_n|} = l$, avec $l\in\overline{\mathbb{R}_+} = [0,+\infty]$. Quel est le rayon de convergence de la série entière $\sum_{n>0} a_n z^n$?
- 3. Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence $R\in [0,+\infty]$.
 - a. Soit P un polynôme non nul. Déterminer le rayon de convergence de la série entière $\sum_{n>0} P(n) \, a_n \, z^n.$
 - **b.** Déterminer le rayon de convergence des séries entières $\sum_{n\geq 0} a_n z^{2n}$ et $\sum_{n\geq 0} a_n^2 z^n$.
- **4.** Soit une série entière $\sum_{n\geq 0} a_n z^n$ de rayon de convergence non nul. Montrer que la série entière $\sum_{n\geq 0} \frac{a_n\,z^n}{n!}$ a un rayon de convergence infini.

Expression de la somme d'une série entière.

- **5.** Rayon de convergence et calcul de la somme des séries entières $\sum_{n\geq 1} \frac{x^{2n+1}}{2n(2n+1)} \text{ et } \sum_{n\geq 0} \frac{\operatorname{ch}(n)}{n!} x^n.$
- **6.** Rayon de convergence et calcul de $\sum_{n=1}^{+\infty} \frac{n-3}{(n-1)!} x^n.$
- 7. On rappelle que $\forall x \in]-1,1[\ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x^n}{n}$. Déterminer le rayon de convergence de la série entière $\sum_{n\geq 1} \frac{x^{2n+2}}{n(n+1)(2n+1)}$ et calculer sa somme en tout point x de l'intervalle ouvert de convergence. Que se passe-t-il aux bornes de cet intervalle ?
- **8.** Rayon de convergence et somme de $\sum_{n>1} \frac{n x^n}{(2n+1)!}$
- **9.** Soit $f(x) = \sum_{n=2}^{+\infty} \frac{(-1)^n}{n(n-1)} x^n$.
 - a. Ensemble de définition de f?
 - **b.** Exprimer f(x) à l'aide de fonctions usuelles sur] -1,1[
 - **c.** Calculer f(1) et f(-1).
- 10. Rayon de convergence et calcul de $\sum_{n=1}^{+\infty} \frac{\sin n}{n} x^n$.

- **11.** Pour $x \in \mathbb{R}$, calculer $S(x) = \sum_{n=0}^{+\infty} \frac{x^{3n}}{(3n)!}$.
- 12. Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0, de somme f(z).
 - **a.** Pour $z \in \mathbb{C}$ tel que |z| < R, exprimer $\sum_{n=0}^{+\infty} a_{2n} z^{2n}$ à l'aide de f. **b.** Même question avec $\sum_{n=0}^{+\infty} a_{3n} z^{3n}$.
- **13.** Pour tout n entier naturel, on pose $a_n = \int_0^1 \frac{t^n}{1+t} dt$. Déterminer le rayon de convergence Ret la somme de la série entière $\sum_{n\geq 0} a_n x^n$. Quelle est la nature des séries numériques $\sum_{n\geq 0} a_n$ et $\sum_{n>0} (-1)^n a_n$? En cas de convergence, calculer leur somme.

Propriétés de la fonction somme.

- **14.** On pose $f(x) = \sum_{n=1}^{+\infty} \frac{x^n}{\sqrt{n}}$ pour tout réel x tel que la série converge.
 - **a.** Quel est l'ensemble de définition de f?
 - **b.** Montrer que f est continue sur [-1, 1].
 - **c.** Quelle est la limite de f en 1^- ?
- **15.** Soit f la fonction définie sur $]-\infty,1[$ par :
 - $f(x) = \frac{\operatorname{Arctan} \sqrt{-x}}{\sqrt{-x}}$ pour x < 0; f(0) = 1;

 - $f(x) = \frac{1}{2\sqrt{x}} \ln\left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right)$ pour x > 0.

Montrer que f est de classe \mathcal{C}^{∞} sur $]-\infty,1[$.

16. Pour n entier naturel, on pose $a_n = \begin{cases} 1 & \text{si } n \text{ est un carr\'e} \\ 0 & \text{sinon} \end{cases}$,

$$b_n = \operatorname{Card}\left\{(p,q) \in \mathbb{N}^2 \mid p^2 + q^2 = n\right\} \quad \text{et} \quad c_n = \operatorname{Card}\left\{(p,q) \in \mathbb{N}^2 \mid p^2 + q^2 \le n\right\}.$$

On admet par ailleurs que
$$\int_0^{+\infty} e^{-u^2} du = \frac{\sqrt{\pi}}{2}$$
.

Pour
$$x \in]-1,1[$$
, on pose $A(x) = \sum_{n=0}^{+\infty} a_n x^n$, $B(x) = \sum_{n=0}^{+\infty} b_n x^n$ et $C(x) = \sum_{n=0}^{+\infty} c_n x^n$.

- a. Donner une autre expression de A(x). Par une méthode de comparaison série-intégrale, donner un équivalent de A(x) lorsque $x \to 1^-$.
- **b.** Exprimer B(x) et C(x) à l'aide de A(x), et en donner des équivalents lorsque $x \to 1^-$.

- 17. Soit $(a_n)_{n\in\mathbb{N}}$ une suite numérique, non nulle, et N-périodique avec $N\in\mathbb{N}^*$.
 - a. Quel est le rayon de convergence de la série entière $\sum_{n>0} a_n z^n$?
 - b. Montrer que la fonction somme de cette série entière est une fonction rationnelle.

Développement en série entière.

- **18.** Soit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = e^{-\frac{1}{x^2}}$ si $x \neq 0$ et f(0) = 0. **a.** Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R}^* , et que l'on peut écrire, sur \mathbb{R}^* , $f^{(n)}(x) = P_n\left(\frac{1}{x}\right)f(x)$, où P_n est une fonction polynomiale.
 - **b.** En déduire que f est de classe \mathcal{C}^{∞} sur \mathbb{R} et que $f^{(n)}(0) = 0$ pour tout entier naturel n.
 - \mathbf{c} . La fonction f est-elle développable en série entière au voisinage de zéro ?
- **19.** Pour tout x réel, on pose $g(x) = \sum_{i=0}^{+\infty} e^{-k(1-ikx)}$.
 - a. Montrer que la fonction g est définie, et de classe \mathcal{C}^{∞} , sur \mathbb{R} .
 - **b.** Montrer que, pour tout p entier naturel, on a $|g^{(p)}(0)| \ge p^{2p} e^{-p}$.
 - c. En déduire que la série de Taylor de q a un rayon de convergence nul.
- **20.** Montrer que la fonction $x \mapsto \frac{1}{\sqrt{1-x^2}}$ est développable en série entière sur l'intervalle]-1,1[.

En déduire la relation
$$\forall x \in]-1,1[\qquad \operatorname{Arcsin} x = \sum_{n=0}^{+\infty} \frac{(2n)!}{2^{2n} (n!)^2} \, \frac{x^{2n+1}}{2n+1} \; .$$
 Cette dernière relation reste-t-elle vraie pour $x=-1$ et $x=1$?

- **21.** Pour x réel non nul, on pose $f(x) = \int_{-t}^{2x} \frac{\cos(t)}{t} dt$.
 - a. Montrer que f est prolongeable par continuité en 0.
 - b. Montrer que la fonction f, ainsi prolongée, est développable en série entière sur \mathbb{R} et expliciter son développement.
- **22.** On fixe $a \in [0, 1[$. Pour x réel, on pose $S(x) = \sum_{n=0}^{+\infty} \operatorname{sh}(a^n x)$.
 - a. Montrer que la fonction S est définie et continue sur \mathbb{R} .
 - **b.** Trouver une relation entre S(ax) et S(x).
 - \mathbf{c}^* . En déduire que S est développable en série entière sur \mathbb{R} et expliciter ce développement.
- 23.a. Former de deux façons le développement en série entière de

$$f: x \mapsto e^{-x^2} \int_0^x e^{t^2} dt$$
.

b. En déduire la relation

$$\sum_{k=0}^n \frac{(-1)^k}{2k+1} \begin{pmatrix} n \\ k \end{pmatrix} \begin{pmatrix} 2n \\ n \end{pmatrix} = \frac{4^n}{2n+1} \ .$$

Autres exercices.

- **24*.** Soit $\sum a_n x^n$ une série entière de rayon de convergence infini. On suppose que cette série entière converge uniformément sur \mathbb{R} . Montrer que les a_n sont nuls à partir d'un certain rang.
- **25.** Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^{∞} . On suppose qu'il existe un réel positif M tel que $\forall n \in \mathbb{N} \quad \forall x \in \mathbb{R} \qquad |f^{(n)}(x)| \leq M$.

Avec l'inégalité de Taylor-Lagrange, montrer que f est développable en série entière sur $\mathbb R.$

26. Calculer
$$S = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)(2n+2)}$$
.

On pourra utiliser le développement en série entière de $\operatorname{Arctan} x$.

- 27. Soit $\sum_{n\geq 0} u_n$ une série à termes réels, convergente, de somme S. On note $S_n = \sum_{k=0}^n u_k$ sa somme partielle d'ordre n, et $R_n = S S_n$ le reste d'ordre n. Enfin, pour tout réel x, on pose $f(x) = \sum_{n=0}^{+\infty} \frac{S_n}{n!} x^n$.
 - **a.** Montrer que l'on peut écrire $S e^{-x} f(x) = e^{-x} \left(\sum_{n=0}^{+\infty} \frac{R_n}{n!} x^n \right)$.
 - **b.** En déduire que $\lim_{x \to +\infty} e^{-x} f(x) = S$.
- **28.** Soit $\sum a_n z^n$ une série entière de rayon de convergence R > 0. On pose $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ pour |z| < R.
 - **a.** Soit r tel que 0 < r < R. Montrer que $\forall p \in \mathbb{N}$ $a_p r^p = \frac{1}{2\pi} \int_0^{2\pi} f(re^{it}) e^{-ipt} dt$. En déduire que $|a_p| \leq \frac{M(r)}{r^p}$, où $M(r) = \max_{|z|=r} |f(z)|$.
 - **b.** Application. Soit f la somme d'une série entière de rayon de convergence infini. On suppose que f est bornée sur \mathbb{C} . Montrer que f est constante.
- **29.** Pour α réel et n entier naturel non nul, on pose $\binom{\alpha}{n} = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$,

par convention $\begin{pmatrix} \alpha \\ 0 \end{pmatrix} = 1$. Prouver la **relation de Chu-Vandermonde**:

$$\forall (a,b) \in \mathbb{R}^2 \quad \forall n \in \mathbb{N} \qquad \sum_{k=0}^n \binom{a}{k} \binom{b}{n-k} = \binom{a+b}{n} .$$

Exercices avec Python.

30. La suite de Fibonacci (a_n) est définie par

$$a_0 = 0$$
 ; $a_1 = 1$; $\forall n \in \mathbb{N}$ $a_{n+2} = a_{n+1} + a_n$.

- **a.** Écrire une fonction retournant a_n , prenant n comme argument.
- **b.** On pose $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ pour tout x tel que cette série entière converge. Représenter la somme partielle d'indice 20 de cette série entière dans l'intervalle [0; 0, 6].
- **c.** Montrer que, pour tout $x \in]-R,R[$, où R est le rayon de convergence, on a $f(x) = \frac{x}{1-x-x^2}.$
- **d.** Représenter sur le même graphique la fonction $x \mapsto \frac{x}{1-x-x^2}$ sur l'intervalle [0; 0, 6].
- **31.** Pour tout n entier naturel, on pose $D_n = \{(p,q) \in \mathbb{N}^2 \mid 2p + 3q = n\}$, et $d_n = \operatorname{Card}(D_n)$.
 - a. Écrire une fonction Python prenant comme argument un entier naturel n et retournant la liste des éléments de l'ensemble D_n .
 - **b.** Avec Python, comparer d_n et d_{n+6} pour $n \in [0, 184]$. Faire une conjecture.

Pour
$$x \in]-1,1[$$
, on pose $f(x) = \frac{1}{(1-x^2)(1-x^3)}$.

- **c.** Montrer que f est développable en série entière sur]-1,1[.
- **d.** On note $f(x) = \sum_{n=0}^{+\infty} c_n x^n$ ce développement en série entière. Écrire une fonction en langage Python qui calcule c_n , prenant n comme argument. Calculer c_n pour $n \in [0, 199]$.
- e. Vérifier expérimentalement la relation $c_n = d_n$, puis la démontrer.
- **f.** En considérant la fonction $g: x \mapsto (1-x^6) f(x) \frac{1}{1-x}$, prouver la conjecture émise à la question **b.**
- g. Représenter sur un même graphique, sur l'intervalle [0; 0, 95], la fonction f et la somme partielle d'indice 20 de la série entière $\sum c_n x^n$.

UN PROBLÈME

PARTIE A

Soit h une application de classe \mathcal{C}^{∞} sur un intervalle [0, a[(avec a > 0)) et vérifiant

$$\forall x \in [0, a[\forall n \in \mathbb{N} \quad h^{(n)}(x) \ge 0.$$

Pour
$$x \in [0, a[$$
 et $n \in \mathbb{N}$, on note $R_n(x) = h(x) - \sum_{k=0}^n \frac{h^{(k)}(0)}{k!} x^k$.

A.1. Prouver la relation
$$R_n(x) = x^{n+1} \int_0^1 \frac{(1-u)^n h^{(n+1)}(xu)}{n!} du$$
.

A.2. Pour tout couple (x, y) tel que 0 < x < y < a et tout entier naturel n, montrer que

$$0 \le R_n(x) \le \left(\frac{x}{y}\right)^{n+1} R_n(y) \le \left(\frac{x}{y}\right)^{n+1} h(y) .$$

A.3. En déduire que h est la somme de sa série de Taylor sur [0, a].

PARTIE B

Soit g l'application définie sur $I = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ par } g(x) = \tan x.$

- **B.1.a.** Prouver, pour tout $n \in \mathbb{N}$, l'existence et l'unicité d'un polynôme P_n , dont on donnera le degré, tel que $\forall x \in I$ $g^{(n)}(x) = P_n(\tan x)$.
 - **b.** Montrer que les coefficients de P_n sont des entiers naturels.
- **B.2.** On note $a_n = g^{(2n+1)}(0)$. On s'intéresse à la série de Taylor de la fonction g, c'est-à-dire la série $\sum_{n\geq 0} \frac{a_n}{(2n+1)!} x^{2n+1}$; on note S(x) la somme de cette série lorsqu'elle est convergente.
 - **a.** Prouver que $\forall x \in I \quad S(x) = \tan x$.
 - **b.** Quel est le rayon de convergence de la série entière définissant S?

PARTIE C

On note S l'ensemble des suites réelles $s = (s_n)_{n \in \mathbb{N}}$ vérifiant

$$\exists (M, K) \in (\mathbb{R}_+^*)^2 \quad \forall n \in \mathbb{N} \qquad |s_n| \leq M K^n.$$

- C.1. Montrer que S a une structure de \mathbb{R} -espace vectoriel.
- **C.2.** On considère la loi \otimes sur $\mathbb{R}^{\mathbb{N}}$ définie par $a \otimes b = c$ tel que, pour tout n entier naturel,

$$c_n = \sum_{k=0}^{n} a_k b_{n-k} = \sum_{p+q=n} a_p b_q.$$

- **a.** Montrer que S est stable pour la loi \otimes .
- **b.** Déterminer un élément neutre pour la loi \otimes sur \mathcal{S} , on le notera e.
- **C.3.a.** Soit $a \in \mathcal{S}$ tel que $a_0 = 1$. Montrer qu'il existe une unique suite $b \in \mathbb{R}^{\mathbb{N}}$ telle que $a \otimes b = e$.
 - **b.** Soient M>0 et K>0 tels que $\forall n\in\mathbb{N} \ |a_n|\leq M\ K^n$. Montrer que

$$\forall n \in \mathbb{N} \qquad |b_n| \le (1+M)^n K^n$$
.

En déduire que $b \in \mathcal{S}$.

- **C.4.a.** Soit $s \in \mathcal{S}$. Que peut-on dire du rayon de convergence de la série entière $\sum_{n\geq 0} s_n x^n$? **b.** Inversement, soit $\sum_{n\geq 0} s_n x^n$ une série entière de rayon de convergence non nul. Montrer que la suite $s = (s_n)$ appartient à S.
- **C.5.a.** Soit h une fonction développable en série entière sur]-R,R[(avec R>0), et vérifiant h(0) = 1. Montrer que la fonction $\frac{1}{h}$ est développable en série entière dans un intervalle]-r,r[avec r>0.
 - b. En déduire (sans utiliser les parties A et B) que la fonction tangente est développable en série entière dans un voisinage de zéro.