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PARTIE A. Étude d’une norme matricielle.

1. On a bien N(A) ∈ IR+ pour toute matrice A ∈Mn(C). Soient A = (ai,j) et B = (bi,j).

• max
1≤j≤n

( n∑
i=1

|ai,j |
)

= 0 ⇐⇒ ∀j ∈ [[1, n]]

n∑
i=1

|ai,j | = 0 ⇐⇒ ∀(i, j) ∈ [[1, n]]2 |ai,j | = 0,

donc N(A) = 0 si et seulement si A = 0n (axiome de séparation).

En effet, une somme de réels positifs est nulle si et seulement si chaque terme est nul.

• N(λA) = max
1≤j≤n

( n∑
i=1

|λ| |ai,j |
)

= max
1≤j≤n

(
|λ|

n∑
i=1

|ai,j |
)

= |λ|N(A) , on a donc l’axiome

d’homogénéité.

• Pour tout j ∈ [[1, n]], on a
n∑
i=1

|ai,j + bi,j | ≤
n∑
i=1

(
|ai,j |+ |bi,j |

)
=

n∑
i=1

|ai,j |+
n∑
i=1

|bi,j | ≤ N(A) +N(B) .

Cette majoration étant vraie pour tout j, elle est vraie pour un indice j réalisant le maxi-
mum, on en déduit l’inégalité triangulaire N(A+B) ≤ N(A) +N(B).

2.a. Soit X = (x1, · · · , xn), alors AX = (y1, · · · , yn) où yi =

n∑
j=1

ai,jxj pour tout i. Donc

‖AX‖1 =

n∑
i=1

|yi| =

n∑
i=1

∣∣∣∣ n∑
j=1

ai,jxj

∣∣∣∣ ≤ n∑
i=1

n∑
j=1

|ai,j | |xj | =

n∑
j=1

(
|xj |

n∑
i=1

|ai,j |
)

≤
n∑
j=1

|xj |N(A) = N(A) · ‖X‖1 .

b. On a AEs =

 a1,s

...
an,s

, c’est la s-ième colonne de la matrice A donc, par hypothèse,

‖AEs‖1 =

n∑
i=1

|ai,s| = N(A) .

c. • Pour X ∈ Sn, on a ‖X‖1 = 1 donc ‖AX‖1 ≤ N(A) d’après le a., et le b. montre
l’existence d’un vecteur X de Sn (prendre X = Es) tel que ‖AX‖1 = N(A). On a donc
N(A) = max

X∈Sn
‖AX‖1.

• Pour X ∈ Cn non nul, l’inégalité du a. peut s’écrire
‖AX‖1
‖X‖1

≤ N(A), et ce majorant

N(A) est atteint pour X = Es, on conclut que N(A) = max
X∈C n\{0}

‖AX‖1
‖X‖1

.

3. Posons C = (ci,j) = AB, alors ci,j =

n∑
k=1

ai,kbk,j pour tout couple (i, j) ∈ [[1, n]]2. Alors, pour

tout j ∈ [[1, n]],

n∑
i=1

|ci,j | =

n∑
i=1

∣∣∣∣ n∑
k=1

ai,kbk,j

∣∣∣∣ ≤ n∑
i=1

n∑
k=1

|ai,k| |bk,j |



≤
(=)

n∑
k=1

(
|bk,j |

n∑
i=1

|ai,k|
)
≤ N(A) ·

n∑
k=1

|bk,j | ≤ N(A) ·N(B) .

Cette majoration étant vraie pour tout j, elle est vraie pour un indice j réalisant le maxi-
mum, on a donc prouvé que N(AB) ≤ N(A) ·N(B).

Remarque. On pouvait aussi dire en utilisant la question 2. que, pour tout X ∈ Sn, on a∥∥(AB)X
∥∥

1
=
∥∥A(BX)

∥∥
1
≤ N(A) · ‖BX‖1 ≤ N(A) ·N(B)

et, cette majoration étant vraie pour tout X ∈ Sn, elle est vraie pour un X0 ∈ Sn tel que∥∥(AB)X0

∥∥
1

= N(AB), et conclure ainsi plus simplement que N(AB) ≤ N(A) ·N(B).

PARTIE B. Des calculs préliminaires.

4. Rappelons que, si M = (mi,j) est une matrice carrée d’ordre n, si D = diag(d1, · · · , dn), alors
(DM)i,j = dimi,j alors que (MD)i,j = djmi,j . En d’autres termes, le fait de multiplier M
à gauche (DM) par une matrice diagonale multiplie chaque ligne de M par le coefficient
correspondant de la diagonale, alors que si on multiplie M à droite (MD), ce sont les
colonnes qui sont multipliées par les coefficients diagonaux de D.

Ici, avec di = ti pour tout i ∈ [[1, n]], on obtient bi,j(t) = (DtAD
−1
t )i,j = tiai,jt

−j = ti−jai,j .

5.a. Les ai,j sont ici supposés nuls pour i > j. Lorsque t tend vers +∞, les coefficients de
DtAD

−1
t situés strictement au-dessus de la diagonale (i < j) tendent vers 0 puisqu’alors

lim
t→+∞

ti−j = 0, ceux de la diagonale ne dépendent pas de t. Puisque la limite d’une fonction

à valeurs matricielles s’obtient coefficient par coefficient (et ne dépend pas de la norme
choisie sur Mn(C)), on a ainsi lim

t→+∞
(DtAD

−1
t ) = diag(a1,1, · · · , an,n).

b. Posons∆ = diag(a1,1, · · · , an,n), on a N(∆) = max
1≤i≤n

|ai,i| < 1. Comme lim
t→+∞

(DtAD
−1
t ) = ∆,

on déduit lim
t→+∞

N(DtAD
−1
t ) = N(∆) < 1 (par exemple parce que la norme est 1-lipschitzienne

donc continue), il en résulte que N(DtAD
−1
t ) < 1 pour t > 0 suffisamment grand.

c. Fixons t0 > 0 tel que N(Dt0AD
−1
t0 ) < 1. De la question 3., par une récurrence immédiate, on

déduit que, pour toute matrice M et pour tout k entier naturel, on a N(Mk) ≤
(
N(M)

)k
.

On a donc, pour tout k entier, 0 ≤ N(Dt0A
kD−1

t0 ) = N
(
(Dt0AD

−1
t0 )k

)
≤
(
N(Dt0AD

−1
t0 )
)k

et, comme cette dernière suite (géométrique de raison positive et strictement inférieure à 1)
tend vers 0, on déduit du théorème d’encadrement que lim

k→+∞
N(Dt0A

kD−1
t0 ) = 0.

d. On a donc, dans l’espace vectoriel normé Mn(C): lim
k→+∞

Dt0A
kD−1

t0 = 0n (matrice nulle).

On a prouvé ce résultat en utilisant la norme N mais, comme on est en dimension finie,
on sait que le résultat ne dépend pas du choix de la norme.

L’application ϕ : M 7→ D−1
t0 MDt0 , deMn(C) dans lui-même, est linéaire en dimension finie,

donc continue. On déduit donc que lim
k→+∞

ϕ(Dt0A
kD−1

t0 ) = ϕ(0n), soit lim
k→+∞

Ak = 0n.



PARTIE C. Propriétés du rayon spectral.

6. • Sp(A) = {0, 1}, donc ρ(A) = 1.

• Sp(B) = {0}, donc ρ(B) = 0.

• Sp(C) = {0, 1}, donc ρ(C) = 1.

• Sp(D) = {i
√

2,−i
√

2}, donc ρ(D) =
√

2.

• χE = (X − 1)(X − 4), donc Sp(E) = {1, 4} et ρ(E) = 4.

7.a. On a Sp(µA) =
{
µ λ ; λ ∈ Sp(A)

}
, d’où ρ(µA) = |µ| ρ(A) est vrai.

b. En reprenant les matrices de la question 6., on a ρ(B) = ρ(B>) = 0, alors que la somme

B +B> =

(
0 1
1 0

)
a pour rayon spectral 1. L’inégalité proposée est donc fausse.

c. Avec les notations de 6., on a BB> = A, donc ρ(BB>) = ρ(A) = 1 > ρ(B)ρ(B>) = 0,
l’inégalité proposée est fausse aussi.

d. Deux matrices semblables ont le même spectre, donc le même rayon spectral, on a donc
bien ρ(P−1AP ) = ρ(A).

e. Une matrice et sa transposée ont le même spectre, donc le même rayon spectral, on a donc
bien ρ(A>) = ρ(A).

8. Soit λ une valeur propre de A, et X ∈ Cn un vecteur propre associé, i.e. X 6= 0 et AX = λX.
On a alors ‖AX‖1 = ‖λX‖1 = |λ| ‖X‖1, mais ‖AX‖1 ≤ N(A) · ‖X‖1 d’après 2.a. On a
donc |λ| ‖X‖1 ≤ N(A) · ‖X‖1, et comme ‖X‖1 > 0, on déduit |λ| ≤ N(A). Ceci étant vrai
pour tout λ ∈ Sp(A), on conclut que ρ(A) = max

λ∈Sp(A)
|λ| ≤ N(A).

9. Ceci généralise la question précédente: soit λ une valeur propre de A telle que |λ| = ρ(A),
soit X un vecteur propre associé, alors il est classique que, pour tout k entier naturel, on a
AkX = λkX, donc d’après 2.c.,

N(Ak) = max
Y ∈C n\{0}

‖AkY ‖1
‖Y ‖1

≥ ‖A
kX‖1
‖X‖1

=
‖λkX‖1
‖X‖1

= |λk| = |λ|k =
(
ρ(A)

)k
.

10. • Si lim
k→+∞

Ak = 0n, alors lim
k→+∞

N(Ak) = 0, donc l’inégalité de la question 9. entrâıne

lim
k→+∞

ρ(A)k = 0, ce qui entrâıne ρ(A) < 1.

• Soit A ∈ Mn(C) telle que ρ(A) < 1. On sait que A est trigonalisable: A = PTP−1

avec P ∈ GLn(C) et T ∈ Mn(C) triangulaire supérieure. Les coefficients diagonaux ti,i
de la matrice T sont les valeurs propres de A, qui vérifient par hypothèse |ti,i| < 1 pour
tout i ∈ [[1, n]]. On déduit alors de la question 5. que lim

k→+∞
T k = 0n. Par continuité de

l’application linéaire M 7→ PMP−1, on conclut que Ak = PT kP−1 −→
k→+∞

0n.

11. De 10. et 7.a., on déduit immédiatement que

lim
k→+∞

(
A

α

)k
= 0n ⇐⇒ ρ

(
A

α

)
< 1 ⇐⇒ ρ(A)

α
< 1 ⇐⇒ α > ρ(A) .



12. De 9., on déduit que
(
N(Ak)

)1/k ≥ ρ(A). Mais, si on se donne ε > 0, alors ρ(A) + ε > ρ(A),

la question 11. permet alors d’affirmer que

(
A

ρ(A) + ε

)k
−→
k→+∞

0n, ce qui entrâıne

N(Ak)(
ρ(A) + ε

)k −→
k→+∞

0, il existe alors un rang K ∈ IN∗ à partir duquel
N(Ak)(
ρ(A) + ε

)k ≤ 1.

Pour tout k ≥ K, on a alors ρ(A) ≤
(
N(Ak)

)1/k ≤ ρ(A) + ε. On a ainsi prouvé que

lim
k→+∞

(
N(Ak)

)1/k
= ρ(A).

13. Prouvons d’abord que N(Ak) ≤ N(Bk) pour tout k.

Posons Ak = (a
(k)
i,j )1≤i,j≤n et Bk = (b

(k)
i,j )1≤i,j≤n, montrons par récurrence la propriété

(Pk) : ∀(i, j) ∈ [[1, n]]2
∣∣a(k)
i,j

∣∣ ≤ b(k)
i,j .

• (P0) est vrai car A0 = B0 = In donc a
(0)
i,j = b

(0)
i,j = δi,j ;

• (P1) est vrai aussi car b
(1)
i,j = bi,j =

∣∣ai,j∣∣ =
∣∣a(1)
i,j

∣∣ ;

• Supposons (Pk) vrai pour k ∈ IN donné. Alors, pour tout (i, j) ∈ [[1, n]]2, on a∣∣∣a(k+1)
i,j

∣∣∣ =

∣∣∣∣ n∑
l=1

a
(k)
i,l al,j

∣∣∣∣ ≤ n∑
l=1

∣∣a(k)
i,l

∣∣ ∣∣al,j∣∣ ≤ n∑
l=1

b
(k)
i,l bl,j = b

(k+1)
i,j ,

ce qui prouve (Pk+1).

On en déduit facilement que N(Ak) ≤ N(Bk), puis que
(
N(Ak)

)1/k ≤ (N(Bk)
)1/k

pour
tout k ∈ IN∗ et, par passage à la limite, que ρ(A) ≤ ρ(B).

PROBLÈME 2

PARTIE A. Majoration de l’espérance de |Sn|.

1. On a X1(Ω) = {−1, 1} avec P (X1 = −1) = P (X1 = 1) =
1

2
, donc

E(X1) =
1

2
× (−1) +

1

2
× 1 = 0 .

De plus, X2
1 = 1 (variable aléatoire constante) donc E(X2

1 ) = 1, puis par la formule de

Koenig-Huygens, V(X1) = E(X2
1 )−

(
E(X1)

)2
= 1.

2. Les variables Xi ont toutes la même loi. Par linéarité de l’espérance, E(Sn) =

n∑
i=1

E(Xi) = 0.

Les variables Xi étant indépendantes, donc décorrélées, V(Sn) =

n∑
i=1

V(Xi) = n.

3. Pour tout i, X2
i = 1 (variable aléatoire constante).

Si i 6= j, comme Xi et Xj prennent leurs valeurs dans {−1, 1}, il en est de même du produit
XiXj . Puis {XiXj = 1} =

(
{Xi = 1} ∩ {Xj = 1}

)
t
(
{Xi = −1} ∩ {Xj = −1}

)
, donc

par indépendance de Xi et Xj ,



P (XiXj = 1) = P (Xi = 1)P (Xj = 1)+P (Xi = −1)P (Xj = −1) =
1

2
×1

2
+

1

2
×1

2
=

1

2
= P (XiXj = −1) .

Finalement, pour i 6= j, la variable XiXj a la même loi que Xi.

4. On a S2
n =

( n∑
i=1

Xi

)2

=

n∑
i=1

X2
i +

∑
i6=j

XiXj donc, par linéarité de l’espérance,

E(S2
n) =

n∑
i=1

E(X2
i ) +

∑
i 6=j

E(XiXj) = n× 1 + n(n− 1)× 0 = n .

5. La formule de Koenig-Huygens, appliquée à la variable |Sn|, donne

V
(
|Sn|

)
= E(S2

n)− E
(
|Sn|

)2
= n− E

(
|Sn|

)2 ≥ 0

puisqu’une variance est toujours positive. Ainsi, E
(
|Sn|

)
≤
√
n.

PARTIE B. Obtention d’un équivalent.

6. Comme la variable |Sn| prend ses valeurs dans [[0, n]], ce n’est rien d’autre que la définition de
l’espérance

E
(
|Sn|

)
=

∑
x∈|Sn|(Ω)

x P
(
|Sn| = x

)
=

n∑
k=0

k P
(
|Sn| = k

)
=

n∑
k=1

k P
(
|Sn| = k

)
.

7. Remarquons d’abord que, si j est un entier relatif, on ne peut avoir Sn+1 = j que si Sn vaut
j− 1 ou j+ 1. Donc, pour n ∈ IN∗ et j entier relatif, par la formule des probabilités totales,

P (Sn+1 = j) = P (Sn+1 = j | Sn = j − 1) P (Sn = j − 1) + P (Sn+1 = j | Sn = j + 1) P (Sn = j + 1)

=
1

2
×
(
P
(
Sn = j − 1

)
+ P

(
Sn = j + 1

))
puisque les deux probabilités conditionnelles intervenant dans ce calcul valent

1

2
.

Si k ≥ 2, on a alors

P (Sn+1 = k) =
1

2
×
(
P
(
Sn = k − 1

)
+ P

(
Sn = k + 1

))
et

P (Sn+1 = −k) =
1

2
×
(
P
(
Sn = −k + 1

)
+ P

(
Sn = −k − 1

))
.

Comme, pour j ∈ IN∗ et n ∈ IN∗, l’événement
{
|Sn| = j

}
est la réunion disjointe des

événements {Sn = j} et {Sn = −j}, en ajoutant les deux égalités ci-dessus, on obtient la
relation demandée.

8. On a

P (Sn+1 = 1) =
1

2

(
P (Sn = 0)+P (Sn = 2)

)
et P (Sn+1 = −1) =

1

2

(
P (Sn = 0)+P (Sn = −2)

)
.

En ajoutant les deux relations, on obtient

P
(
|Sn+1| = 1

)
= P (Sn = 0) +

1

2
P
(
|Sn| = 2

)
.



9. Calculons!

E
(
|Sn+1|

)
=

n+1∑
k=1

k P
(
|Sn+1| = k

)
=

[
P (Sn = 0) +

1

2
P
(
|Sn| = 2

)]
+

1

2

n+1∑
k=2

k

[
P
(
|Sn| = k − 1

)
+ P

(
|Sn| = k + 1

)]

= P (Sn = 0) +
1

2
P
(
|Sn| = 2

)
+

1

2

n∑
k=1

(k + 1) P
(
|Sn| = k

)
+

1

2

n+2∑
k=3

(k − 1) P
(
|Sn| = k

)
= P (Sn = 0) +

1

2
P
(
|Sn| = 2

)
+ P

(
|Sn| = 1

)
+

3

2
P
(
|Sn| = 2

)
+

n∑
k=3

k P
(
|Sn| = k

)
= P (Sn = 0) +

n∑
k=1

k P
(
|Sn| = k

)
= P (Sn = 0) + E

(
|Sn|

)
.

On a utilisé le fait que P
(
|Sn| = n+ 1

)
= P

(
|Sn| = n+ 2

)
= 0.

10. Sn est une somme de n entiers impairs (1 ou −1), donc Sn est de la parité de l’entier n.
Ainsi, P (S2p+1 = 0) = 0.

L’événement {S2p = 0} est réalisé si et seulement si, lors des 2p premiers lancers, le joueur
obtient exactement p fois pile (“succès”), et donc exactement p fois face (“échecs”). On
reconnâıt un schéma de Bernoulli, la loi du nombre de succès lors d’une répétition de 2p

épreuves de Bernoulli indépendantes est binomiale B
(

2p,
1

2

)
puisqu’ici la probabilité de

succès à chaque épreuve est
1

2
. Donc P (S2p = 0) =

(
2p
p

) (1

2

)p (1

2

)p
=

1

4p

(
2p
p

)
.

11. Pour p = 0, on a |S1| = |X1| = 1 (variable constante), donc E
(
|S1|

)
= 1, ce qui correspond

bien à la formule proposée pour p = 0.

Soit p ∈ IN∗. Supposons la relation vraie au rang p− 1, i.e. E
(
|S2p−1|

)
=

p

4p−1

(
2p− 1
p− 1

)
.

Alors, en utilisant les questions 9. et 10.,

E
(
|S2p+1|

)
= E

(
|S2p−1|

)
+ P (S2p = 0) + P (S2p−1 = 0)

=
p

4p−1

(
2p− 1
p− 1

)
+

1

4p

(
2p
p

)
=

p

4p−1

(2p− 1)!

p! (p− 1)!
+

1

4p
(2p)!

(p!)2

=
(p+ 1)× (2p+ 1)!

4p p! (p+ 1)!
=

p+ 1

4p

(
2p+ 1
p

)
après quelques réarrangements.

12. Il est plus commode d’écrire E
(
|S2p+1|

)
=

2p+ 1

4p
(2p)!

(p!)2
. Par la formule de Stirling, on

obtient alors



E
(
|S2p+1|

)
∼

p→+∞

2p

4p

2
√
π p
(

2p
e

)2p

2π p
(
p
e

)2p = 2

√
p

π
,

ce que l’on peut écrire aussi E
(
|S2p+1|

)
∼

p→+∞

√
2(2p+ 1)

π
. D’autre part,

E
(
|S2p|

)
= E

(
|S2p−1|

)
∼

p→+∞

√
2(2p− 1)

π
∼

p→+∞

√
2(2p)

π

En réunissant les deux cas (n pair ou impair), on conclut que E
(
|Sn|

)
∼

n→+∞

√
2n

π
.

PARTIE C. Minoration.

13. Par les formules d’addition de la trigonométrie, cos(T +U) = cos(T ) cos(U)− sin(T ) sin(U).
Les variables T et U étant indépendantes, il en est de même des variables cos(T ) et cos(U),
ainsi que des variables sin(T ) et sin(U). En utilisant la linéarité de l’espérance et le fait que,
si X et Y sont indépendantes alors E(XY ) = E(X) E(Y ), on obtient

E
(

cos(T + U)
)

= E
(

cos(T )
)

E
(

cos(U)
)
− E

(
sin(T )

)
E
(

sin(U)
)
.

Enfin, si U et −U ont la même loi, il en est de même de sin(U) et de sin(−U) = − sin(U),
donc E

(
sin(U)

)
= E

(
− sin(U)

)
= −E

(
sin(U)

)
, donc E

(
sin(U)

)
= 0. Au final,

E
(

cos(T + U)
)

= E
(

cos(T )
)

E
(

cos(U)
)
.

14. Comme |S1| = [X1| = 1 (variable aléatoire constante) et que la fonction cosinus est paire,
cos(tS1) = cos

(
t |S1|

)
= cos(t), c’est aussi une variable aléatoire constante, donc

E
(

cos(tS1)
)

= cos(t), ce qui initialise une récurrence.

Soit n ∈ IN∗, supposons E
(

cos(tSn)
)

= cosn(t). Alors tSn+1 = t(Sn+Xn+1) = tSn+tXn+1

et, les variables X1, · · ·, Xn, Xn+1 étant indépendantes, il résulte du lemme des coalitions
que les variables tSn = t(X1 + · · · + Xn) et tXn+1 sont indépendantes. Comme tXn+1 et
−tXn+1 ont la même loi, et de même pour tSn et −tSn, on peut appliquer la question 13.,
ce qui donne

E
(

cos(t Sn+1)
)

= E
(

cos(tSn + tXn+1)
)

= E
(

cos(t Sn)
)

E
(

cos(t Xn+1)
)

= cosn(t) · cos(t) = cosn+1(t) ,

puisque Xn+1 a la même loi que X1 = S1, donc E
(

cos(t Xn+1)
)

= E
(

cos(tS1)
)

= cos(t).
La récurrence est donc achevée.

15. Pour t réel, posons f(t) = E
(

cos(tSn)
)
, soit f(t) =

n∑
k=−n

P (Sn = k) cos(kt) par la formule

de transfert. On a aussi f(t) = cosn(t). La fonction f est dérivable avec

f ′(t) = −n cosn−1(t) sin(t) = −
n∑

k=−n

k P (Sn = k) sin(kt) = −E
(
Sn sin(tSn)

)
.

Comme Sn sin(tSn) ≤
∣∣Sn sin(tSn)

∣∣ ≤ |Sn|, la croissance de l’espérance donne

E
(
|Sn|

)
≥ E

(
Sn sin(tSn)

)
= n cosn−1(t) sin(t) .



16. Posons g(t) = n cosn−1(t) sin(t) = −f ′(t). Alors g′(t) = n cosn−2(t)
(

cos2(t)−(n−1) sin2(t)
)
.

Dans l’intervalle ouvert
]
0,
π

2

[
, la dérivée g′ s’annule en l’unique point θn tel que

cos2(θn) − (n − 1) sin2(θn) = 0, i.e. tan2(θn) =
1

n− 1
, donc pour θn = Arctan

( 1√
n− 1

)
.

Le lecteur s’assurera que g est croissante sur [0, θn], décroissante sur
[
θn,

π

2

]
, donc le

maximum de g sur I =
[
0,
π

2

]
est g(θn) = n

(
cos(θn)

)n−1
sin(θn). En utilisant la

relation de trigonométrie ∀x ∈ IR cos
(

Arctan(x)
)

=
1√

1 + x2
(que le lecteur se fera

un plaisir de redémontrer), on obtient cos(θn) =

√
1− 1

n
, puis sin(θn) =

1√
n

, et enfin

max
I
g = max

t∈[0,π2 ]

(
n cosn−1(t) sin(t)

)
= g(θn) =

√
n
(

1− 1

n

)n−1
2

.

17. On a E
(
|Sn|

)
≥ g(t) pour tout t ∈ I =

[
0,
π

2

]
, donc

E
(
|Sn|

)
≥ max

t∈I
g(t) =

√
n
(

1− 1

n

)n−1
2

.

18. On a ln

((
1− 1

n

)n−1
2
)

=
n− 1

2
ln
(

1− 1

n

)
=
n− 1

2

(
− 1

n
+ o
( 1

n

))
= −1

2
+ o(1), donc

Mn =
√
n
(

1− 1

n

)n−1
2

∼
n→+∞

√
n

e
= e
− 1

2 √n.

On a ainsi montré en Q17. que E
(
|Sn|

)
≥ Mn pour tout n, où Mn ∼

n→+∞
C1

√
n avec

C1 = e
− 1

2 ' 0, 607, alors que l’équivalent obtenu en Q12. est E
(
|Sn|

)
∼

n→+∞
C2

√
n, avec

C2 =

√
2

π
' 0, 798.


