EXERCICES sur les EQUATIONS DIFFERENTIELLES PSI2 2025-2026

Equations linéaires scalaires d’ordre un.

1. Résoudre, sur IR’ ou R”, I’équation différentielle
(E) : zy —2y=0.
Quelles sont les solutions de (E) sur IR 7 Quelle est la dimension de I'espace vectoriel des
solutions de (E) sur IR ?

e Sur chacun des intervalles IR, ou IR’ , I’équation peut se mettre sous forme normale

2
"= Zy . on peut alors la résoudre: y = C 2™l = ¢ |z|* = C 22,

(i.e. on peut isoler y'): y
ou C est une constante arbitraire. Sur chacun de ces deux intervalles, ’ensemble des solu-

tions est une droite vectorielle.

e Si y est une fonction solution de (E) sur IR, alors y est de classe C! sur IR, et y est
solution de (E) sur chacun des intervalles IR” et IR’ ; il existe alors deux constantes C
et Cy telles que y = C12? sur R* et y = Chz? sur IR’ . Réciproquement, si une fonction y
est définie de cette fagon, avec C; et Cs deux constantes quelconques, alors y est de classe
C! sur IR: en effet, le seul probleme est celui du raccordement en zéro, et on vérifie que y
est dérivable a gauche et a droite en 0, les dérivées a gauche et a droite étant toutes les
deux nulles, finalement y est dérivable en 0 de dérivée nulle, puis y' (égale a 2C 1z sur IR* ,
a 2Cyx sur IR, et nulle en 0) est continue sur IR, donc y est bien de classe C! sur R et est
solution de (E) sur IR. L’ensemble Sgr des solutions de (E) sur IR est donc de dimension
2, puisque c’est I’ensemble des combinaisons linéaires des fonctions y; et yo, avec

x? si <0 . 0 si <0
LT = € X =
u 0 s >0 b2 2 s x>0

On obtient ainsi une courbe intégrale de (E) sur IR en prenant la réunion de deuz quelcon-
ques demi-paraboles sur le schéma ci-dessous. Le théoréeme de Cauchy linéaire ne s’applique
pas a4 cette équation différentielle sur IR puisqu’au point 0, toutes les fonctions y solutions
prennent nécessairement la valeur 0.
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2. Résoudre, sur I = ] —g

, g {, équation différentielle (E) : ¢/ — (tanz)y + cos® z = 0.

On peut commencer par résoudre ’équation homogene associée y' = tan(x)-y = _Ln(x)
(x) 7
cos(x

cos(x)

dont on sait que les solutions sur I sont les fonctions yg : 2 +— X e~ (¢052) —

, avec

A réel.

On applique alors la méthode de variation de la constante, qui consiste a rechercher les
Alz)

cos(z)’
supposée de classe C' sur I. On dérive et on réinjecte dans (E). Aprés simplification, il
reste \'(x) = — cos®(x), fonction dont il ne reste plus qu’a chercher des primitives. Cest
facile (pas besoin de linéariser!) puisque — cos®(z) = cos(z) - (sin®z — 1), on obtient donc

solutions de (E) sous la forme y(z) = ol A\ est une nouvelle fonction inconnue,

1
immédiatement A(z) = 3 sin®(x) — sin(x) + C, soit

B lsing(a:) ~ tan(z C
3 cos(w) tan(z) +

y(x) ) avec CelR.

cos(x)

Remarque. Si on veut éviter de faire varier la constante (il y a en effet des constantes
tres fragiles qui supportent difficilement qu’on les fasse varier, ce qui est contraire a leur
nature), on peut remarquer que

cos(z) ¢y’ (x) — sin(z) y(x)

(E) cos(z) = —cos?(z)
d
= cosl(a:) : a(cos(x) y(z)) = —cos®(z)
= % (cos(z) y(z)) = —cos®(z)
— cos(z)y(z) = ésinS(x) —sin(z) + C
sin® (z
= y(x)—lb ( )—tan(az)-l- ©

3 cos(x) cos(z)



3. Montrer que I’équation différentielle (E) : zy’ +y = tan(z) admet une unique solution de
™

2’5['

T
classe C' sur lintervalle ouvert }—f

Sur I, on a (E) < (zy) =tanzr < (zy) = i

<~ a2y = —In(cosx) + C.
oS T

Mais pour exprimer y, il faut diviser par x. Pour employer les termes du cours, on ne peut

mettre I’équation (E) sous forme normale que sur I; = }—570[ ou sur I, = ]07 g [, et

c’est seulement sur chacun de ces deux sous-intervalles que le théoreme de Cauchy linéaire
s’applique, pour affirmer que l’ensemble des solutions de (E) est une droite affine.

Si y est solution de (E) sur I, on a donc
—In(cosz) + C4

*) oyl = 5

—In(cosx) + Cy
x

pour x € Iy

pour z € I

Il s’agit d’exprimer les conditions sur C et Cs pour que cela se raccorde en une fonction de
2

x
classe C! sur I. De cosz—1 ~ -y et In(14x) ~ = au voisinage de zéro, par composition,
2
x
on tire In(cosz) ~ -5 Donc, si C est une constante arbitraire, on a le développement

asymptotique

—In(cosz)+C C = s .
_— = — 4 5 + o(x) au voisinage de zéro .
x x

Pour que y, définie par (*) ci-dessus, se prolonge en une fonction continue en 0, il est donc

nécessaire que C; = (Cy = 0. La condition est suffisante puisque la fonction

1
Yy x = ,M’ prolongée par y(0) = 0, est de classe C! sur I: elle est continue
x

sur I (grace au DL en 0), C' sur I\ {0} et sa dérivée admet une limite finie en zéro

t 1
ar_ v, 2 d’apres le DL obtenu), elle
r =0 2

(on le voit en écrivant par exemple y' =



est donc bien C! sur I par le théoréme de la limite de la dérivée. En rouge, la seule courbe

o N . T
intégrale correspondant a une solution sur } 33 [

4. Soit I'endomorphisme ® de IR[X] défini par ®(P) = (2X +1)P — (X% —1)P’. Déterminer les
éléments propres de &.

Il s’agit de chercher pour quelles valeurs du parametre réel A ’équation différentielle
(Bx) = Qe+l)y—(® -1y =ry
admet des solutions polynomiales non triviales (i.e. autres que la fonction nulle). Cette
équation (F)) s’écrit encore
(22 -1y —(2z+1-Ny=0
et on la résout sur chacun des intervalles | — co, —1[, | — 1, 1] et ]1, +-o00[. Elle s’écrit alors
, 2z +1-A ou ,_(1+)\ n 3—)\>
Tz Y Y708y T2/

IEDY 3-)
et les solutions sont y =Clz+1| * |z —1] % .

1+ A 3—A
+ et sont des

entiers naturels, ce qui impose que A soit un entier relatif impair avec —1 < A <3 ;ily a
trois valeurs acceptables de A qui sont donc les trois valeurs propres de @ :

e A\ = —1: le sous-espace propre associé est la droite E_; = R (X — 1)2 ;
el=1avec B =R (X?*—-1);
e \=3, avec B3 =R (X + 1)

On trouvera alors des solutions polynomiales lorsque les exposants




5. Soit f : R — IR, de classe C'. On suppose que HI—P (f'(x) + f(x)) = 0. Montrer que
r—r+00

liIJ'I_l f(z) = 0. En posant w = f + f', on écrira que f wvérifie l’équation différentielle
Tr—r1+00

y 4+ 1y = u, dont on exprimera les solutions sous forme intégrale.

En posant u = f + f’, la fonction f est solution de 1’équation différentielle y' + y = u(x).

Oui, je sais, ¢a parait béte... mais ¢a permet d’exprimer f(x) sous la forme d’une intégrale

dans laquelle intervient la fonction u = f’ + f. Par la méthode de variation de la constante
d

(détails laissés au lecteur), ou en écrivant que y'(z) + y(z) = e=* — (y(z) €”), on obtient

dz

f sous la forme
flx)=Ke *4e" / u(t) et dt ,
0
avec toujours u = f' + f. On sait que . liT u(t) = 0. Fixons un € > 0, il existe alors A > 0
—+o00

€
tel que t > A = |u(t)| < 7 Pour tout réel x tel que x > A, on peut écrire

x

flx)=K'e*+e™® / u(t) et dt , *)

A
A
ot K'=K +/ u(t) e' dt est un réel fixé (indépendant de z). Le terme K’ e~ " tend vers
0

€
zéro, il existe donc un réel B tel que x > B = |K' e¢™*| < 3 On majore 'autre terme (en
valeur absolue) :

e ” / u(t) e dt’ <e” / lu(t)] e dt < e (e” — eA) < =
A A 2 2

Enfin, de (*) et de l'inégalité triangulaire, on déduit que, pour = > max{A, B}, on a
|f(z)| < e, donc liT f(z)=0.

6. Soit f : IR — C, continue et 2m-périodique. Montrer que 1’équation (E): y' —y = f(z) admet
une unique solution 2m-périodique yo, puis montrer que yo est la seule solution de (E)
bornée sur IR.

Les solutions de (E) peuvent par exemple s’exprimer sous forme intégrale (cf. cours) :
x
y=Ae" +¢€* / ft)ye tdt.
0

On a alors

y(x + 2m)

e e® (A + /27r f(t)e tdt+ /JH_27r ft)e™ dt)
0 2

s

27 T
= ¥ ¢ (A + / f(t)e® dt> + e e / flu+2m)e 2" du
0 0



2m T
= 7 <A + ft)e™® dt) e’ +e” / ft)e tdt.
0 0

2m
La fonction solution y est 27w-périodique si et seulement si ™ (A + ft)e™ dt> =A,
0

~1 2m
c’est-a-dire ssi A = [T f(t)e~tdt. La (seule) solution 27-périodique de (E) est
—e ™ 0
donc la fonction

27 T
w=e (= [ roetas [raetar).

Cette fonction yg, étant continue et 2m-périodique, est évidemment bornée sur IR. Les autres
solutions de (E), de la forme y = yo + K €, avec K # 0, sont donc non bornées sur IR
puisque la fonction exponentielle n’est pas bornée.

Equations linéaires scalaires d’ordre deux.

7. Résoudre 'équation différentielle y” + 1/ — 2y = x **.

e L’équation sans second membre (EO) est linéaire, & coefficients constants, elle se résout
donc en passant par 1’équation caractéristique 72 +r — 2 = 0, qui admet pour racines —2
et 1. Les solutions de (EO0) sont donc y = A e 2* + B ¢®.

e On recherche une solution particuliere de (E) sous la forme y = (ax +b) e**, on réinjecte

1
et on trouve a = 1 et b= T Finalement, les solutions de (E) sont
1 )
— A —2z Be® (7 77) 29:.
Y e + be” + 1 x 16 e

NB: On peut préférer poser des le départ le changement de fonction inconnue
y(x) = z(x)e®®, ce qui nous conduit apres calculs & Péquation différentielle 2/ +52'+4z = z,
dont on cherchera une solution particuliere sous la forme z(z) = Az + B (fonction affine).

8. En recherchant les solutions développables en série entiere, résoudre sur IR I’équation différentielle

(E):  (1+2H)y"+42y +2y=0.

Bof, & bas les calculs, soyons astucieux!

(E) <= (1+2*)y +2zy)+2(xy +y) =0
— (1+2° y')/+2(xy)’=0
—= (1+ )y +2zy=C
= (1+2?)y) =cC



— (1+2)y=Cx+D

Cx+D
< y:71+w2

)

ou C et D sont deux constantes arbitraires.

9. Résoudre 1’équation différentielle x2y” +x1y —y = 2z sur IR’ en utilisant le changement de

variable z = e’.

Posons y(z) = z(t), avec z = €, autrement dit y(z) = z(Inz) pour z € IR, ou encore, avec

1
des notations plus symboliques, y = z o In, fonction composée. Alors y'(z) = — 2/(Inx),
x

puis
y'(z) = S 2 (lnz) + 1 2'(Inx) .
x? x?

On réinjecte dans (E) :
(E) < 2'(Inz)—2'(lnz)+2(Inz) - z(lnz) = 2z
(

—
— z2(t)=(t+A) e +Be"
—

10. Résoudre I’équation différentielle (1 + x2) Yy’ — 2y = 0. On commencera par chercher des
solutions polynomiales.

e Commengons par déterminer le degré d’une éventuelle solution polynomiale : supposons
n

que y = Zakxk, avec a, # 0, soit solution de (E) ; en examinant le terme de degré n,

k=0
on a la relation [n(n -1) - 2] an = 0 donc, puisque a,, est non nul, n?> —n —2 = 0, ce
qui donne n = —1 (évidemment absurde) ou n = 2. Moralité : si (E) admet une solution

polynomiale non triviale (i.e. non nulle), alors celle-ci est de degré deux.

e Recherchons donc une solution de (E) sous la forme y = axz? + bx + c. Les calculs
sont laissés a l'insatiable lecteur, on trouve b = 0 et a = ¢, autrement dit les solutions
polynomiales de (E) sont de la forme y = a(x? + 1), avec a réel arbitraire.

e La fonction y; = 22 +1 étant une solution de (E) ne s’annulant pas sur IR, la méthode de
variation de la constante, qui consiste & faire le changement de fonction inconnue y = y; z,
nous conduit & I'équation (x? + 1) 2 + 4x 2’ = 0, soit, en posant u = 2/, & ’équation du
—21In(z?+1) _ c
(22 +1)%
Les primitives n’étant pas évidentes du premier coup d’ceil, c’est parti pour un calcul
d’intégrale indéfinie, avec le changement de variable x =tant ou t = Arctanz :

premier ordre (2% + 1) v’ + 4z u = 0, qui s'intégre en u = Ce



dz dt 9 1
/m = /m = /cos tdt = 5/(1+cos2t)dt

t 1

1
= Arctan(z) + 1 sin(2 Arctan z) + K

T

— 4+ K
d( a2y

1
= 5 Arctan(x) +
apres quelques manipulations trigonométriques qui ne devraient pas effrayer les valeureux
x
Jedi que vous aspirez & devenir. Finalement, z = Cy | Arctanx + 12> + C1, puis
x
y=0Cy (22 +1)+Cy [m + (2% 4+ 1) Arctanx] ,

les fonctions y; = 22 + 1 et y, = x + (2° + 1) Arctanz constituant ainsi une base de
I’espace vectoriel des solutions de cette équation linéaire scalaire du second ordre, sans
second membre.

11. En posant z = eIQy, résoudre sur IR I’équation différentielle

y' +dxy +(3+42*)y=0.

Bof, on pose donc y(z) = z(x) e~ avec z de classe C2 sur IR, on en déduit successivement
y = (2 —2x2) e~ puis ¢ = (2" — daz’ + (42° — 2)2) e~ on réinjecte dans 'équation
qui devient miraculeusement z” + z = 0. Donc z(z) = A cos(z) + B sin(z), et enfin

y(z) = (A cos(z) + B sin(z)) o

12. Résoudre, sur IR, , I'équation différentielle 23y +ay’ —y = 0. On commencera par chercher
une solution polynomiale non nulle.

On observe que y = z est solution. On fait alors une variation de la constante en posant le
changement de fonction inconnue y(z) = rz(z). Cela donne y' = z+xz2', puis vy = 22" +x2",
on réinjecte dans I’équation qui, apres une petite simplification, devient

2?2+ (22 4+1)2 =0.

En posant Z = 2/, on est ramené & une équation du premier ordre 2 Z’ + (2z+1)Z =0,
2 1 c 1

ou encore Z' = (— —-— —2) Z, qui se résout sur R, en Z =—Ce™? In(e)+1/z ——e",
r x

1 1
que l'on inteégre enfin en z(z) = Ce” + D. Au final, y(z) = Cxe” + Dz, ot C et D sont

deux constantes arbitraires.




13. Soit I’équation différentielle (E) : 4z y” + 2y’ —y = 0.
a. Chercher les solutions de (E) développables en série entiere sur IR.
b. En déduire I'ensemble des solutions de (E) sur IR’ .

“+oo
a. On recherche une solution y sous la forme y = Z a,x™ dans un intervalle de convergence
n=0
| — R, R[ qui sera précisé a posteriori. On a alors le droit (série entiere) de dériver terme &
400 400 400
terme: ¢y = Z napz" !t = Z an12", puis y” = Z n(n — 1)a,z™ 2, donc
n=1 n=0 n=2
—+o0 +oo —+o0
xy’ = Z n(n—1Da,z" ' =Y n(n+Da, 2" = Z n(n+ 1)aps12"
n=2 n=1 n=0

(la derniere égalité venant simplement du fait que le terme pour n = 0 est nul). Notez
bien ce travail préliminaire qui consiste a faire les translations d’indices idoines
pour avoir des z" partout, avant de réinjecter dans 1’équation différentielle! Eh
bien, allons-y, réinjectons!

o0 +oo —+oo
(E) <= 14 Z nn+ Dapp12™ + 2 Z py1x” — Z anz” =0
n=0 n=0 n=0
o0
<— Z [471(71 + Dapt1 +2an41 — an} " =0
n=0
—+00
= Z [(4712 +4n+2)an41 — an} 2" =0
n=0

< VnelN 2n+1)(2n+2)apt1 —an =0,

la derniere ligne (identification des coefficients) résultant de la propriété d’unicité du développement
an

(2n +1)(2n + 2)’

. PN . . . Ap41 4 . ) .
garantit déja un rayon de convergence infini puisque —— tend vers zéro. Puis on déduit
n

ce qui

en série entiere. On a donc, pour tout n entier naturel, a,4+1 =

facilement a,, = %, le coefficient ag restant arbitraire.
n)!
Les solutions de (E) développables en série entiére sur IR sont donc les fonctions y = agyo,
+o0 n
ou ag est un réel arbitraire, et yg : x — Z % On peut expliciter yg. En effet, si x > 0,
n)!
n=0
S~ (V@)
on peut écrire z = (v/x)?, alors yo(z) = Z (2n)] = ch(v/z), et pour z < 0, on écrit
n=0 :
+00 2n
2 (- (V/—=
z=—(v—x)7, et alors yo(z) = Z (gn)') = cos (vV—z).

n=0



b. D’abord, constatons que, sur IRY, on peut mettre I’équation sous forme normale, c’est-
a-dire isoler y” puisque le coefficient = ne s’annule pas. Le théoréme de Cauchy linéaire
permet alors d’affirmer que 1’ensemble des solutions de (E) sur cet intervalle est un plan
vectoriel. Nous connaissons comme solutions pour le moment les fonctions f = Cyg, ou C
est une constante et yo la fonction z — ch(y/z), qui ne s’annule pas sur IR, . Faisons donc
varier la constante C, c’est-a-dire recherchons les solutions de (E) sous la forme y = zyo,
ofl z est une fonction inconnue de classe C2. On dérive deux fois: ¥ = 2'yo + yz{, puis
y" = 2"yo+22"y, + 2y, et réinjectons, et tenons compte de 4zy( + 2y, — yo pour simplifier:

(E) <=  4a(2"yo +22"yy + 2y5) +2(2"yo + 2y4) — 250 = 0
—  z(dxyl +2y) — yo) + dwyez” + 8xy2 + 2yp2’ =0
< dayo 2" + (8zyy +2y0) 2 =0

Bien noter que l'on n’explicitera yo que le plus tard possible! Dériver deuz fois ch(y/x)
serait fort maladroit, et on risquerait de faire des erreurs de calcul ou de ne pas voir les
simplifications! L’équation obtenue est bien sur toujours du second ordre en la fonction
inconnue z, mais en posant © = z’, on se rameéne & une équation du premier ordre en la
fonction inconnue u, que l'on sait alors résoudre. Poursuivons:

(E) — u’:—(Qy—é—i-i)u
Yo 2@

—21n —Lin(x C
— U:CB (yO) 2 () _

— e
Va (V)

Il reste & primitiver pour trouver z ; pour cela, écrivons une intégrale indéfinie (intégrale
sans bornes, et posons le changement de variable t = /z):

dz B 2tdt e _ - = sh(y/x)
/ vz ch®(Vz) / t ch?(t) 2/ ch?(t) 2 th(t) = 2 th(vz) = 2 ch(y/7)

sh 1
puisque la fonction tangente hyperbolique th = N a pour dérivée 1 — th? = = de méme
¢ ¢

. . : sin e
qu’il est bien connu que la fonction tangente tan = — a pour dérivée 1 + tan? = —-
cos cos

Donc z = 2C th(y/z)+Cs = C; th(y/z)+ Cy, ou Oy et Cy sont deux constantes arbitraires.
Et enfin, y = 2y, donc

y = C; sh(v/z) + Cy ch(v/7) .

Le lecteur insatiable, au vu du résultat, pourra se dire qu’en faisant le changement de
variable t = /x, Uéquation est probablement ramenée & une équation plus simple! Et
effectivement, en posant y(z) = z(\/x), Uéquation (E) devient z"(t) — 2(t) = 0, dont

il est bien connu que les solutions sont les combinaisons linéaires de ch et sh.




Systémes différentiels linéaires

14. Résoudre le systeme différentiel linéaire d’écriture matricielle X' = AX avec A =

O O O
O~
O = = O

0
On pourra, soit utiliser la méthode générale, soit poser le changement de fonction inconnue

X(t)=¢e"Y(t).

Méthode 1. C’est la méthode “générale” : le systeme est triangulaire, on le résout en

x
cascade, en partant de la derniere équation. En posant X = ZZ/ ,on a
U
t? t3
= Cyel+ Cste! +0y =€t Cy — et
¥ =za+y . 4€Jr36+226+166
;o +2
(S)<:> vy = y +=2 — y103€t+ Cgtet +01§6t
2 = z + u
’ z 2026t+ Cltet
u = u
u=Cé

En écrivant la solution générale X sous la forme

s t2
6 € — et tet et
12 2 et 0
X=0 Eet + Cy tet -‘r-Cg 0 + Cy 0 R
t
tet ‘ 0 0
. 0
e

on voit que ce sont les combinaisons linéaires de quatre fonctions vectorielles X7, X5, X3,
X4 qui constituent donc une base de I'espace vectoriel des solutions de (S).

Méthode 2 (plus jolie, mais parachutée). On fait le changement de fonction inconnue

X(t) =e"Y(t), et

(t) =e"Y(t), et on a v =
I

S) &= X' =AX <= ' (Y +Y)=e'AY += YV =(A-1,)Y y?—yg.
Y3 = Ya
Yy = 0

t? t3 t?
On en déduit y4 = C1, y3 = C1t +Cs, yo = 015 +Cot+Cs, 41 = Clg+025+03t+04,

et on retrouve les mémes solutions (heureusement!)

¥ =2 - y— =z

/

15. Résoudre le systeme différentiel ¢ v = —x + 2y — =z.

!

Z = —-x - y+ 2z

-0 O



2 -1 -1 (t)

Le systeme s’écrit X' = AX avec A= | -1 2 —1]et X(t)= | y(t)
-1 -1 2 2(t)
On observe que A — 315 = —J, ou J € M3(IR) est la matrice dont tous les coefficients

valent 1, on a donc rg(A —3I3) = 1, donc 3 € Sp(A), et dim E3(A) = 2 ; en fait, il est assez
clair que E3(A) est le plan d’équation x + y + z = 0, engendré par exemple par les vecteurs

1 0
U=|-1]etV= 1 |. L’autre valeur propre de A est 0 (considérer la trace), et le
0 -1
1
sous-espace Fy(A) = Ker(A) est la droite vectorielle engendrée par le vecteur W = | 1
1
1 0 1
Tout ceci permet d’écrire que A = PDP~! avec D = diag(3,3,0) et P= [ =1 1 1
. 0 -1 1
par exemple. Ensuite,
X'=AX < X'=PDP'X < (P7'X) =D(P7'X) <= Y' =DY
u(t)
en posant Y (t) = P~ X(t) = | v(t)
w(t)
u = 3u u(t) = Cy e
Donc X' = AX <= (v = 3v <= ( v(t) = Cye*. En remultipliant & gauche par
w' =0 w(t) = C3

la matrice de passage P, on termine la résolution du systeme:
.T(t) = (] et + C5
y(t) = (7C1 + CQ) 63t + Cg .
Z(t) = —(Cy e3t + Cs

Probléemes se ramenant & une équation différentielle

16. Trouver toutes les applications continues f : IR — IR telles que
Tty

F): VeyeR® (o)) = / f(t)dt

e Soit f une fonction solution de (F), on montre d’abord que f est de classe C*° sur R :
si f et la fonction nulle, c’est évident, sinon on introduit un réel a tel que f(a) # 0 et, en
notant F' la primitive de f qui s’annule en zéro, on a

! (F(z+a)— F(z —a)) ;

Ve e R f(x)zm



la fonction F étant C', f L’est aussi, puis F est C? et ainsi de suite, bref f est C*°.

e Soit f une solution non nulle de (F). On peut alors dériver ’équation fonctionnelle (F)
soit par rapport a x, soit par rapport a y, et on en déduit les relations

f@) fly) = fle+y) - fla—y)
f@) f'ly) = fla+y) +fla—y) (%)
En ajoutant ces deux équations, on obtient f'(z) f(y) + f(z) f'(y) = 2 f(z + y). Dérivons
de nouveau par rapport a x et par rapport a y, on obtient la relation
V(z,y) eR*  f(x) fly) = f(=) f"(y) -
f"(a)
f(a)

(E) : f" =X f =0, équation que l'on sait résoudre en discutant suivant le signe de .

En posant A =

, ol a est un réel tel que f(a) # 0, on a alors I’équation différentielle

Notons aussi que I’équation fonctionnelle (F) entraine les conditions initiales f(0) = 0
(évident en faisant x =y = 0) et f'(0) = 2 (car f(a) f'(0) = f(a) + f(a) en faisant x = a
et y = 0 dans (*)). Suivant le signe de A, on obtient donc :

-siA=0, f(z) =2z ;

2
-si A =w? >0, alors f(z) = ” sh(w ) ;

2
-si A= —w? <0, alors f(z) = ” sin(w ).

On vérifie ensuite, en reportant dans (F), que ces fonctions conviennent.

17. Déterminer les fonctions f : IR — IR, dérivables, telles que

VeelR  fl(x)==xf(-x).

Rappelons que toute fonction f : IR — IR se décompose de fagon unique en somme d’une
fonction paire et d’une fonction impaire. Recherchons alors f sous la forme f = g+ h, avec
o) +02) o gy — S~ SC)

g paire et h impaire. Comme g(x) = 5

, il est clair que
g et h sont toutes deux dérivables. On obtient

VieR  ¢'(z)+h(x)=2g(x)—xh(z).

La propriété d’unicité mentionnée ci-dessus permet d’identifier les parties paire et impaire,
autrement dit d’obtenir deux équations différentielles indépendantes :

(E) : ¢'(z)=zg(x) et (F) : W(x)=—zh(z).
22
On résout (E), cela donne g(x) = Ae ” | et les fonctions obtenues sont bien des fonctions
2
=z
paires. On résout (F), cela donne h(z) = Be > ... mais la fonction obtenue n’est impaire
$2

que si B =0! Au final, f(z)=A4 e ? , avec A € R arbitraire.




1
18. Déterminer les fonctions f : R} — IR, dérivables, telles que (F) : Vo e R} f'(z) = f (x)

On montrera que f est solution d’une équation différentielle linéaire du second ordre, puis

on posera le changement de variable x = €.

Si f est solution de I’équation fonctionnelle (F), alors f’ est dérivable, donc f est deux fois
dérivable (et méme de classe C*°) sur IR}, on peut donc redériver I’équation, ce qui donne
1 1 1
* " - / o
VxGIR_,_ f(x)ffﬁ (;)**? ($)7
donc f est solution de I'équation différentielle (E) : 22y +y =0 sur R’,. En posant

g(t) = f(e") pour t € R, on voit que f est solution de (E) sur R’ si et seulement si
g est solution sur IR de ’équation 2" — 2/ + 2z = 0. L’équation caractéristique associée

) IRVE] 1 V3

r® —r+1 =0 admet pour racines r; = 5—}—27 et rg = 3 _iT' Donc g est de la forme

§ V3 \/3)

g(t) = 6? (A COS 7t —+ B Sin 7t

On peut en déduire une expression de f, mais il y aura alors une réciproque & faire, pas si
facile & écrire (en dérivant ’équation fonctionnelle (F), on n’a pas raisonné par équivalences,
mais seulement par conditions nécessaires). Il est en fait ici préférable de remarquer que
le changement de variable proposé par ’énoncé montre que 1’équation fonctionnelle (F)
équivaut a la relation

. 1, 1
Vo e R fg(lnx):g(lnf),
T x

soit encore a la relation

vte R gt)=¢e g(—t).

En reprenant l'expression de g obtenue ci-dessus, on note que cela impose la relation
A = B+/3. En revenant & la variable z, on obtient donc Pexpression des solutions

flz)=C+x (\/§ coS (? lnx) + sin (? lnx)) ,

f(x)zQC\/gfsin(g—i—g lnx),

avec C' € IR constante arbitraire.

19. Soit A un réel, soit f : [0,1] — IR continue. Déterminer les fonctions u : [0, 1] — IR, continues,
telles que

vre[0,1]  ulz)=A /Oxu(t) dt + f(x) .



Soit u solution du probleme posé. Soit U sa primitive qui s’annule en 0, qui est donc définie

T
par U(x) = / u(t) dt. Alors U est de classe C* sur [0,1], et elle est solution du probléme
0

U'(z) = AU(z) = f(x)

. La solution de ce probleme de Cauchy s’obtient
U(0) =0

de Cauchy (P): {

d

6)\&0 Rl
dx

par exemple en écrivant que U'(x) — \U(x) = (e*’\””U(a:)), on obtient, en tenant

compte de la condition initiale:
Ulz) = e /Ox f(t)e Mat
puis, en dérivant,
u(x) = U'(x) = X e /02? ft)e M dt + f(x) .

Inversement, la fonction u donnée par cette formule est bien solution du probleme posé,
elle est effectivement continue sur [0, 1], et on reconnait dans son expression la dérivée de

U:xrs e / f(t) e~ dt, qui est solution de U" — \U = f(x).
0

20. Trouver toutes les fonctions f : IR — IR, continues, telles que

Ve e R f(x)—2/Oxf(t)cos(x—t)dtzl.

L’idée pour résoudre cette “équation intégrale” est de la dériver pour obtenir une équation
différentielle. Toutefois, en dérivant sans imposer d’autre condition, on obtiendra une
condition nécessaire pour que f soit solution, mais il faudra ensuite faire une réciproque
qui n’est pas toujours tres aisée a écrire.

On peut alors préférer raisonner par équivalences, en utilisant le fait que, si g et h sont
deux fonctions dérivables sur IR, on a 1’équivalence

. B f/:g/
): f‘g‘:’{f«))g«»'

Soit f solution du probléme posé. On a alors f(0) = 1 et, en écrivant

flay=1+2 /OI f(t) cos(x —t)dt = 1+ 2 cos(x) /090 f(t) cos(t) dt + 2 sin(z) /Ow f(t) sin(t) dt ,

il résulte du théoreme fondamental de Panalyse que f est de classe C* sur IR avec

Fl@) =2 f(z) — 2 sin(2) /0 " Ft) cos(t) dt + 2 cos(x) /0 " Ft) sin(t) dt .

Ainsi, f/(0) = 2 et, de nouveau par le théoréeme fondamental de I’analyse, on voit que f’

est de classe Ct, donc f est de classe C? sur IR, avec



() = 2f'(x)—2 cos(x) /Oz F(t) cos(t) dt — 2 sin(x) /OI f(t) sin(¢) dt
= 2f'(2) = (f2) - 1)

en réutilisant la premiere relation.

En utilisant deux fois I’équivalence (*) mentionnée au début de ce corrigé, on voit que f

est solution du probléme posé si et seulement si elle est de classe C2 et solution sur IR du
y' =2y +y=1

probleme de Cauchy (P): ¢ y(0) =1 . Le probleme posé admet donc une solution
y'(0) =2

unique.

Les solutions de I’équation différentielle homogene y” — 2y’ +y = 0 sont les fonctions

y = (Az+ B)e”. La fonction constante 1 est une solution évidente de I’équation avec second

membre, donc f est de la forme x — (Az + B)e® + 1. Les conditions initiales imposent
B=0et A=2,donc f(z)=2ze" + 1.




Exercices avec Python
21. Soit Iéquation différentielle (E): (1 — )3 y” —y = 0.
On note f I'unique solution de (E) sur | — oo, 1| vérifiant f(0) =0 et f/(0) = 1.
a. Justifier 'existence et I'unicité de f.
b. Tracer une approximation du graphe de f sur [0; 0,09] en utilisant la méthode d’Euler.

c. Justifier que f est de classe C* sur | — oo, 1[.

()

Pour tout n entier naturel, on pose a, = '
n!

d. Pour n > 1, trouver une relation de récurrence liant les coefficients a,,—1, an, an+1, Gnio.

e. Avec Python, calculer a,, pour n € [0, 20].
f. Montrer que |a,[< 4™ pour tout n.

g. Que peut-on en déduire concernant la fonction f ?



