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PROBLEME 1
d’apres X-ENS-ESPCI 2017, filiere PC
PARTIE A. Etude d’une norme matricielle.
1. On a bien N(A) € IR pour toute matrice A € M,,(C). Soient A = (a; ;) et B = (b; ;).

® Imnax E a;
1<j<n ( : | bJ

donc N (A) = 0 si et seulement si A =0, (ax10me de séparation).

) =0 = vje[ln] Z\W—O = V(i,5) € [L,n]? ai,| =

En effet, une somme de réels positifs est nulle si et seulement si chaque terme est nul.

n
* N(M) = max (Z A la| ) = max (m ; |ai,j|) — [A| N(A) , on a donc I'axiome
d’homogénéité.

e Pour tout j € [1,n], on a

D lais + il < (sl + [bigl) = > laisl + > biyl < N(A) + N(B) .
i=1 i=1 i=1 i=1

Cette majoration étant vraie pour tout j, elle est vraie pour un indice j réalisant le maxi-
mum, on en déduit 'inégalité triangulaire N(A + B) < N(A) + N(B).

2.a. Soit X = (z1, -, x,), alors AX = (y1,--+,yn) OU y; = Zaijxj pour tout 7. Donc

n n n n
TR ST I S I ) I Z N (D)
i=1 i=11j=1 i=1 j=1 i=1
n
< Dl N(A) = N(A) [ X -
j=1
ai,s
b. Ona AFE, = : , ¢’est la s-iéme colonne de la matrice A donc, par hypothese,
Un,s n

HAEs”l = Z |ai,s| = N(A) :
i=1
c. e Pour X € S, on a || X]|; = 1 donc ||AX|1 < N(A) d’apres le a., et le b. montre
Pexistence d'un vecteur X de S,, (prendre X = E;) tel que |AX||s = N(A). On a donc
N(A4) = max [[AX];.
e n

AX
IAX ]y < N(A), et ce majorant
X1

[AX ]|
xe¢ oy X[

e Pour X € C" non nul, I'inégalité du a. peut s’écrire

N(A) est atteint pour X = Ej, on conclut que N(A) =

n
3. Posons C = (¢; ;) = AB, alors ¢; j = Zai,kbk,j pour tout couple (7, j) € [1,n]?. Alors, pour

k=1
tout j € [1,n],

n

n
D lesl =3
i=1 i=1

n

n n
D ainbis| < D0 laikl [brl
k=1

i=1 k=1




<
(=

Z(wk,n Zmi,m) < N(4)-Y |yl < N(4)-N(B).
= k=1

) k=1 i=1

Cette majoration étant vraie pour tout j, elle est vraie pour un indice j réalisant le maxi-
mum, on a donc prouvé que N(AB) < N(A) - N(B).

Remarque. On pouvait aussi dire en utilisant la question 2. que, pour tout X € S,,, on a

[(AB)X ], = | ABX)|, < N(4)- [BX|, < N(4)- N(B)

et, cette majoration étant vraie pour tout X € S, elle est vraie pour un Xy € S, tel que
||(AB)X0||1 = N(AB), et conclure ainsi plus simplement que N(AB) < N(A)- N(B).

PARTIE B. Des calculs préliminaires.

4. Rappelons que, si M = (m; ;) est une matrice carrée d’ordre n, si D = diag(ds,- -, dy), alors
(DM);,; = dym, ; alors que (MD); ; = djm; ;. En d’autres termes, le fait de multiplier M
a gauche (DM ) par une matrice diagonale multiplie chaque ligne de M par le coefficient
correspondant de la diagonale, alors que si on multiplie M & droite (MD), ce sont les
colonnes qui sont multipliées par les coefficients diagonauz de D.

Ici, avec d; = ' pour tout i € [1,n], on obtient b; ;(t) = (D;AD; ') j = tla; jt77 =t a, ;.
5.a. Les a;; sont ici supposés nuls pour 7 > j. Lorsque ¢ tend vers +oo, les coeflicients de

DiAD; ! situés strictement au-dessus de la diagonale (i < j) tendent vers 0 puisqu’alors
lim ¢/ =0, ceux de la diagonale ne dépendent pas de t. Puisque la limite d’une fonction

t——+oo
a valeurs matricielles s’obtient coefficient par coefficient (et ne dépend pas de la norme
choisie sur M,,(C)), on a ainsi . ligrn (D;AD; 1) = diag(ar.1,- -+, Gnn)-

— 00

b. PosonsA = diag(ai 1, -+, ann), ona N(A) = max la; ;| < 1. Commetiigloo(DtADt_l) = A,
on déduit tiigloo N(D:AD; ") =N(A) < 1 (par?ex?emple parce que la norme est 1-lipschitzienne
donc continue), il en résulte que N(D;AD; ') < 1 pour t > 0 suffisamment grand.

c. Fixons tg > 0 tel que N (Dy, ADt_Ol) < 1. De la question 3., par une récurrence immédiate, on
déduit que, pour toute matrice M et pour tout k entier naturel, on a N(M*) < (N(M))k
On a donc, pour tout k entier, 0 < N(DtOAkD,;)l) = N((DtUADg)l)k) < (N(DtoADt_Ol))k

et, comme cette derniere suite (géométrique de raison positive et strictement inférieure a 1)
tend vers 0, on déduit du théoreme d’encadrement que N lim N (DtOAkD[O Hh=o.
—+o0

d. On a donc, dans I’espace vectoriel normé M., (C): kmf DtOAth_Ol = 0,, (matrice nulle).
—+00

On a prowvé ce résultat en utilisant la norme N mais, comme on est en dimension finie,
on sait que le résultat ne dépend pas du choix de la norme.

L’application ¢ : M +> Dt_OlMDtO, de M,,(C) dans lui-méme, est linéaire en dimension finie,
donc continue. On déduit donc que lim (Dy, AkD;Ol) = ¢(0,), soit  lim A* =0,.
k—+o00 k—+o00



PARTIE C. Propriétés du rayon spectral.
6. e Sp(A) = {0,1}, donc p(A) = 1.
e Sp(B) = {0}, donc p(B) = 0.
e Sp(C) = {0,1}, donc p(C) = 1.
e Sp(D) = {iv/2, —iv/2}, donc p(D) = V2.
e xgp = (X —1)(X —4), donc Sp(E) = {1,4} et p(E) = 4.
7.a. On a Sp(pd) = {uX; A€ Sp(A)}, d’ott p(nAd) = |u| p(A) est vrai.

b. En reprenant les matrices de la question 6., on a p(B) = p(B") = 0, alors que la somme

1 0

c. Avec les notations de 6., on a BBT = A, donc p(BB") = p(A) =1 > p(B)p(B") = 0
I'inégalité proposée est fausse aussi.

1 NS .
B+ B = (O ) a pour rayon spectral 1. L’inégalité proposée est donc fausse.

d. Deux matrices semblables ont le méme spectre, donc le méme rayon spectral, on a donc
bien p(P~1AP) = p(A).

e. Une matrice et sa transposée ont le méme spectre, donc le méme rayon spectral, on a donc
bien p(AT) = p(A).

8. Soit A une valeur propre de A, et X € C™ un vecteur propre associé, i.e. X # 0et AX = \X.
On a alors [|AX |1 = [|AX]|1 = |M || X1, mais |AX]|1 < N(A) - [|X|; d’apres 2.a. On a
donc |A] [| X1 < N(A) - || X |1, et comme || X||; > 0, on déduit |[A| < N(A). Ceci étant vrai
pour tout A € Sp(A), on conclut que p(A) = ,\gsla(XA) A < N(A4).

p

9. Ceci généralise la question précédente: soit A une valeur propre de A telle que |A\| = p(A4),
soit X un vecteur propre associé, alors il est classique que, pour tout k entier naturel, on a
A*X = \* X, donc d’apres 2.c.,

1AMl ARX ) I XL

N(AF) =  max = = [X|= NP = (p(A F
A= 8% TP 2 TR - IR = A= (e)
10. e Si lim AF = 0,, alors lim N(Ak) = 0, donc l'inégalité de la question 9. entraine
k—+o00 k—+o00

lim p(A)* =0, ce qui entraine p(A4) < 1.

k— 400

e Soit A € M, (C) telle que p(A) < 1. On sait que A est trigonalisable: A = PTP~!
avec P € GL,(C) et T € M, (C) triangulaire supérieure. Les coefficients diagonaux ¢, ;
de la matrice T sont les valeurs propres de A, qui vérifient par hypothese |¢; ;| < 1 pour
tout ¢ € [1,n]. On déduit alors de la question 5. que kmf T+ = 0,,. Par continuité de

c—r 00
I'application linéaire M — PMP~', on conclut que A* = PT*P~! k—> 0,.
—+o0

11. De 10. et 7.a., on déduit immédiatement que

k
lim <A> =0, <:>p<;1><1 — @<1 — a>p(4).



12. De 9., on déduit que (N(Ak))l/k > p(A). Mais, si on se donne € > 0, alors p(A) +¢ > p(A),
A

k
(A)+> k_> 0,, ce qui entraine
p 9 — 400

la question 11. permet alors d’affirmer que (

N(AF N(AF
(7)16 — 0, il existe alors un rang K € IN* & partir duquel (7)16 <1
(p(A) +e)" koo (p(A) +¢)

Pour tout k > K, on a alors p(A4) < (N (Ak))l/k < p(A) + €. On a ainsi prouvé que
i (N(A9) Y = p(a)
GJim (N(A%) 7 = p(4)

13. Prouvons d’abord que N(A¥) < N(B*) pour tout k.
Posons A" = (ag?)1<w<n et BF = (bg?)lgi,jgn, montrons par récurrence la propriété
(Po) © Y, elLn)? |olf| <o)
e (Py) est vrai car A° = B® = I, donc a,(o») = b(-o-) =0dij;
e (P1) est vrai aussi car b( ) = b, i = |aij| = |a(1) ;
e Supposons (Py) vrai pour k € IN donné. Alors, pour tout (7,5) € [1,n]?, on a

Z o1 | aws| < 3200705 =05

=1

k+1) (k)

2J

ce qui prouve (Pk+1).

On en déduit facilement que N(A*) < N(B¥), puis que (N(Ak))
tout k € IN* et, par passage & la limite, que p(A) < p(B).

Wk < (N(Bk)) 1k pour

PROBLEME 2
PARTIE A. Majoration de I’espérance de |5, |.

1
1.0na X;(Q) ={-1,1} avec P(X; = -1)=P(X; =1) = 2 donc
1 1
E(Xy) == -1 - x1=0.

(X1) =5 x (=) + 5 x
De plus, X7 = 1 (variable aléatoire constante) donc E(X?) = 1, puis par la formule de

Koenig-Huygens, V(X1) = E(X?) — (E(X,))” = 1.

2. Les variables X; ont toutes la méme loi. Par linéarité de l'espérance, E(S,) = ZE(XZ) =0.

Les variables X; étant indépendantes, donc décorrélées, V (S, ZV

3. Pour tout 4, X? = 1 (variable aléatoire constante).
Si¢ # j, comme X; et X; prennent leurs valeurs dans {—1,1}, il en est de méme du produit
XZX] Puis {XZXJ = 1} == ({Xz = 1} n {Xj = 1}) (] ({X,L = —1} N {XJ = —1})7 donc
par indépendance de X; et X,



P(X;X;=1)=P(X; =1)P(X; =1)+P(X; = -1)P(X; = -1) =
Finalement, pour i # j, la variable X;X; a la méme loi que X;.

n 2 n
4.0na S% = (ZXZ) = Z X2+ Z X;X; donc, par linéarité de I’espérance,
i=1 i=1 i#j
B(S2) =Y B(X})+ ) E(X;X;)=nx1l+nn—-1)x0=n.
i=1 i£]
5. La formule de Koenig-Huygens, appliquée a la variable |S,,|, donne

V(1Sul) = E(52) = E(1Sa])* = n — E(1Sa])* > 0

puisqu’une variance est toujours positive. Ainsi, E(|Sn|) <+/n.

PARTIE B. Obtention d’un équivalent.
6. Comme la variable |S,,| prend ses valeurs dans [0, n], ce n’est rien d’autre que la définition de
I’espérance
n n
E(IS.) = Y aP(ISal=2) =) kP(IS:=k) =D kP(IS.|=Fk) .
2€|Sn () k=0 k=1

7. Remarquons d’abord que, si j est un entier relatif, on ne peut avoir S, 11 = j que si S,, vaut
j—1ouj+1. Donc, pour n € IN* et j entier relatif, par la formule des probabilités totales,

P(Sn+1 :J) = P(Sn+1 :j|Sn:j_1> P(Sn:j_1)+P(Sn+1 :jlsn:j+1) P(Sn:j+1)
1
= 5 x (P(Sn:j—l)—i—P(Sn:j—i—l))
puisque les deux probabilités conditionnelles intervenant dans ce calcul valent 5

Si k > 2, on a alors

1
P(Sni1=k) =5 x (P(Sa=k—1)+P(Sy =k+1))
et 1
P(Sut1 = —k) = 5 (P(Sn = —k+ 1)+ P(S, =~k — 1)) .
Comme, pour j € IN* et n € IN*, ’événement {|Sn| = j} est la réunion disjointe des
événements {S,, = j} et {S,, = —j}, en ajoutant les deux égalités ci-dessus, on obtient la
relation demandée.
8.0mn a
1 1
P(St1 =1) = 5 (P(Sn = 0)+P(S, = 2)) et P(Spi1=-1)=3 (P(Sn = 0)+P(S, = —2)) .

En ajoutant les deux relations, on obtient

P(ISua] = 1) = P(S, = 0) + % P(IS.| =2) .



9. Calculons!
n+1

E(1Su1l) = D kP(|Sua|=k)

1 e,
_ [p(sn = 0)+ £ P(1S:] = 2)] N {p(|sn| k1) + P(ISu] = k + 1)}
k=2

1 1 n 1n+2

= P(Su=0) 45 P(Su =2) + P(Sa] = 1) + 5 P(1S:] =2) + Dk P(1S.] = b)
k=3

= P(S,=0)+ ikP(|sn| =k)
k=1
= P(S,=0)+E(|S,]) -

On a utilisé le fait que P(|S,|=n+1)=P(|S,|=n+2)=0.

10. S,, est une somme de n entiers impairs (1 ou —1), donc S, est de la parité de l'entier n.
Ainsi, P(S9p+1 =0) = 0.
L’événement {Ss, = 0} est réalisé si et seulement si, lors des 2p premiers lancers, le joueur

obtient exactement p fois pile (“succes”), et donc exactement p fois face (“échecs”). On
reconnait un schéma de Bernoulli, la loi du nombre de succes lors d’une répétition de 2p

1
épreuves de Bernoulli indépendantes est binomiale B (Qp, 5) puisqu’ici la probabilité de
1 1\P /1\P 1
succes a chaque épreuve est 3 Donc P(Ss, =0) = (25) (§> (§> = (if)

11. Pour p =0, on a |S1| = |X;| = 1 (variable constante), donc E(|S1]) = 1, ce qui correspond
bien a la formule proposée pour p = 0.

. . . . . 2p—1
Soit p € IN*. Supposons la relation vraie au rang p — 1, i.e. E(|52p_1|) = 4;11 ( 5_ 1 )

Alors, en utilisant les questions 9. et 10.,

E([Sap11]) = E(|S2p-1]) + P(S2p = 0) + P(S2p—1 = 0)

_ p 2p—1 n 1 (2

o4t (p—1 4r \ p

_ _p_ (-1t 1 (2p)
=1 pl(p—1)! 47 (p!)?
(p+1)x@2p+1!  p+1 (2p+1

4 pl(p+1)  4p P
apres quelques réarrangements.
- 2p+1 (2p)! -~
12. 11 est plus commode d’écrire E(|S2p41]) = e Par la formule de Stirling, on

obtient alors



9 2./7p =

1
ce que l'on peut écrire aussi E(|S2p41])  ~ == =2 D’autre part,

/2(
—>+oo p—>+oo e

E(|S2p]) = E(|S2p-1)

En réunissant les deux cas (n pair ou impair), on conclut que E(|S,]) ~ 1/ .
n——+o0o T

PARTIE C. Minoration.
13. Par les formules d’addition de la trigonométrie, cos(T' 4+ U) = cos(T') cos(U) —sin(T') sin(U).

Les variables T et U étant indépendantes, il en est de méme des variables cos(T") et cos(U),
ainsi que des variables sin(T") et sin(U). En utilisant la linéarité de 1'espérance et le fait que,
si X et Y sont indépendantes alors E(XY) = E(X) E(Y), on obtient

E(cos(T 4+ U)) = E(cos(T)) E(cos(U)) — E(sin(T)) E(sin(U)) .

Enfin, si U et —U ont la méme loi, il en est de méme de sin(U) et de sin(—U) = —sin(U),
donc E(sin(U)) = E( —sin(U)) = —E(sin(U)), donc E(sin(U)) = 0. Au final,

E(cos(T 4+ U)) = E(cos(T)) E(cos(U)) .

14. Comme |S;| = [X;| = 1 (variable aléatoire constante) et que la fonction cosinus est paire,

cos(tS1) = cos(t [S1|) = cos(t), c'est aussi une variable aléatoire constante, donc
E(cos(tS1)) = cos(t), ce qui initialise une récurrence.

Soit n € IN*, supposons E(cos(tSn)) = cos™(t). Alors tSy11 = t(Sp+Xnt1) = S+t X511
et, les variables Xy, ---, X;,, X,,41 étant indépendantes, il résulte du lemme des coalitions
que les variables tS,, = ¢(X; + --- + X,,) et tX,,41 sont indépendantes. Comme tX,,11 et
—tX,,+1 ont la méme loi, et de méme pour ¢.5, et —tS,,, on peut appliquer la question 13.,
ce qui donne
E(cos(t Snt1)) = E(cos(tS, +tX,11)) = E(cos(t Sn)) E(cos(t Xn41))
= cos"(t)-cos(t) = cos" (1),

puisque X,, 1 a la méme loi que X; = S7, donc E(cos(t Xn+1)) = E(cos(tSl)) = cos(t).

La récurrence est donc achevée.
n

15. Pour t réel, posons f(t) = E(cos(tS,)), soit f(t) = Z P(S,, = k) cos(kt) par la formule
k=—n
)

de transfert. On a aussi f(t) = cos™(t). La fonction f est dérivable avec

fI(t) = —n cos"1(t) sin(t) = — Y k P(S, = k) sin(kt) = —E(S, sin(t5,)) .
k=—n

Comme S, sin(tS,) < |Sn sin(tSn)| < |Snl, la croissance de I'espérance donne

E(|S,]) = E(S, sin(tS,)) =n cos™ ' (t) sin(t) .



16. Posons g(t) = ncos™ ! (t)sin(t) = — f'(t). Alors g¢'(t) = ncos™ *(t)( cos®(t)—(n—1)sin*(t)).

Dans lintervalle ouvert }O,g , la dérivée ¢’ s’annule en l'unique point 6, tel que
1 1

2 .2 : 2

cos“(#,) — (n — 1)sin“(6,) = 0, i.e. tan“(#,,) = ——, donc pour 6,, = Arctan (7)

(00) = (1= 1)5in(6,) (6) = . donc p —

Le lecteur s’assurera que g est croissante sur [0,6,,], décroissante sur [9,1, g}, donc le

maximum de g sur I = [O, g} est g(0,) = n (cos(en))n_1 sin(6,). En utilisant la

1
relation de trigonométrie Vo € R cos (Arctan(z)) = ——— (que le lecteur se fera
V1422

1 1
un plaisir de redémontrer), on obtient cos(f,) =4/1 — . puis sin(6,) = N et enfin

maxg = tg[l(?};] (n cos™1(t) sin(t)) = g(0,) = Vn (1 - 7) i

17. On a E(|S,]) > g(t) pour tout t € I = {O, g}, donc

E(‘SnD > I?éi}(g(t) _ \/ﬁ (1 B %) 2

n—1
18. On a 1n<<1—i) i ):”;1 1n(1—%)=n;1 (—i+o(i)) Z—%—I-O(l),donc

Mn:\/ﬁ<1—%)T N [ BV

n—-+o0o e

On a ainsi montré en Q17. que E(|Sn|) > M, pour tout n, ou M, ~ C1 v/n avec
n—-+oo

_1
Cy=e 2 ~0,607, alors que I'équivalent obtenu en Q12. est E(|Sn|) ~  Cy+/n, avec

—+
2
Cy=1/= ~0,798.
T



