
EXERCICES sur le CALCUL INTÉGRAL PSI2 2025-2026

Convergence dominée et intégration terme à terme.

1. Pour n ∈ IN∗, on définit fn : x 7→ x

n2
e
− xn .

a. Montrer que chaque fonction fn est intégrable sur IR+.

b. Calculer

∫ +∞

0

fn(x) dx.

c. Montrer que la suite (fn) converge uniformément sur IR+ vers une fonction intégrable f .

d. Quelle remarque peut-on faire ?

2. Soit l’intégrale J =

∫ +∞

1

e−t

t
dt (que l’on ne cherchera pas à calculer).

Donner un équivalent simple de In =

∫ +∞

1

e−x
n

dx lorsque n tend vers +∞, faisant

intervenir l’intégrale J .

3. Soit f : [0, 1]→ IR continue. Déterminer lim
n→+∞

∫ 1

0

f(tn) dt.

4. Soit f : [0, 1] → IR continue, avec f(1) 6= 0. Trouver un équivalent de In =

∫ 1

0

tn f(t) dt.

On pourra utiliser le changement de variable u = tn+1.

5. Pour n entier naturel, on pose In =

∫ π
2

0

cosn(x) dx.

a. Montrer que la suite (In) tend vers zéro en décroissant.

b. Montrer la convergence de la série de terme général (−1)nIn et calculer sa somme.

6. Soient (an) et (bn) deux suites réelles bornées. Soient c et d deux réels tels que c < d. On
suppose que

∀x ∈ [c, d] lim
n→+∞

(
an cos(nx) + bn sin(nx)

)
= 0 .

a. Montrer que, pour tout entier n, il existe un réel ϕn tel que

an cos(nx) + bn sin(nx) =
√
a2n + b2n cos(nx+ ϕn) .

b. Calculer In =

∫ d

c

(
an cos(nx) + bn sin(nx)

)2
dx.

c. Montrer que, à partir d’un certain rang, on a In ≥
(a2n + b2n)(d− c)

4
.

d. Montrer que les suites (an) et (bn) tendent vers 0.

7. On admet que

∫ +∞

0

e−u
2

du =

√
π

2
. Calculer J(x) =

∫ +∞

0

e−t
2

cos(xt) dt pour x réel.

8. On donne

+∞∑
n=1

1

n2
=
π2

6
. Calculer I =

∫ +∞

0

ln(1 + e−t) dt et J =

∫ +∞

0

ln(1− e−t) dt.



9.a. Sachant que

∫ +∞

0

e−u
2

du =

√
π

2
, calculer In =

∫ +∞

0

√
t e−nt dt pour n entier naturel

non nul.

b. Prouver l’égalité

∫ +∞

0

√
t

et − 1
dt =

√
π

2

+∞∑
n=1

1

n
√
n

.

10*. Soit f : [0, 1] → IR+ continue. Comparer les natures de l’intégrale généralisée

J =

∫ 1

0

f(t)

1− t
dt et de la série

∑
n≥0

∫ 1

0

tn f(t) dt.

11. Prouver les égalités

∫ 1

0

dx

xx
=

+∞∑
n=1

1

nn
et

∫ 1

0

xx dx =

+∞∑
n=1

(−1)n−1

nn
.

12. Pour a > 0, montrer que

∫ 1

0

ta−1

1 + t
dt =

+∞∑
n=0

(−1)n

n+ a
.

Intégrales dépendant d’un paramètre.

13. Soit f la fonction définie sur IR∗+ par f(x) =

∫ +∞

1

dt

tx (1 + t)
.

a. Montrer que f est définie et monotone sur IR∗+.

b. Trouver une relation entre f(x) et f(x + 1). En déduire un équivalent de f(x) lorsque
x→ +∞, et aussi lorsque x→ 0+.

14. Pour x ≥ 0, calculer g(x) =

∫ π
2

0

Arctan(x · tan t)

tan t
dt.

15. Soit g(x) =

∫ +∞

0

Arctan(xt)

1 + t2
dt.

a. Montrer que g est continue sur IR, de classe C1 sur IR∗ et expliciter g′(x).

b. Calculer directement g(1) ; en déduire la valeur de I =

∫ 1

0

ln t

t2 − 1
dt.

16.a. Soit la fonction g : x 7→
∫ +∞

0

e−xt
2

1 + t2
dt. Montrer que g est continue sur IR+, de classe C1

sur IR∗+, et écrire une équation différentielle du premier ordre vérifiée par g sur IR∗+.

b. En déduire la valeur de l’intégrale de Gauss G =

∫ +∞

0

e−u
2

du.

17. Pour x > −1, on pose g(x) =

∫ 1

0

t− 1

ln t
tx dt.

a. Montrer que g est bien définie et de classe C1 sur ]− 1,+∞[.

b. Calculer g′(x). En déduire g(x).



18. On pose g(x) =
1

π

∫ π

0

cos(x sin t) dt.

a. Montrer que g est définie et de classe C2 sur IR.

b. Déterminer une équation différentielle linéaire d’ordre deux dont g est solution.

c. Montrer que g est développable en série entière sur IR.

d. À l’aide de l’équation différentielle obtenue en b., obtenir ce développement.

19. Soit f : [0, 1] → IR∗+ une fonction continue. Montrer que ϕ : x 7→
∫ 1

0

(
f(t)

)x
dt est de

classe C1 sur IR. Calculer ϕ(0) et ϕ′(0). En déduire lim
x→0

(
ϕ(x)

) 1x
.

20. On pose f(x) =

∫ π
2

0

(sin t)x dt.

a. Déterminer l’ensemble de définition de f .

b. Montrer que f est de classe C1 sur son ensemble de définition, et déterminer ses variations.

c. Pour x ∈ Df , on pose g(x) = (x+ 1) f(x) f(x+ 1). Montrer que ∀x ∈ Df g(x+ 1) = g(x).

d*. Montrer que g est constante sur Df .

21. On pose f(x) =

∫ +∞

0

e−t

x+ t
dt.

a. Ensemble de définition de f .

b. Montrer que f est de classe C∞ sur Df .

c. Donner un équivalent de f(x) lorsque x tend vers +∞.

d. Donner un équivalent de f(x) lorsque x tend vers 0+.

22. Soient u, v : I → IR continues, telles que ∀x ∈ I u(x) < v(x). Soit f : I× IR→ IR continue.

Montrer que l’application g : x 7→
∫ v(x)

u(x)

f(x, t) dt est continue sur I. On pourra poser

t = u(x) + s
(
v(x)− u(x)

)
, où s désigne une nouvelle variable.

Transformées de Laplace et de Fourier. Intégrales eulériennes

Si f : IR→ C est une fonction continue par morceaux et intégrable sur IR, on note Tf ou
encore f̂ la fonction définie par

∀x ∈ IR Tf(x) = f̂(x) =

∫ +∞

−∞
f(t) e−ixt dt .

La fonction f̂ = Tf est la transformée de Fourier de f . L’application T : f 7→ Tf est
la transformation de Fourier.

23. On admet

∫ +∞

−∞
e−x

2

dx =
√
π. Montrer que l’application f : α 7→ f(α) =

∫ +∞

−∞
e−x

2

e−iαxdx

est définie et dérivable sur IR. Trouver une équation différentielle vérifiée par f , en déduire
son expression.



24.a. Si f : IR→ C est continue par morceaux et intégrable sur IR, montrer que sa transformée
de Fourier f̂ est définie sur IR, et que c’est une fonction continue et bornée sur IR.

b. Soit la fonction “créneau” ϕ définie par ϕ(t) = 1 si t ∈ [−1, 1] et ϕ(t) = 0 sinon. Calculer
sa transformée de Fourier x 7→ ϕ̂(x).

c. Soit a un réel strictement positif, soit la fonction f définie par ∀t ∈ IR f(t) = e−a|t|.

Montrer que f est intégrable sur IR et expliciter sa transformée de Fourier f̂ .

d. On suppose dans cette question que f : IR→ C est de classe C1 et intégrable sur IR, et que
sa dérivée f ′ est intégrable sur IR. Montrer que lim

t→−∞
f(t) = lim

t→+∞
f(t) = 0, puis prouver

la relation ∀x ∈ IR f̂ ′(x) = ix f̂(x)

Si f : IR+ → C est une fonction continue par morceaux, la transformée de Laplace de
f est la fonction L[f ] définie par

L[f ](p) =

∫ +∞

0

e−pt f(t) dt

pour tout réel p tel que cette intégrale est convergente.

25. Soit f : IR+ → C une fonction continue. On suppose qu’il existe un réel p0 tel que la fonction
t 7→ e−p0t f(t) soit intégrable sur IR+.

a. Montrer que la transformée de Laplace L[f ] est définie et continue sur l’intervalle [p0,+∞[.

b. Montrer que la fonction L[f ] est de classe C∞ sur l’intervalle ouvert ]p0,+∞[ et que, sur

cet intervalle, on a, pour tout n entier naturel, la relation
(
L[f ]

)(n)
= (−1)n L[gn], où gn

est la fonction définie par gn(t) = tn f(t).

26. Théorème de la valeur finale
Soit f : IR+ → C, continue par morceaux, admettant une limite finie en +∞ : lim

t→+∞
f(t) = l.

Montrer que la transformée L[f ] est définie (au moins) sur IR∗+ et que

lim
p→0+

p · L[f ](p) = l = lim
t→+∞

f(t) .

On pourra poser x = pt.

Exercices avec Python

27. Soit g :]0, 1]→ IR définie par g(x) = xx.

a. Prolonger g par continuité en 0.

b. Représenter graphiquement g. Justifier l’allure de g au voisinage de 0. Déterminer les coor-
données du minimum.

c. Donner une valeur approchée de I =

∫ 1

0

g(x) dx.

d. On admettra que

∫ 1

0

(
x lnx)n dx =

(−1)n n!

(n+ 1)n+1
pour tout n entier naturel. Montrer que

I =

+∞∑
n=1

(−1)n−1

nn
.

e. Écrire une fonction calcul(e) retournant la valeur de l’intégrale I avec une précision e

passée en argument.


