EXERCICES de PROBABILITES sur un UNIVERS FINI PSI2 2025-2026

Espaces probabilisés.

1. Déterminer une distribution de probabilités (p,,)weq sur 'ensemble Q = [1,n], telle que la

probabilité de 1’événement [1, k] soit proportionnelle & k2.

Une distribution de probabilités sur 2 est une suite finie (p;)1<;<, de réels positifs telle

n
que Zpi = 1. La probabilité associée sur Q) est alors définie par P(I) = Z p; pour toute

i=1 il
partie I de €. Il doit, de plus, exister un réel « strictement positif tel que P([[l7 k]]) = ak?
k
1
pour tout k, soit Zpi = ak?. Pour k = n, on voit que nécessairement o = — - Puis, pour
n
i=1

tout k € [1,n],
b= PR = P(ILH) = P(LE—11) = 5 (8 = (5= 1)) = 2t

Réciproquement, le lecteur est invité a vérifier que cette suite de nombres (pi)i<i<n
convient.

2. En Palombie, lorsqu’il fait soleil un jour, il fait soleil le lendemain une fois sur 10 et, lorsqu’il

a.
b.

pleut un jour, il pleut le lendemain 6 fois sur 10.
Il a fait soleil un lundi. Quelle est la probabilité qu’il fasse soleil le jeudi qui suit ?

Sachant qu’il a fait soleil le jour J, on note p,, la probabilité qu’il fasse soleil le jour J + n.
Calculer p,, et lirf Prn. On pourra considérer pour tout n I’événement F, = “il fait soleil
n—-+0oo

P(Ey)
le jour J +n” et travailler sur le vecteur-colonne X,, = I
P(En)

. et b. Disons que le lundi est le jour 0. En notant F,, I’événement “il fait soleil le jour n”,

1 = —_ 2
on a les relations P(Ey,4+1|En) = 0 et P(E,q1|Fn) = g, donc P(En4+1|Ey) = E Pour tout

entier naturel n, (E,,, E,) est un systéme complet d’événements. La formule des probabilités
totales donne donc

P(En+1) = P(En+1|En) P(En) +P(En+1|Fn) P(Fn)
1 2 _
= —P(E,)+-P(E
1o P(Bn) + = P(Ey)
— L PE)+ 2 (1-PE))
10 5
2 3
— o En
=~ 10 D(En)
Ainsi, ¢'il fait soleil le jour 0, la suite (p,, ), ot p, = P(F,,) est la probabilité d’ensoleillement,
2 3
vérifie pg = 1 et la relation de récurrence p,41 = T Pn. On reconnait une suite
. " L . . 2 3 . 4
arithmético-géométrique. L’équation [ = - — 1—01 admet pour solution [ = 3 et, en posant
4 ‘. . 3 . 3\" 9 3\"
rn = pp — —, on vérifie la relation r, 11 = ——r,, dour, = (— —) rg = — X (— —) ,
13 10 10 13 10
is = +4—9><< 3)n+4 i répond a 1 stion b. sans utiliser d
PUiS pn=7n+ 13 =13 10 73 ¢ qui répond & la question b. sans utiliser de
calcul matriciel. On en déduit aussi  lim p, = — ~0,308.
n—-+oo 13

3 )3 4 289
13 1000

Pour répondre a la question a., on évalue pour n = 3: p3 = 3 X (f 0 = =



0,289. On peut retrouver ce résultat en faisant un arbre de probabilité, ils poussent bien
en Palombie.

Palons peu, palombien! Passons au calcul matriciell On a obtenu plus haut la relation

1 2 - —
P(E,+1) = 0 P(E,) + R P(E,), on obtient de méme P(F,4+1) = % P(E,) + g P(E,).
Les matlricesécolonnes X, vérifient alors la relation de récurrence X,+1 = AX,, avec
10 5 0,1 0,4
A= 105 = ( ) Donc X,, = A" X, avec Xy = <1) Et on diagonalise A,
9 3 0,9 0,6 0
10 5 3
pardi! Je n’écris pas les détails de calcul, on obtient A = PDP~! avec D = diag ( ~ 10’ 1)
4
et P= <_1 9 ) Apres un peu de calcul, on a
b DL (LB A A By
A" — pprp-l — 13 10 13 13 10 13
13 10 13 13 10 13
ce qui permet de retrouver les résultats déja obtenus ci-dessus.
3. Une succession d’individus Ay, ---, A, se transmet une information binaire du type “oui”

ou “non”. Chaque individu Ay transmet l'information qu’il a regue avec la probabilité p a
Iindividu Ag41 ou la transforme en son contraire avec la probabilité ¢ = 1 — p. Chaque
individu se comporte indépendamment des autres. Calculer la probabilité m, pour que
I'information recue par A, soit identique a celle émise par A;. Quelle est la limite de m,
quand n tend vers 'infini 7

Pour k € [1,n], notons By 'événement: “I'individu Ay a regu la bonne information (celle
émise par A1)”. On a alors P(By) = 1 et, pour k > 1, par la formule des probabilités totales:
Tip1 = P(Bry1) = P(Biy1|Bi) P(Bi) 4+ P(By11|Bi) P(By)

= pP(By)+(1-p) (1 - P(Br)

= p-1)m+1-p).
On reconnait une suite arithmético-géométrique. L’équation I = (2p — 1)l + (1 — p)
a pour solution [ = 1, donc la suite (vg) définie par vy, = P(By) — = est géométrique,
de raison 2p — 1, ce que l'improbable lecteur se fera un plaisir de vérifier par le calcul.
Ainsi, v, = (2p — 1) 1oy = %(2]) — 1)1 Puis m, = P(B,) = 1 (1 + (2p— 1)"_1).

2
1
SionalO<p<l,alors —1<2p—1<let lim w,=—.
n—-+oo 2
4. Soient A, ---, A, des événements mutuellement indépendants. Montrer que la probabilité

n
pour qu’aucun d’eux ne soit réalisée est majorée par M = exp ( — Z P(Ak)).
k=1



On étudie P( m Ak>. Par indépendance des Ay, on a
k=1

P(DAk) I PG =T (- Pan) -

Or, pour z € [0,1],ona 0<1—z<e * dou

n

P( - Ak> < ﬁe*P(A’“) :exp<— ZP(Ak)) =M.
k=1 k=1

k=1

5. Soient m, N, k des entiers naturels au moins égaux a 2, avec k < N. Une urne contient
mN boules dont N sont blanches. On tire k boules dans cette urne, et on s’intéresse a la
1
probabilité de tirer j boules blanches (0 < j < k). On pourra poser p = —, le nombre
m
p € [0,1] est donc la proportion initiale de boules blanches.
a. Quelle est cette probabilité si le tirage est avec remise 7 On constate qu’elle ne dépend pas
de N, mais qu’elle ne dépend que de la proportion p de boules blanches dans I'urne.
b. Quelle est cette probabilité si le tirage est sans remise 7 Elle dépend alors de N.
c. Si N devient tres grand devant le nombre k de boules tirées, on a Uintuition que le fait

que le tirage s’effectue avec ou sans remise ne va pas changer grand-chose. Le vérifier
mathématiquement.

a. A chaque tirage, la probabilité de “succes”, c’est-a-dire de tirer une boule blanche, est p,
et il y a k tirages indépendants, le nombre de boules blanches tirées suit donc une loi
binomiale de parametres k et p. La probabilité de tirer j boules blanches exactement est

donc (f) P (1 —p)ki.
b. Ici, les tirages possibles sont les parties a k éléments de ’ensemble [1, mN] de toutes les
boules de l'urne, ces tirages sont au nombre de <mkN

favorables sont ceux constitués d’une partie a j éléments de I’ensemble des N boules blanches
et d’'une partie & k — j éléments de I'ensemble des (m — 1) N boules non blanches. Ils sont

au nombre de <];]> ((mk_lj?N >, d’ou la probabilité

LG )
(%)

avec équiprobabilité. Les tirages




c. Il s’agit de vérifier que lim 7wy = <k> (1 — p)k~J. Pour cela, notons que
N—+oco J

N N N(N=1)--(N—j+1) NI
N =) 7! NS T

J

en effet, j étant fixé, le coefficient binomial (g) est une fonction polynomiale de la variable
(m —1)N (m — 1)F=7 Nk=J

! k—j N—+o00 (k—j)!

k Nlc

et <mkN ) N mT Par opérations (licites!) sur les équivalents, on déduit

— 400 . i . i
NI (m—1)k=3 Nk=7 !
N N Sreo ! (k—7)! mk Nk

NI
N, de terme dominant T On obtient de méme <

et, comme on constate que cette expression apres simplifications ne dépend en fait pas de
N, on peut écrire

-1

1 Nk
lm oy = (m =) _ (k> M: (k> P 1-prT,

N—+o00 JUk—g)! mkF

ce que l'on souhaitait obtenir.

6*. On s’intéresse & la survie d’une espece pour laquelle un individu admet trois descendants avec

1 3
la probabilité —, un ou deux descendants avec la probabilité 3’ et enfin aucun descendant

avec la probabilité 1 On suppose qu’a linstant initial, la population est composée d’un
seul individu. Par conséquent, I’espece s’éteindra au bout de la premiere génération avec
une probabilité de x; = 3

a. Quelle est la probabilité x5 pour que I'espece ait disparu a l’issue de la deuxieme génération ?

b. Pour tout n entier naturel non nul, on note z, la probabilité que I'espece ait disparu a
lissue de la n-éme génération. Montrer que la suite (x,,) vérifie la relation

Vn € IN* Tpy1 = = (22 + 322 + 3z, + 1) )

g (
c. Déterminer lim x,.
n—-+o0o

a. Notons X}, le nombre d’individus de la génération k. Ainsi, Xg =1 et 1 = P(X; =0) = é
On a alors
o = P(X3=0)
= PX;=0+P{X1=1} n {Xp=0}) + P({X1 =2} N {X,=0}) + P({X1 =3} N {X,=0})

| =
| W

Mais P({X1 =1} N {X2=0}) = P(X, =0|X; =1) P(X; =1) =



1\2 3
P{X1=2} N {X=0}) = P(Xs = 0]X; = 2) P(X; =2) = (g) xS
13 1
P({X; =3} n {XQ:O}):P(X2—0|X1—3) P(X, =3) = (8) x 3
. 1.3 1 3 41 720
Fmalement,ngngg §+§ (7) () = 2006 = 0,178.

b. Ona P(X,y; =0) = P(X; =0)+ ZP({Xl =k} N {Xny1 = 0}) et, pour tout
ke {1,2,3), =
P{X1 =k} N {Xpi1 = 0}) = P(Xps1 = 0|X, = k)P(X) = k) = P(X,, = 0|Xp = k)P(Xy = k) .

Enfin, avec un peu de bon sens, on a P(X, = 0|Xo = k) = (P(X,, = 0|X, = 1))k =gk,
On obtient donc

1 3 1
Tpy1 = P(Xn+1 = 0) -+ -z, + 2?4+ fxfl ,

ce qui est la relation demandée.

1 1)3
c. Soit f:x— 3 (2® +32° + 32 +1) = % La fonction f est croissante sur [0, 1] avec
1
f(0) = = =0,125, f(1) = 1, donc intervalle [0, 1] est stable par f. L’équation f(z) = z

8
admet deux solutions dans [0,1], qui sont le nombre 1 et le nombre o = v/5 — 2 ~ 0, 236.

1
En fait, Uintervalle J = [0, o] est stable par f puisque son image est [g,a} c J. Comme

1
T =g € J,on ax, € J pour tout n € IN*. Sur J, on a f(z) > z (il est facile d’étudier le

signe de f(x) — x apres avoir factorisé par x — 1), donc la suite (z,,) est croissante. Elle est
majorée par «, donc elle converge. Le seul point fixe de f adhérent a l'intervalle J est «,

donc lim z, =a=+V5-2.
n—-4o0o

7. Un groupe de n chasseurs tire simultanément et indépendamment sur n canards. Chaque
chasseur ne tire qu’'une seule fois et atteint toujours sa cible.

a. Quelle est la probabilité p, qu’au moins un canard survive ? Déterminer lim p,.

n—-+oo
b. L’un des canards s’appelle Saturnin. Quelle est la probablité ¢, qu’il survive ? Déterminer
lim q,.
n—-+oo

a. On peut modéliser le résultat du tir par une application de I’ensemble H,, des n chasseurs
vers I’ensemble C,, des n canards, puisque chaque chasseur atteint un et un seul canard.
Donc |Q2] = n". Au moins un canard survit si et seulement si cette application n’est pas

surjective, i.e. si et seulement si elle n’est pas bijective. Or le nombre d’applications bijectives
n!

de H,, vers C;, est n!. La probabilité qu’au moins un canard survive est donc p, =1 — —

n

)

et lim p, =1 puisque n! = o(n™) lorsque n tend vers +oo.
n——+00



b. Saturnin s’en tire si et seulement si 'application correspondant au tir est a valeurs dans
I'ensemble C,,\ {Saturnin}, de cardinal n—1. Comme il y a (n—1)" applications de l’ensemble
H,, de cardinal n vers ’ensemble C,, \ {Saturnin}, de cardinal n — 1, la probabilité de survie
— 1" 1\"n

u = (1 — 7) .Alors lim ¢, =e L.

n

de Saturnin est g, =
nn n—+o0o

Variables aléatoires.

8. Deux variables aléatoires indépendantes X et Y suivent des lois binomiales de tailles n et m
et de méme parametre p. Quelle est la loi suivie par la variable aléatoire Z = X +Y 7

On a clairement X (Q) = [1,n], Y(Q) = [1,m] et Z(Q) = [1,n + m]. Pour k € [1,n + m],
on a k

{(Z=k=]J{X=n{y=k-j}).

J=0

k k

Donec P(Z=k)=>» P({X=j} n{Y=k—j})=> P(X=j)P(Y =k—j) puisque
=0 =0

les variables X et Y sont supposées indépendantes. On obtient donc

Pz =k = i <?)Pj(1p)”j <kwfj)pkj(1p)m(kj)

Jj=0

= pFa—pnimk Z:(?) (k:Tj> '

k
A s 1o " . n m _[(n+m
On conclut grace a I'identité de Vandermonde: E . (j ) ( . j) = ( i ), que
j=

Vke[o,n+m] P(Z=k) = (”zm> P (1 — p)(rtmi—k

donc Z suit la loi binomiale de parametres n + m et p.

Remarque. On peut démontrer l'identité de Vandermonde:

- de facon algébrique, en écrivant de deux facons le coefficient de X* dans le polynéme
(1+X)"™ = (1+X)"(1+X)™;

- de fagon combinatoire, en écrivant le nombre de fagons de choisir k éléments dans un
ensemble E de cardinal n+m que I'on considérerait comme réunion disjointe d’un ensemble
F de cardinal n et d’un ensemble G de cardinal m (pour un j donné dans [0, k], on doit
choisir j éléments dans F' et k — j éléments dans G).




9. Une urne contient n boules blanches et n boules rouges. On tire simultanément n boules dans
celle-ci et on note X le nombre de boules rouges obtenues lors de ce tirage. Quelle est la loi
de X, son espérance, sa variance 7

Clairement, X (Q2) = [0,n]. On peut d’ailleurs choisir comme univers I’ensemble P, ([1,2n])
des parties & n éléments de Uintervalle entier [1,2n] si Pon convient de numéroter les
boules de 1 & 2n, muni de la probabilité uniforme. Le nombre de tirages possibles est

|| = (2: . Pour k € [0,n], Pévénement {X = k} est réalisé si I'on tire k boules parmi
les n rouges, et n — k boules parmi les n blanches, le nombre de tirages “favorables” est

2
alors <Z) <n i k:> = <Z> . Comme on est en situation d’équiprobabilité, on déduit
0\ 2
k
2n ’
n

Il est possible a partir de cela de calculer E(X), puis E(X?), puis la variance mais bof!
Voici une meilleure idée: considérons que les boules rouges sont numérotées de 1 a n. Pour
tout i € [1,n], soit U; la variable aléatoire qui vaut 1 si la boule i a été tirée, et 0 sinon.

Vkelo,n] P(X=k) =

1
Il est clair que P(U; = 1) = 3 (comme on tire la moitié des boules, la boule ¢ a une chance

1 1
sur deux de figurer dans le tirage), donc U; suit la loi de Bernoulli B(§> et E(U;) = 3
n n 1 n
Enfin, X = U;, donc par linéarité de ’espérance, E(X) = — = —, résultat assez
; D p (X) ; 5= 3
évident intuitivement.

n 2 n

Ensuite, X? = (Z UZ-> = Z Uf—i-z U;U;. Comme U; suit une loi de Bernoulli, Ui2 =U;.
i=1 i=1 i#j

Si i # j, la variable U;U; suit aussi une loi de Bernoulli (les valeurs possibles sont 0 et 1)

et, par un raisonnement simple de dénombrement,

( 2n — 2)
2n n—1
E(U;U;)=PU;U; =1) = = .
n
Par linéarité de ’espérance,
2 n—1 n3

E(X?) =Y E(U?) + Y E(U.U;) =n % B e VR TeT Y
i=1 i#]

apres réduction sur feu moyen. Et enfin, par la formule de Koenig-Huygens,

Tl2

V(X) =E(X?) -E(X)? = 1)




10. Une urne contient N boules numérotées de 1 & N. On tire n boules sans remise (1 < n < N).
On note X et Y le plus petit et le plus grand numéros obtenus.

a. Pour k € [[1, N], déterminer P(X > k). En déduire la loi de X.
b. Pour [ € [1, N], déterminer P(Y < ). En déduire la loi de .
c. Quelle est la loi conjointe du couple U = (X,Y) ?

On peut considérer que l'univers est l’ensemble des parties a n éléments de l'intervalle

[1, N], noté Py ([1, N]), de cardinal (ZZ ) muni de I'équiprobabilité.

a. L’événement {X > k} coincide donc avec I'ensemble Py, ([k, N]), de cardinal (N _: 1 ) ,

puisque cela signifie que 'on tire n boules dont les numéros sont compris entre k et N.
Notons que cet ensemble est vide si n > N —k+ 1, mais ceci est cohérent avec la convention
N—-k+1 )

(n) = 0 lorsque p > n. On a donc P(X > k) = <n
p N
(%)
N—-k+1\ (N-—-k N -k
P(X=k)=P(X>k) - P(X>k+1)= " n ) _\n-1
T - - N T (N
n n
Remarque. On retrouve ce résultat plus simplement en voyant que 'événement {X = k}

correspond aux parties de cardinal n de Uintervalle [1, N] qui contiennent I’élément k et
qui contiennent n — 1 éléments distincts parmi les N — k éléments de l'intervalle [k 4 1, N,

. On en déduit

en utilisant la formule de Pascal.

il y a donc <]T\Z: f) telles parties.

b. De fagon analogue, {Y <1} = P, ([1,1]), donc P(Y <1) = >4

L)) G2
PY=0)=PY <I)—P(Y <l—-1)= " /- "];1
()
c. L'événement {U = (k,1)} = {X =k} N {Y =1} correspond aux parties de cardinal n de
I'intervalle [1, N] contenant I’élément k, 1’élément I, et n — 2 éléments parmi les | — k — 1

de l'intervalle [k + 1,1 —1]. Il y a (l ;Ii_g 1) telles parties, donc




<lk1>
kD) € [LN]  P((X,Y) = (k1) =~ 12/

()

11. On considere une suite de tirages avec remise dans une urne contenant N boules numérotées
de 1 & N. Pour tout n > 1, on note X,, le nombre de numéros non encore sortis a I'issue du
n-eme tirage.

a. Que dire de la variable aléatoire X; 7

b. Pour n > 1, quel est 'ensemble X,,(Q) ?
c. En utilisant la formule des probabilités totales, montrer la relation, pour n > 2 et
ke [o,N —1], Nk a1
— +
P(ank):TP(XTL—lzk)+TP(Xn—1 :k'+1) .

d. En déduire que la suite (E(Xn))n>1 est géométrique, et donner 'expression de E(X,,).

a. La variable aléatoire X7 est constante, de valeur N — 1.
b.Ona X,(Q)=[N—-nN—-1]sil<n<N,et X,,(Q) =[0,N —1] sin > N.
c. Pourn>2et ke [0,N—1], on a

{X, =k} = ({Xn =k} N {X,_1 = k}) U ({Xn =k} N {X,.1=k+ 1})

(réunion disjointe). On a donc

= PX,1=kPX,=kXpn1=k)+PXp1=k+1)P(X,,=kXn-1=k+1).
N — . N . R . .
Or, P(X,, = k| X1 =k) = puisque la n-eme boule doit alors étre tirée parmi les
k+1
N —k boules déja tirées parmi les N boules de I'urne. Et P(X,, = k| X,,—1 = k+1) = %

puisque la n-éme boule doit alors étre tirée parmi les £ + 1 boules non encore obtenues
parmi les IV boules de 'urne. On obtient bien la relation

N —k k+1
P(X,=k)=——PXp1=k)+——P(X,_1=k+1).
(X0 = k) = == P(Xpo1 =) + o P(Xo =+ 1)
d. Pour n > 2, on a
N-1 N-1
E(X,) = kP(X,=k) = Y kP(X,=k)

k=0 k=1

N-1 N—2
N —k k+1

= kZIkTP(Xn,l—k)—l—kzokTP(Xn,l—k—kl)



1 ) (k—1)k
= FP(Xu1=k) = 5 DK P(Xas =k) + ) = P(Xu1 = k)
k=1 k=1 k=1
N-1 1 N—-1 1 N-1 1 N-1
_ _ _ 2 _ - 2 — -
- k P(anl - k) N k P(anl k) + N k P(anl k) N
k=1 k=1 k=1 k=1
1 N-1
= (1- N) kP(Xp_1 = k)

1
La suite (E(Xn))n>1 est donc géométrique, de raison 1 — N Comme E(X;) = N —1, on
déduit, pour n > 1,
L\»=t (N-1)"
) - Nnlo

12. Soient X et Y deux variables aléatoires & valeurs dans [1,n + 1]. On suppose que

V(i,j) € [LLn+1]>  PH{X =i} n {Y:j}):% <Z”1) <j”1) .

. Déterminer la loi de X. Reconnaitre la loi de X — 1, en déduire E(X).
. Les variables X et Y sont-elles indépendantes ?

. Soit M = (m;;) € My (R), avec m;; = P({X =i} n {Y = j}). Calculer M>, en
déduire le spectre de M.

n 2
Indication. On pourra utiliser (et éventuellement prouver) la relation Z <Z) = <2:> .

. Silon fixe ¢ € [1,n + 1], alors

n+1 n n+1 n 1 n
Sk (B (0)
i=

Soit Z = X — 1, alors Z( ) =[0,n] et

Vke[o,n] PZ=k)=PX=k+1)=— (”) .

1
On reconnait une loi binomiale de parametres n et 3 Donc E(X —1) = n d’apres le cours,
puis E(X) = g + 1.

1
. De fagon symétrique, pour j € [1,n+ 1], P(Y =j) = o (j ﬁ 1). Les variables X et Y

ont la méme loi. On voit immédiatement alors que



Vi, j) € [Ln+1]*  mi;=P{X =i} N {Y =j}) = P(X =i) P(Y =),

donc les variables X et Y sont indépendantes.
n+1

c. Posons M2 = A = (@i j)i<ij<nt1. Alors a;j = E My jMj ., SOit

Ak

=1

B (S - )
()

dit M? = K M. Le polynéme P = X? - KX = X(X — K) est donc annulateur de M,
on en déduit que M est diagonalisable (mais on pouvait aussi noter que M est symétrique

réelle) et Sp(M) C {0, K}. Comme une matrice diagonalisable avec une seule valeur propre
est scalaire (i.e. de la forme AI,11), ce qui n’est pas le cas ici, on déduit que les nombres 0

<2n>
n
et K =

471

En changeant de notations et en posant K =

, on voit que a; ; = K m; ;, autrement

sont tous deux valeurs propres de M et en constituent le spectre.

n 2
Quelques remarques. La relation Z <Z> = (2:) s’obtient facilement en observant le
k=0
coefficient de X™ dans le polynéme (X 4 1)", que I'on peut écrire aussi (X +1)"(X +1)".

(%)

L’écriture de m; ; sous la forme m; ; = c;c; avec ¢; = ——,— montre que la matrice M

est de rang 1 ; en effet, ses lignes sont toutes proportionnelles. La valeur propre 0 est donc

(%)

4n

de multiplicité n — 1, et la valeur propre K = (dont on peut remarquer que c’est la

trace de M) est simple.



