
EXERCICES sur les ÉQUATIONS DIFFÉRENTIELLES PSI2 2025-2026

Équations linéaires scalaires d’ordre un.

1. Résoudre, sur IR∗+ ou IR∗−, l’équation différentielle

(E) : x y′ − 2y = 0 .

Quelles sont les solutions de (E) sur IR ? Quelle est la dimension de l’espace vectoriel des
solutions de (E) sur IR ?

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Sur chacun des intervalles IR∗+ ou IR∗−, l’équation peut se mettre sous forme normale

(i.e. on peut isoler y′): y′ =
2

x
y , on peut alors la résoudre: y = C e2 ln |x| = C |x|2 = C x2,

où C est une constante arbitraire. Sur chacun de ces deux intervalles, l’ensemble des solu-
tions est une droite vectorielle.

• Si y est une fonction solution de (E) sur IR, alors y est de classe C1 sur IR, et y est
solution de (E) sur chacun des intervalles IR∗− et IR∗+ ; il existe alors deux constantes C1

et C2 telles que y = C1x
2 sur IR∗− et y = C2x

2 sur IR∗+. Réciproquement, si une fonction y
est définie de cette façon, avec C1 et C2 deux constantes quelconques, alors y est de classe
C1 sur IR: en effet, le seul problème est celui du raccordement en zéro, et on vérifie que y
est dérivable à gauche et à droite en 0, les dérivées à gauche et à droite étant toutes les
deux nulles, finalement y est dérivable en 0 de dérivée nulle, puis y′ (égale à 2C1x sur IR∗−,
à 2C2x sur IR∗+, et nulle en 0) est continue sur IR, donc y est bien de classe C1 sur IR et est
solution de (E) sur IR. L’ensemble SIR des solutions de (E) sur IR est donc de dimension
2, puisque c’est l’ensemble des combinaisons linéaires des fonctions y1 et y2, avec

y1 : x 7→

{
x2 si x < 0

0 si x ≥ 0
et y2 : x 7→

{
0 si x < 0

x2 si x ≥ 0
.

On obtient ainsi une courbe intégrale de (E) sur IR en prenant la réunion de deux quelcon-
ques demi-paraboles sur le schéma ci-dessous. Le théorème de Cauchy linéaire ne s’applique
pas à cette équation différentielle sur IR puisqu’au point 0, toutes les fonctions y solutions
prennent nécessairement la valeur 0.



2. Résoudre, sur I =
]
−π

2
,
π

2

[
, l’équation différentielle (E) : y′ − (tanx)y + cos2 x = 0.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

On peut commencer par résoudre l’équation homogène associée y′ = tan(x)·y = −− sin(x)

cos(x)
y,

dont on sait que les solutions sur I sont les fonctions yH : x 7→ λ e− ln(cos x) =
λ

cos(x)
, avec

λ réel.

On applique alors la méthode de variation de la constante, qui consiste à rechercher les

solutions de (E) sous la forme y(x) =
λ(x)

cos(x)
, où λ est une nouvelle fonction inconnue,

supposée de classe C1 sur I. On dérive et on réinjecte dans (E). Après simplification, il
reste λ′(x) = − cos3(x), fonction dont il ne reste plus qu’à chercher des primitives. C’est
facile (pas besoin de linéariser!) puisque − cos3(x) = cos(x) · (sin2 x − 1), on obtient donc

immédiatement λ(x) =
1

3
sin3(x)− sin(x) + C, soit

y(x) =
1

3

sin3(x)

cos(x)
− tan(x) +

C

cos(x)
, avec C ∈ IR .

Remarque. Si on veut éviter de faire varier la constante (il y a en effet des constantes
très fragiles qui supportent difficilement qu’on les fasse varier, ce qui est contraire à leur
nature), on peut remarquer que

(E) ⇐⇒ cos(x) y′(x)− sin(x) y(x)

cos(x)
= − cos2(x)

⇐⇒ 1

cos(x)
· d

dx

(
cos(x) y(x)

)
= − cos2(x)

⇐⇒ d

dx

(
cos(x) y(x)

)
= − cos3(x)

⇐⇒ cos(x) y(x) =
1

3
sin3(x)− sin(x) + C

⇐⇒ y(x) =
1

3

sin3(x)

cos(x)
− tan(x) +

C

cos(x)
.



3. Montrer que l’équation différentielle (E) : xy′ + y = tan(x) admet une unique solution de

classe C1 sur l’intervalle ouvert
]
−π

2
,
π

2

[
.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Sur I, on a (E) ⇐⇒ (xy)′ = tanx ⇐⇒ (xy)′ = −− sinx

cosx
⇐⇒ xy = − ln(cosx) + C.

Mais pour exprimer y, il faut diviser par x. Pour employer les termes du cours, on ne peut

mettre l’équation (E) sous forme normale que sur I1 =
]
−π

2
, 0
[

ou sur I2 =
]
0,
π

2

[
, et

c’est seulement sur chacun de ces deux sous-intervalles que le théorème de Cauchy linéaire
s’applique, pour affirmer que l’ensemble des solutions de (E) est une droite affine.

Si y est solution de (E) sur I, on a donc

(*) y(x) =


− ln(cosx) + C1

x
pour x ∈ I1

− ln(cosx) + C2

x
pour x ∈ I2

.

Il s’agit d’exprimer les conditions sur C1 et C2 pour que cela se raccorde en une fonction de

classe C1 sur I. De cosx−1 ∼ −x
2

2
et ln(1+x) ∼ x au voisinage de zéro, par composition,

on tire ln(cosx) ∼ −x
2

2
. Donc, si C est une constante arbitraire, on a le développement

asymptotique

− ln(cosx) + C

x
=
C

x
+
x

2
+ o(x) au voisinage de zéro .

Pour que y, définie par (*) ci-dessus, se prolonge en une fonction continue en 0, il est donc
nécessaire que C1 = C2 = 0. La condition est suffisante puisque la fonction

y : x 7→ − ln(cosx)

x
, prolongée par y(0) = 0, est de classe C1 sur I: elle est continue

sur I (grâce au DL en 0), C1 sur I \ {0} et sa dérivée admet une limite finie en zéro

(on le voit en écrivant par exemple y′ =
tanx

x
− y

x
−→
x→0

1

2
d’après le DL obtenu), elle



est donc bien C1 sur I par le théorème de la limite de la dérivée. En rouge, la seule courbe

intégrale correspondant à une solution sur
]
−π

2
,
π

2

[
.

4. Soit l’endomorphisme Φ de IR[X] défini par Φ(P ) = (2X + 1)P − (X2− 1)P ′. Déterminer les
éléments propres de Φ.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Il s’agit de chercher pour quelles valeurs du paramètre réel λ l’équation différentielle

(Eλ) : (2x+ 1) y − (x2 − 1) y′ = λ y

admet des solutions polynomiales non triviales (i.e. autres que la fonction nulle). Cette
équation (Eλ) s’écrit encore

(x2 − 1) y′ − (2x+ 1− λ) y = 0

et on la résout sur chacun des intervalles ]−∞,−1[, ]− 1, 1[ et ]1,+∞[. Elle s’écrit alors

y′ =
2x+ 1− λ
x2 − 1

y ou y′ =
( 1 + λ

2(x+ 1)
+

3− λ
2(x− 1)

)
y ,

et les solutions sont y = C |x+ 1|
1+λ
2 |x− 1|

3−λ
2 .

On trouvera alors des solutions polynomiales lorsque les exposants
1 + λ

2
et

3− λ
2

sont des

entiers naturels, ce qui impose que λ soit un entier relatif impair avec −1 ≤ λ ≤ 3 ; il y a
trois valeurs acceptables de λ qui sont donc les trois valeurs propres de Φ :

• λ = −1 : le sous-espace propre associé est la droite E−1 = IR (X − 1)2 ;

• λ = 1, avec E1 = IR (X2 − 1) ;

• λ = 3, avec E3 = IR (X + 1)2.



5. Soit f : IR → IR, de classe C1. On suppose que lim
x→+∞

(
f ′(x) + f(x)

)
= 0. Montrer que

lim
x→+∞

f(x) = 0. En posant u = f + f ′, on écrira que f vérifie l’équation différentielle

y′ + y = u, dont on exprimera les solutions sous forme intégrale.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

En posant u = f + f ′, la fonction f est solution de l’équation différentielle y′ + y = u(x).
Oui, je sais, ça parâıt bête... mais ça permet d’exprimer f(x) sous la forme d’une intégrale
dans laquelle intervient la fonction u = f ′+ f . Par la méthode de variation de la constante

(détails laissés au lecteur), ou en écrivant que y′(x) + y(x) = e−x
d

dx

(
y(x) ex

)
, on obtient

f sous la forme

f(x) = K e−x + e−x
∫ x

0

u(t) et dt ,

avec toujours u = f ′ + f . On sait que lim
t→+∞

u(t) = 0. Fixons un ε > 0, il existe alors A > 0

tel que t ≥ A =⇒ |u(t)| ≤ ε

2
. Pour tout réel x tel que x > A, on peut écrire

f(x) = K ′ e−x + e−x
∫ x

A

u(t) et dt , (*)

où K ′ = K +

∫ A

0

u(t) et dt est un réel fixé (indépendant de x). Le terme K ′ e−x tend vers

zéro, il existe donc un réel B tel que x ≥ B =⇒ |K ′ e−x| ≤ ε

2
. On majore l’autre terme (en

valeur absolue) :∣∣∣∣e−x ∫ x

A

u(t) et dt

∣∣∣∣ ≤ e−x ∫ x

A

|u(t)| et dt ≤ ε

2
e−x

(
ex − eA

)
≤ ε

2
.

Enfin, de (*) et de l’inégalité triangulaire, on déduit que, pour x ≥ max{A,B}, on a
|f(x)| ≤ ε, donc lim

x→+∞
f(x) = 0.

6. Soit f : IR→ C, continue et 2π-périodique. Montrer que l’équation (E): y′ − y = f(x) admet
une unique solution 2π-périodique y0, puis montrer que y0 est la seule solution de (E)
bornée sur IR.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Les solutions de (E) peuvent par exemple s’exprimer sous forme intégrale (cf. cours) :

y = A ex + ex
∫ x

0

f(t) e−t dt .

On a alors

y(x+ 2π) = e2π ex
(
A+

∫ 2π

0

f(t) e−t dt+

∫ x+2π

2π

f(t) e−t dt

)
= e2π ex

(
A+

∫ 2π

0

f(t) e−t dt

)
+ e2π ex

∫ x

0

f(u+ 2π) e−u−2π du



= e2π
(
A+

∫ 2π

0

f(t) e−t dt

)
ex + ex

∫ x

0

f(t) e−t dt .

La fonction solution y est 2π-périodique si et seulement si e2π
(
A+

∫ 2π

0

f(t) e−t dt

)
= A,

c’est-à-dire ssi A =
−1

1− e−2π

∫ 2π

0

f(t) e−t dt. La (seule) solution 2π-périodique de (E) est

donc la fonction

y0 = ex
(

−1

1− e−2π

∫ 2π

0

f(t) e−t dt+

∫ x

0

f(t) e−t dt

)
.

Cette fonction y0, étant continue et 2π-périodique, est évidemment bornée sur IR. Les autres
solutions de (E), de la forme y = y0 + K ex, avec K 6= 0, sont donc non bornées sur IR
puisque la fonction exponentielle n’est pas bornée.

Équations linéaires scalaires d’ordre deux.

7. Résoudre l’équation différentielle y′′ + y′ − 2y = x e2x.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• L’équation sans second membre (E0) est linéaire, à coefficients constants, elle se résout
donc en passant par l’équation caractéristique r2 + r − 2 = 0, qui admet pour racines −2
et 1. Les solutions de (E0) sont donc y = A e−2x +B ex.

• On recherche une solution particulière de (E) sous la forme y = (ax+ b) e2x, on réinjecte

et on trouve a =
1

4
et b = − 5

16
. Finalement, les solutions de (E) sont

y = A e−2x +B ex +
(1

4
x− 5

16

)
e2x .

NB: On peut préférer poser dès le départ le changement de fonction inconnue
y(x) = z(x)e2x, ce qui nous conduit après calculs à l’équation différentielle z′′+5z′+4z = x,
dont on cherchera une solution particulière sous la forme z(x) = Ax+B (fonction affine).

8. En recherchant les solutions développables en série entière, résoudre sur IR l’équation différentielle

(E) : (1 + x2) y′′ + 4x y′ + 2y = 0 .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Bôf, à bas les calculs, soyons astucieux!

(E) ⇐⇒
(
(1 + x2)y′′ + 2xy′

)
+ 2

(
xy′ + y

)
= 0

⇐⇒
(
(1 + x2)y′

)′
+ 2 (xy)′ = 0

⇐⇒ (1 + x2)y′ + 2xy = C

⇐⇒
(
(1 + x2)y

)′
= C



⇐⇒ (1 + x2)y = Cx+D

⇐⇒ y =
Cx+D

1 + x2
,

où C et D sont deux constantes arbitraires.

9. Résoudre l’équation différentielle x2 y′′+x y′− y = 2x sur IR∗+ en utilisant le changement de
variable x = et.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Posons y(x) = z(t), avec x = et, autrement dit y(x) = z(lnx) pour x ∈ IR∗+, ou encore, avec

des notations plus symboliques, y = z ◦ ln, fonction composée. Alors y′(x) =
1

x
z′(lnx),

puis

y′′(x) = − 1

x2
z′(lnx) +

1

x2
z′′(lnx) .

On réinjecte dans (E) :

(E) ⇐⇒ z′′(lnx)− z′(lnx) + z′(lnx)− z(lnx) = 2x

⇐⇒ z′′(t)− z(t) = 2 et

⇐⇒ z(t) = (t+A) et +B e−t

⇐⇒ y(x) = (A+ lnx) x+
B

x
.

10. Résoudre l’équation différentielle (1 + x2) y′′ − 2y = 0. On commencera par chercher des
solutions polynomiales.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Commençons par déterminer le degré d’une éventuelle solution polynomiale : supposons

que y =

n∑
k=0

akx
k, avec an 6= 0, soit solution de (E) ; en examinant le terme de degré n,

on a la relation
[
n(n − 1) − 2

]
an = 0 donc, puisque an est non nul, n2 − n − 2 = 0, ce

qui donne n = −1 (évidemment absurde) ou n = 2. Moralité : si (E) admet une solution
polynomiale non triviale (i.e. non nulle), alors celle-ci est de degré deux.

• Recherchons donc une solution de (E) sous la forme y = ax2 + bx + c. Les calculs
sont laissés à l’insatiable lecteur, on trouve b = 0 et a = c, autrement dit les solutions
polynomiales de (E) sont de la forme y = a(x2 + 1), avec a réel arbitraire.

• La fonction y1 = x2 +1 étant une solution de (E) ne s’annulant pas sur IR, la méthode de
variation de la constante, qui consiste à faire le changement de fonction inconnue y = y1z,
nous conduit à l’équation (x2 + 1) z′′ + 4x z′ = 0, soit, en posant u = z′, à l’équation du

premier ordre (x2 + 1) u′ + 4x u = 0, qui s’intègre en u = C e−2 ln(x2+1) =
C

(x2 + 1)2
.

Les primitives n’étant pas évidentes du premier coup d’œil, c’est parti pour un calcul
d’intégrale indéfinie, avec le changement de variable x = tan t ou t = Arctanx :



∫
dx

(1 + x2)2
=

∫
dt

1 + tan2 t
=

∫
cos2 t dt =

1

2

∫
(1 + cos 2t) dt

=
t

2
+

1

4
sin(2t)

=
1

2
Arctan(x) +

1

4
sin(2 Arctanx) +K

=
1

2
Arctan(x) +

x

2(1 + x2)
+K ,

après quelques manipulations trigonométriques qui ne devraient pas effrayer les valeureux

Jedi que vous aspirez à devenir. Finalement, z = C2

(
Arctanx+

x

1 + x2

)
+ C1, puis

y = C1 (x2 + 1) + C2

[
x+ (x2 + 1) Arctanx

]
,

les fonctions y1 = x2 + 1 et y2 = x + (x2 + 1) Arctanx constituant ainsi une base de
l’espace vectoriel des solutions de cette équation linéaire scalaire du second ordre, sans
second membre.

11. En posant z = ex
2

y, résoudre sur IR l’équation différentielle

y′′ + 4x y′ + (3 + 4x2) y = 0 .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Bôf, on pose donc y(x) = z(x) e−x
2

avec z de classe C2 sur IR, on en déduit successivement

y′ = (z′ − 2xz) e−x
2

puis y′′ =
(
z′′ − 4xz′ + (4x2 − 2)z

)
e−x

2

, on réinjecte dans l’équation
qui devient miraculeusement z′′ + z = 0. Donc z(x) = A cos(x) +B sin(x), et enfin

y(x) =
(
A cos(x) +B sin(x)

)
e−x

2

.

12. Résoudre, sur IR∗+, l’équation différentielle x3y′′+xy′−y = 0. On commencera par chercher
une solution polynomiale non nulle.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

On observe que y = x est solution. On fait alors une variation de la constante en posant le
changement de fonction inconnue y(x) = xz(x). Cela donne y′ = z+xz′, puis y′′ = 2z′+xz′′,
on réinjecte dans l’équation qui, après une petite simplification, devient

x2 z′′ + (2x+ 1) z′ = 0 .

En posant Z = z′, on est ramené à une équation du premier ordre x2 Z ′ + (2x+ 1) Z = 0,

ou encore Z ′ =
(
− 2

x
− 1

x2

)
Z, qui se résout sur IR∗+ en Z = −C e−2 ln(x)+1/x = − C

x2
e
1
x ,

que l’on intègre enfin en z(x) = C e
1
x +D. Au final, y(x) = Cx e

1
x +Dx, où C et D sont

deux constantes arbitraires.



13. Soit l’équation différentielle (E) : 4x y′′ + 2y′ − y = 0.

a. Chercher les solutions de (E) développables en série entière sur IR.

b. En déduire l’ensemble des solutions de (E) sur IR∗+.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. On recherche une solution y sous la forme y =

+∞∑
n=0

anx
n dans un intervalle de convergence

]−R,R[ qui sera précisé a posteriori. On a alors le droit (série entière) de dériver terme à

terme: y′ =

+∞∑
n=1

nanx
n−1 =

+∞∑
n=0

an+1x
n, puis y′′ =

+∞∑
n=2

n(n− 1)anx
n−2, donc

xy′′ =
+∞∑
n=2

n(n− 1)anx
n−1 =

+∞∑
n=1

n(n+ 1)an+1x
n =

+∞∑
n=0

n(n+ 1)an+1x
n

(la dernière égalité venant simplement du fait que le terme pour n = 0 est nul). Notez
bien ce travail préliminaire qui consiste à faire les translations d’indices idoines
pour avoir des xn partout, avant de réinjecter dans l’équation différentielle! Eh
bien, allons-y, réinjectons!

(E) ⇐⇒ 4

+∞∑
n=0

n(n+ 1)an+1x
n + 2

+∞∑
n=0

an+1x
n −

+∞∑
n=0

anx
n = 0

⇐⇒
+∞∑
n=0

[
4n(n+ 1)an+1 + 2an+1 − an

]
xn = 0

⇐⇒
+∞∑
n=0

[
(4n2 + 4n+ 2)an+1 − an

]
xn = 0

⇐⇒ ∀n ∈ IN (2n+ 1)(2n+ 2)an+1 − an = 0 ,

la dernière ligne (identification des coefficients) résultant de la propriété d’unicité du développement

en série entière. On a donc, pour tout n entier naturel, an+1 =
an

(2n+ 1)(2n+ 2)
, ce qui

garantit déjà un rayon de convergence infini puisque
an+1

an
tend vers zéro. Puis on déduit

facilement an =
a0

(2n)!
, le coefficient a0 restant arbitraire.

Les solutions de (E) développables en série entière sur IR sont donc les fonctions y = a0y0,

où a0 est un réel arbitraire, et y0 : x 7→
+∞∑
n=0

xn

(2n)!
. On peut expliciter y0. En effet, si x ≥ 0,

on peut écrire x = (
√
x)2, alors y0(x) =

+∞∑
n=0

(
√
x)2n

(2n)!
= ch(

√
x), et pour x ≤ 0, on écrit

x = −
(√
−x
)2

, et alors y0(x) =

+∞∑
n=0

(−1)n
(√
−x
)2n

(2n)!
= cos

(√
−x
)
.



b. D’abord, constatons que, sur IR∗+, on peut mettre l’équation sous forme normale, c’est-
à-dire isoler y′′ puisque le coefficient x ne s’annule pas. Le théorème de Cauchy linéaire
permet alors d’affirmer que l’ensemble des solutions de (E) sur cet intervalle est un plan
vectoriel. Nous connaissons comme solutions pour le moment les fonctions f = Cy0, où C
est une constante et y0 la fonction x 7→ ch(

√
x), qui ne s’annule pas sur IR∗+. Faisons donc

varier la constante C, c’est-à-dire recherchons les solutions de (E) sous la forme y = zy0,
où z est une fonction inconnue de classe C2. On dérive deux fois: y′ = z′y0 + yz′0, puis
y′′ = z′′y0 +2z′y′0 +zy′′0 , et réinjectons, et tenons compte de 4xy′′0 +2y′0−y0 pour simplifier:

(E) ⇐⇒ 4x(z′′y0 + 2z′y′0 + zy′′0 ) + 2(z′y0 + zy′0)− zy0 = 0

⇐⇒ z(4xy′′0 + 2y′0 − y0) + 4xy0z
′′ + 8xy′0z

′ + 2y0z
′ = 0

⇐⇒ 4xy0 z
′′ + (8xy′0 + 2y0) z′ = 0 .

Bien noter que l’on n’explicitera y0 que le plus tard possible! Dériver deux fois ch(
√
x)

serait fort maladroit, et on risquerait de faire des erreurs de calcul ou de ne pas voir les
simplifications! L’équation obtenue est bien sûr toujours du second ordre en la fonction
inconnue z, mais en posant u = z′, on se ramène à une équation du premier ordre en la
fonction inconnue u, que l’on sait alors résoudre. Poursuivons:

(E) ⇐⇒ u′ = −
(

2
y′0
y0

+
1

2x

)
u

⇐⇒ u = C e
−2 ln(y0)− 1

2 ln(x)
=

C√
x y20

⇐⇒ z′ =
C

√
x ch2(

√
x)

Il reste à primitiver pour trouver z ; pour cela, écrivons une intégrale indéfinie (intégrale
sans bornes, et posons le changement de variable t =

√
x):∫

dx
√
x ch2(

√
x)

=

∫
2t dt

t ch2(t)
= 2

∫
dt

ch2(t)
= 2 th(t) = 2 th(

√
x) = 2

sh(
√
x)

ch(
√
x)

puisque la fonction tangente hyperbolique th =
sh

ch
a pour dérivée 1− th2 =

1

ch2 , de même

qu’il est bien connu que la fonction tangente tan =
sin

cos
a pour dérivée 1 + tan2 =

1

cos2
.

Donc z = 2C th(
√
x)+C2 = C1 th(

√
x)+C2, où C1 et C2 sont deux constantes arbitraires.

Et enfin, y = zy0, donc

y = C1 sh(
√
x) + C2 ch(

√
x) .

Le lecteur insatiable, au vu du résultat, pourra se dire qu’en faisant le changement de
variable t =

√
x, l’équation est probablement ramenée à une équation plus simple! Et

effectivement, en posant y(x) = z(
√
x), l’équation (E) devient z′′(t) − z(t) = 0, dont

il est bien connu que les solutions sont les combinaisons linéaires de ch et sh.



Systèmes différentiels linéaires

14. Résoudre le système différentiel linéaire d’écriture matricielleX ′ = AX avecA =


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

.

On pourra, soit utiliser la méthode générale, soit poser le changement de fonction inconnue
X(t) = et Y (t).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Méthode 1. C’est la méthode “générale” : le système est triangulaire, on le résout en

cascade, en partant de la dernière équation. En posant X =


x
y
z
u

, on a

(S) ⇐⇒


x′ = x+ y

y′ = y +z

z′ = z + u

u′ = u

⇐⇒



x = C4 e
t+ C3 t e

t +C2
t2

2
et + C1

t3

6
et

y = C3 e
t+ C2 t e

t +C1
t2

2
et

z = C2 e
t+ C1 t e

t

u = C1 e
t

.

En écrivant la solution générale X sous la forme

X = C1



t3

6
et

t2

2
et

t et

et

+ C2


t2

2
et

t et

et

0

+ C3


t et

et

0
0

+ C4


et

0
0
0

 ,

on voit que ce sont les combinaisons linéaires de quatre fonctions vectorielles X1, X2, X3,
X4 qui constituent donc une base de l’espace vectoriel des solutions de (S).

Méthode 2 (plus jolie, mais parachutée). On fait le changement de fonction inconnue
X(t) = et Y (t), et on a

(S) ⇐⇒ X ′ = AX ⇐⇒ et (Y ′ + Y ) = et AY ⇐⇒ Y ′ = (A− I4) Y ⇐⇒


y′1 = y2

y′2 = y3

y′3 = y4

y′4 = 0

.

On en déduit y4 = C1, y3 = C1t+C2, y2 = C1
t2

2
+C2t+C3, y1 = C1

t3

6
+C2

t2

2
+C3t+C4,

et on retrouve les mêmes solutions (heureusement!)

15. Résoudre le système différentiel


x′ = 2x − y − z

y′ = −x + 2y − z

z′ = −x − y + 2z

.



- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Le système s’écrit X ′ = AX avec A =

 2 −1 −1
−1 2 −1
−1 −1 2

 et X(t) =

x(t)
y(t)
z(t)

.

On observe que A − 3I3 = −J , où J ∈ M3(IR) est la matrice dont tous les coefficients
valent 1, on a donc rg(A− 3I3) = 1, donc 3 ∈ Sp(A), et dimE3(A) = 2 ; en fait, il est assez
clair que E3(A) est le plan d’équation x+ y+ z = 0, engendré par exemple par les vecteurs

U =

 1
−1
0

 et V =

 0
1
−1

. L’autre valeur propre de A est 0 (considérer la trace), et le

sous-espace E0(A) = Ker(A) est la droite vectorielle engendrée par le vecteur W =

 1
1
1

.

Tout ceci permet d’écrire que A = PDP−1 avec D = diag(3, 3, 0) et P =

 1 0 1
−1 1 1
0 −1 1


par exemple. Ensuite,

X ′ = AX ⇐⇒ X ′ = PDP−1X ⇐⇒ (P−1X)′ = D(P−1X) ⇐⇒ Y ′ = DY

en posant Y (t) = P−1 X(t) =

 u(t)
v(t)
w(t)

.

Donc X ′ = AX ⇐⇒


u′ = 3u

v′ = 3v

w′ = 0

⇐⇒


u(t) = C1 e

3t

v(t) = C2 e
3t

w(t) = C3

. En remultipliant à gauche par

la matrice de passage P , on termine la résolution du système:
x(t) = C1 e

3t + C3

y(t) = (−C1 + C2) e3t + C3

z(t) = −C2 e
3t + C3

.

Problèmes se ramenant à une équation différentielle

16. Trouver toutes les applications continues f : IR→ IR telles que

(F) : ∀(x, y) ∈ IR2 f(x) f(y) =

∫ x+y

x−y
f(t) dt .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Soit f une fonction solution de (F), on montre d’abord que f est de classe C∞ sur IR :
si f et la fonction nulle, c’est évident, sinon on introduit un réel a tel que f(a) 6= 0 et, en
notant F la primitive de f qui s’annule en zéro, on a

∀x ∈ IR f(x) =
1

f(a)

(
F (x+ a)− F (x− a)

)
;



la fonction F étant C1, f l’est aussi, puis F est C2 et ainsi de suite, bref f est C∞.

• Soit f une solution non nulle de (F). On peut alors dériver l’équation fonctionnelle (F)
soit par rapport à x, soit par rapport à y, et on en déduit les relations{

f ′(x) f(y) = f(x+ y)− f(x− y)

f(x) f ′(y) = f(x+ y) + f(x− y) (*)
.

En ajoutant ces deux équations, on obtient f ′(x) f(y) + f(x) f ′(y) = 2 f(x+ y). Dérivons
de nouveau par rapport à x et par rapport à y, on obtient la relation

∀(x, y) ∈ IR2 f ′′(x) f(y) = f(x) f ′′(y) .

En posant λ =
f ′′(a)

f(a)
, où a est un réel tel que f(a) 6= 0, on a alors l’équation différentielle

(E) : f ′′ − λ f = 0, équation que l’on sait résoudre en discutant suivant le signe de λ.

Notons aussi que l’équation fonctionnelle (F) entrâıne les conditions initiales f(0) = 0
(évident en faisant x = y = 0) et f ′(0) = 2 (car f(a) f ′(0) = f(a) + f(a) en faisant x = a
et y = 0 dans (*)). Suivant le signe de λ, on obtient donc :

- si λ = 0, f(x) = 2x ;

- si λ = ω2 > 0, alors f(x) =
2

ω
sh(ω x) ;

- si λ = −ω2 < 0, alors f(x) =
2

ω
sin(ω x).

On vérifie ensuite, en reportant dans (F), que ces fonctions conviennent.

17. Déterminer les fonctions f : IR→ IR, dérivables, telles que

∀x ∈ IR f ′(x) = x f(−x) .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Rappelons que toute fonction f : IR→ IR se décompose de façon unique en somme d’une
fonction paire et d’une fonction impaire. Recherchons alors f sous la forme f = g+ h, avec

g paire et h impaire. Comme g(x) =
f(x) + f(−x)

2
et h(x) =

f(x)− f(−x)

2
, il est clair que

g et h sont toutes deux dérivables. On obtient

∀x ∈ IR g′(x) + h′(x) = x g(x)− x h(x) .

La propriété d’unicité mentionnée ci-dessus permet d’identifier les parties paire et impaire,
autrement dit d’obtenir deux équations différentielles indépendantes :

(E) : g′(x) = x g(x) et (F) : h′(x) = −x h(x) .

On résout (E), cela donne g(x) = A e
x2

2 , et les fonctions obtenues sont bien des fonctions

paires. On résout (F), cela donne h(x) = B e
−x

2

2 ... mais la fonction obtenue n’est impaire

que si B = 0! Au final, f(x) = A e
x2

2 , avec A ∈ IR arbitraire.



18. Déterminer les fonctions f : IR∗+ → IR, dérivables, telles que (F) : ∀x ∈ IR∗+ f ′(x) = f

(
1

x

)
.

On montrera que f est solution d’une équation différentielle linéaire du second ordre, puis
on posera le changement de variable x = et.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Si f est solution de l’équation fonctionnelle (F), alors f ′ est dérivable, donc f est deux fois
dérivable (et même de classe C∞) sur IR∗+, on peut donc redériver l’équation, ce qui donne

∀x ∈ IR∗+ f ′′(x) = − 1

x2
f ′
( 1

x

)
= − 1

x2
f(x) ,

donc f est solution de l’équation différentielle (E) : x2 y′′ + y = 0 sur IR∗+. En posant
g(t) = f(et) pour t ∈ IR, on voit que f est solution de (E) sur IR∗+ si et seulement si
g est solution sur IR de l’équation z′′ − z′ + z = 0. L’équation caractéristique associée

r2 − r+ 1 = 0 admet pour racines r1 =
1

2
+ i

√
3

2
et r2 =

1

2
− i
√

3

2
. Donc g est de la forme

g(t) = e
t
2
(
A cos

√
3

2
t+B sin

√
3

2
t
)
.

On peut en déduire une expression de f , mais il y aura alors une réciproque à faire, pas si
facile à écrire (en dérivant l’équation fonctionnelle (F), on n’a pas raisonné par équivalences,
mais seulement par conditions nécessaires). Il est en fait ici préférable de remarquer que
le changement de variable proposé par l’énoncé montre que l’équation fonctionnelle (F)
équivaut à la relation

∀x ∈ IR∗+
1

x
g′(lnx) = g

(
ln

1

x

)
,

soit encore à la relation

∀t ∈ IR g′(t) = et g(−t) .

En reprenant l’expression de g obtenue ci-dessus, on note que cela impose la relation
A = B

√
3. En revenant à la variable x, on obtient donc l’expression des solutions

f(x) = C
√
x

(
√

3 cos
(√3

2
lnx
)

+ sin
(√3

2
lnx
))

,

ou encore

f(x) = 2 C
√
x sin

(π
3

+

√
3

2
lnx
)
,

avec C ∈ IR constante arbitraire.

19. Soit λ un réel, soit f : [0, 1]→ IR continue. Déterminer les fonctions u : [0, 1]→ IR, continues,
telles que

∀x ∈ [0, 1] u(x) = λ

∫ x

0

u(t) dt+ f(x) .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



Soit u solution du problème posé. Soit U sa primitive qui s’annule en 0, qui est donc définie

par U(x) =

∫ x

0

u(t) dt. Alors U est de classe C1 sur [0, 1], et elle est solution du problème

de Cauchy (P):

{
U ′(x)− λU(x) = f(x)

U(0) = 0
. La solution de ce problème de Cauchy s’obtient

par exemple en écrivant que U ′(x) − λU(x) = eλx
d

dx

(
e−λxU(x)

)
, on obtient, en tenant

compte de la condition initiale:

U(x) = eλx
∫ x

0

f(t) e−λt dt

puis, en dérivant,

u(x) = U ′(x) = λ eλx
∫ x

0

f(t) e−λt dt+ f(x) .

Inversement, la fonction u donnée par cette formule est bien solution du problème posé,
elle est effectivement continue sur [0, 1], et on reconnâıt dans son expression la dérivée de

U : x 7→ eλx
∫ x

0

f(t) e−λt dt, qui est solution de U ′ − λU = f(x).

20. Trouver toutes les fonctions f : IR→ IR, continues, telles que

∀x ∈ IR f(x)− 2

∫ x

0

f(t) cos(x− t) dt = 1 .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

L’idée pour résoudre cette “équation intégrale” est de la dériver pour obtenir une équation
différentielle. Toutefois, en dérivant sans imposer d’autre condition, on obtiendra une
condition nécessaire pour que f soit solution, mais il faudra ensuite faire une réciproque
qui n’est pas toujours très aisée à écrire.

On peut alors préférer raisonner par équivalences, en utilisant le fait que, si g et h sont
deux fonctions dérivables sur IR, on a l’équivalence

(*): f = g ⇐⇒

{
f ′ = g′

f(0) = g(0)
.

Soit f solution du problème posé. On a alors f(0) = 1 et, en écrivant

f(x) = 1 + 2

∫ x

0

f(t) cos(x− t) dt = 1 + 2 cos(x)

∫ x

0

f(t) cos(t) dt+ 2 sin(x)

∫ x

0

f(t) sin(t) dt ,

il résulte du théorème fondamental de l’analyse que f est de classe C1 sur IR avec

f ′(x) = 2 f(x)− 2 sin(x)

∫ x

0

f(t) cos(t) dt+ 2 cos(x)

∫ x

0

f(t) sin(t) dt .

Ainsi, f ′(0) = 2 et, de nouveau par le théorème fondamental de l’analyse, on voit que f ′

est de classe C1, donc f est de classe C2 sur IR, avec



f ′′(x) = 2 f ′(x)− 2 cos(x)

∫ x

0

f(t) cos(t) dt− 2 sin(x)

∫ x

0

f(t) sin(t) dt

= 2 f ′(x)−
(
f(x)− 1

)
en réutilisant la première relation.

En utilisant deux fois l’équivalence (*) mentionnée au début de ce corrigé, on voit que f
est solution du problème posé si et seulement si elle est de classe C2 et solution sur IR du

problème de Cauchy (P):


y′′ − 2y′ + y = 1

y(0) = 1

y′(0) = 2

. Le problème posé admet donc une solution

unique.

Les solutions de l’équation différentielle homogène y′′ − 2y′ + y = 0 sont les fonctions
y = (Ax+B)ex. La fonction constante 1 est une solution évidente de l’équation avec second
membre, donc f est de la forme x 7→ (Ax + B)ex + 1. Les conditions initiales imposent
B = 0 et A = 2, donc f(x) = 2xex + 1.



Exercices avec Python

21. Soit l’équation différentielle (E): (1− x)3 y′′ − y = 0.

On note f l’unique solution de (E) sur ]−∞, 1[ vérifiant f(0) = 0 et f ′(0) = 1.

a. Justifier l’existence et l’unicité de f .

b. Tracer une approximation du graphe de f sur [0 ; 0, 09] en utilisant la méthode d’Euler.

c. Justifier que f est de classe C∞ sur ]−∞, 1[.

Pour tout n entier naturel, on pose an =
f (n)(0)

n!
.

d. Pour n ≥ 1, trouver une relation de récurrence liant les coefficients an−1, an, an+1, an+2.

e. Avec Python, calculer an pour n ∈ [[0, 20]].

f. Montrer que |an[≤ 4n pour tout n.

g. Que peut-on en déduire concernant la fonction f ?


