
EXERCICES de PROBABILITÉS sur un UNIVERS FINI PSI2 2025-2026

Espaces probabilisés.

1. Déterminer une distribution de probabilités (pω)ω∈Ω sur l’ensemble Ω = [[1, n]], telle que la
probabilité de l’événement [[1, k]] soit proportionnelle à k2.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Une distribution de probabilités sur Ω est une suite finie (pi)1≤i≤n de réels positifs telle

que

n∑
i=1

pi = 1. La probabilité associée sur Ω est alors définie par P (I) =
∑
i∈I

pi pour toute

partie I de Ω. Il doit, de plus, exister un réel α strictement positif tel que P
(
[[1, k]]

)
= αk2

pour tout k, soit
k∑

i=1

pi = αk2. Pour k = n, on voit que nécessairement α =
1

n2
. Puis, pour

tout k ∈ [[1, n]],

pk = P
(
{k}
)

= P
(
[[1, k]]

)
− P

(
[[1, k − 1]]

)
=

1

n2

(
k2 − (k − 1)2

)
=

2k − 1

n2
.

Réciproquement, le lecteur est invité à vérifier que cette suite de nombres (pk)1≤k≤n
convient.

2. En Palombie, lorsqu’il fait soleil un jour, il fait soleil le lendemain une fois sur 10 et, lorsqu’il
pleut un jour, il pleut le lendemain 6 fois sur 10.

a. Il a fait soleil un lundi. Quelle est la probabilité qu’il fasse soleil le jeudi qui suit ?

b. Sachant qu’il a fait soleil le jour J , on note pn la probabilité qu’il fasse soleil le jour J + n.
Calculer pn et lim

n→+∞
pn. On pourra considérer pour tout n l’événement En = “il fait soleil

le jour J + n” et travailler sur le vecteur-colonne Xn =

(
P (En)

P (En)

)
.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. et b. Disons que le lundi est le jour 0. En notant En l’événement “‘il fait soleil le jour n”,

on a les relations P (En+1|En) =
1

10
et P (En+1 |En) =

3

5
, donc P (En+1 |En) =

2

5
. Pour tout

entier naturel n, (En, En) est un système complet d’événements. La formule des probabilités
totales donne donc

P (En+1) = P (En+1|En) P (En) + P (En+1| En) P (En)

=
1

10
P (En) +

2

5
P (En)

=
1

10
P (En) +

2

5

(
1− P (En)

)
=

2

5
− 3

10
P (En) .

Ainsi, s’il fait soleil le jour 0, la suite (pn), où pn = P (En) est la probabilité d’ensoleillement,

vérifie p0 = 1 et la relation de récurrence pn+1 =
2

5
− 3

10
pn. On reconnâıt une suite

arithmético-géométrique. L’équation l =
2

5
− 3

10
l admet pour solution l =

4

13
et, en posant

rn = pn−
4

13
, on vérifie la relation rn+1 = − 3

10
rn, d’où rn =

(
− 3

10

)n
r0 =

9

13
×
(
− 3

10

)n
,

puis pn = rn +
4

13
=

9

13
×
(
− 3

10

)n
+

4

13
, ce qui répond à la question b. sans utiliser de

calcul matriciel. On en déduit aussi lim
n→+∞

pn =
4

13
' 0, 308.

Pour répondre à la question a., on évalue pour n = 3: p3 =
9

13
×
(
− 3

10

)3

+
4

13
=

289

1000
=



0, 289. On peut retrouver ce résultat en faisant un arbre de probabilité, ils poussent bien
en Palombie.

Palons peu, palombien! Passons au calcul matriciel! On a obtenu plus haut la relation

P (En+1) =
1

10
P (En) +

2

5
P (En), on obtient de même P (En+1) =

9

10
P (En) +

3

5
P (En).

Les matrices-colonnes Xn vérifient alors la relation de récurrence Xn+1 = AXn, avec

A =


1

10

2

5

9

10

3

5

 =

(
0, 1 0, 4

0, 9 0, 6

)
. Donc Xn = AnX0 avec X0 =

(
1
0

)
. Et on diagonalise A,

pardi! Je n’écris pas les détails de calcul, on obtient A = PDP−1 avec D = diag
(
− 3

10
, 1
)

et P =

(
−1

4

9
1 1

)
. Après un peu de calcul, on a

An = PDnP−1 =


9

13
×
(
− 3

10

)n
+

4

13
− 4

13
×
(
− 3

10

)n
+

4

13

− 9

13
×
(
− 3

10

)n
+

9

13

4

13
×
(
− 3

10

)n
+

9

13

 ,

ce qui permet de retrouver les résultats déjà obtenus ci-dessus.

3. Une succession d’individus A1, · · ·, An se transmet une information binaire du type “oui”
ou “non”. Chaque individu Ak transmet l’information qu’il a reçue avec la probabilité p à
l’individu Ak+1 ou la transforme en son contraire avec la probabilité q = 1 − p. Chaque
individu se comporte indépendamment des autres. Calculer la probabilité πn pour que
l’information reçue par An soit identique à celle émise par A1. Quelle est la limite de πn
quand n tend vers l’infini ?

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Pour k ∈ [[1, n]], notons Bk l’événement: “l’individu Ak a reçu la bonne information (celle
émise par A1)”. On a alors P (B1) = 1 et, pour k ≥ 1, par la formule des probabilités totales:

πk+1 = P (Bk+1) = P (Bk+1|Bk) P (Bk) + P (Bk+1|Bk) P (Bk)

= p P (Bk) + (1− p)
(
1− P (Bk)

)
= (2p− 1) πk + (1− p) .

On reconnâıt une suite arithmético-géométrique. L’équation l = (2p − 1)l + (1 − p)

a pour solution l =
1

2
, donc la suite (vk) définie par vk = P (Bk) − 1

2
est géométrique,

de raison 2p − 1, ce que l’improbable lecteur se fera un plaisir de vérifier par le calcul.

Ainsi, vk = (2p− 1)k−1v1 =
1

2
(2p− 1)k−1. Puis πn = P (Bn) =

1

2

(
1 + (2p− 1)n−1

)
.

Si on a 0 < p < 1, alors −1 < 2p− 1 < 1 et lim
n→+∞

πn =
1

2
.

4. Soient A1, · · ·, An des événements mutuellement indépendants. Montrer que la probabilité

pour qu’aucun d’eux ne soit réalisée est majorée par M = exp
(
−

n∑
k=1

P (Ak)
)

.



- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

On étudie P

( n⋂
k=1

Ak

)
. Par indépendance des Ak, on a

P

( n⋂
k=1

Ak

)
=

n∏
k=1

P (Ak) =

n∏
k=1

(
1− P (Ak)

)
.

Or, pour x ∈ [0, 1], on a 0 ≤ 1− x ≤ e−x, d’où

P

( n⋂
k=1

Ak

)
≤

n∏
k=1

e−P (Ak) = exp
(
−

n∑
k=1

P (Ak)
)

= M .

5. Soient m, N , k des entiers naturels au moins égaux à 2, avec k ≤ N . Une urne contient
mN boules dont N sont blanches. On tire k boules dans cette urne, et on s’intéresse à la

probabilité de tirer j boules blanches (0 ≤ j ≤ k). On pourra poser p =
1

m
, le nombre

p ∈ [0, 1] est donc la proportion initiale de boules blanches.

a. Quelle est cette probabilité si le tirage est avec remise ? On constate qu’elle ne dépend pas
de N , mais qu’elle ne dépend que de la proportion p de boules blanches dans l’urne.

b. Quelle est cette probabilité si le tirage est sans remise ? Elle dépend alors de N .

c. Si N devient très grand devant le nombre k de boules tirées, on a l’intuition que le fait
que le tirage s’effectue avec ou sans remise ne va pas changer grand-chose. Le vérifier
mathématiquement.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. À chaque tirage, la probabilité de “succès”, c’est-à-dire de tirer une boule blanche, est p,
et il y a k tirages indépendants, le nombre de boules blanches tirées suit donc une loi
binomiale de paramètres k et p. La probabilité de tirer j boules blanches exactement est

donc

(
k
j

)
pj(1− p)k−j .

b. Ici, les tirages possibles sont les parties à k éléments de l’ensemble [[1,mN ]] de toutes les

boules de l’urne, ces tirages sont au nombre de

(
mN
k

)
avec équiprobabilité. Les tirages

favorables sont ceux constitués d’une partie à j éléments de l’ensemble desN boules blanches
et d’une partie à k − j éléments de l’ensemble des (m− 1)N boules non blanches. Ils sont

au nombre de

(
N
j

)(
(m− 1)N
k − j

)
, d’où la probabilité

πN =

(
N
j

)(
(m− 1)N
k − j

)
(
mN
k

) .



c. Il s’agit de vérifier que lim
N→+∞

πN =

(
k
j

)
pj(1− p)k−j . Pour cela, notons que

(
N
j

)
=

N !

j!(N − j)!
=
N(N − 1) · · · (N − j + 1)

j!
∼

N→+∞

N j

j!
:

en effet, j étant fixé, le coefficient binomial

(
N
j

)
est une fonction polynomiale de la variable

N , de terme dominant
N j

j!
. On obtient de même

(
(m− 1)N
k − j

)
∼

N→+∞

(m− 1)k−j Nk−j

(k − j)!

et

(
mN
k

)
∼

N→+∞

mk Nk

k!
. Par opérations (licites!) sur les équivalents, on déduit

πN ∼
N→+∞

N j

j!

(m− 1)k−j Nk−j

(k − j)!
k!

mk Nk

et, comme on constate que cette expression après simplifications ne dépend en fait pas de
N , on peut écrire

lim
N→+∞

πN =
k!

j!(k − j)!
(m− 1)k−j

mk
=

(
k
j

) (1

p
− 1
)k−j

(1

p

)k =

(
k
j

)
pj (1− p)k−j ,

ce que l’on souhaitait obtenir.

6*. On s’intéresse à la survie d’une espèce pour laquelle un individu admet trois descendants avec

la probabilité
1

8
, un ou deux descendants avec la probabilité

3

8
, et enfin aucun descendant

avec la probabilité
1

8
. On suppose qu’à l’instant initial, la population est composée d’un

seul individu. Par conséquent, l’espèce s’éteindra au bout de la première génération avec

une probabilité de x1 =
1

8
.

a. Quelle est la probabilité x2 pour que l’espèce ait disparu à l’issue de la deuxième génération ?

b. Pour tout n entier naturel non nul, on note xn la probabilité que l’espèce ait disparu à
l’issue de la n-ème génération. Montrer que la suite (xn) vérifie la relation

∀n ∈ IN∗ xn+1 =
1

8

(
x3
n + 3x2

n + 3xn + 1
)
.

c. Déterminer lim
n→+∞

xn.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Notons Xk le nombre d’individus de la génération k. Ainsi, X0 = 1 et x1 = P (X1 = 0) =
1

8
.

On a alors

x2 = P (X2 = 0)

= P (X1 = 0) + P
(
{X1 = 1} ∩ {X2 = 0}

)
+ P

(
{X1 = 2} ∩ {X2 = 0}

)
+ P

(
{X1 = 3} ∩ {X2 = 0}

)
Mais P

(
{X1 = 1} ∩ {X2 = 0}

)
= P (X2 = 0|X1 = 1) P (X1 = 1) =

1

8
× 3

8
;



P
(
{X1 = 2} ∩ {X2 = 0}

)
= P (X2 = 0|X1 = 2) P (X1 = 2) =

(1

8

)2

× 3

8
;

P
(
{X1 = 3} ∩ {X2 = 0}

)
= P (X2 = 0|X1 = 3) P (X1 = 3) =

(1

8

)3

× 1

8
.

Finalement, x2 =
1

8
+

3

8
× 1

8
+

3

8
×
(1

8

)2

+
1

8
×
(1

8

)3

=
729

4096
' 0, 178.

b. On a P (Xn+1 = 0) = P (X1 = 0) +

3∑
k=1

P
(
{X1 = k} ∩ {Xn+1 = 0}

)
et, pour tout

k ∈ {1, 2, 3},

P
(
{X1 = k} ∩ {Xn+1 = 0}

)
= P (Xn+1 = 0|X1 = k)P (X1 = k) = P (Xn = 0|X0 = k)P (X1 = k) .

Enfin, avec un peu de bon sens, on a P (Xn = 0|X0 = k) =
(
P (Xn = 0|X0 = 1)

)k
= xkn.

On obtient donc

xn+1 = P (Xn+1 = 0) =
1

8
+

3

8
xn +

3

8
x2
n +

1

8
x3
n ,

ce qui est la relation demandée.

c. Soit f : x 7→ 1

8

(
x3 + 3x2 + 3x + 1

)
=

(x+ 1)3

8
. La fonction f est croissante sur [0, 1] avec

f(0) =
1

8
= 0, 125, f(1) = 1, donc l’intervalle [0, 1] est stable par f . L’équation f(x) = x

admet deux solutions dans [0, 1], qui sont le nombre 1 et le nombre α =
√

5 − 2 ' 0, 236.

En fait, l’intervalle J = [0, α] est stable par f puisque son image est
[1

8
, α
]
⊂ J . Comme

x1 =
1

8
∈ J , on a xn ∈ J pour tout n ∈ IN∗. Sur J , on a f(x) ≥ x (il est facile d’étudier le

signe de f(x)− x après avoir factorisé par x− 1), donc la suite (xn) est croissante. Elle est
majorée par α, donc elle converge. Le seul point fixe de f adhérent à l’intervalle J est α,
donc lim

n→+∞
xn = α =

√
5− 2.

7. Un groupe de n chasseurs tire simultanément et indépendamment sur n canards. Chaque
chasseur ne tire qu’une seule fois et atteint toujours sa cible.

a. Quelle est la probabilité pn qu’au moins un canard survive ? Déterminer lim
n→+∞

pn.

b. L’un des canards s’appelle Saturnin. Quelle est la probablité qn qu’il survive ? Déterminer
lim

n→+∞
qn.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. On peut modéliser le résultat du tir par une application de l’ensemble Hn des n chasseurs
vers l’ensemble Cn des n canards, puisque chaque chasseur atteint un et un seul canard.
Donc |Ω| = nn. Au moins un canard survit si et seulement si cette application n’est pas
surjective, i.e. si et seulement si elle n’est pas bijective. Or le nombre d’applications bijectives

de Hn vers Cn est n!. La probabilité qu’au moins un canard survive est donc pn = 1− n!

nn
,

et lim
n→+∞

pn = 1 puisque n! = o(nn) lorsque n tend vers +∞.



b. Saturnin s’en tire si et seulement si l’application correspondant au tir est à valeurs dans
l’ensemble Cn\{Saturnin}, de cardinal n−1. Comme il y a (n−1)n applications de l’ensemble
Hn de cardinal n vers l’ensemble Cn \{Saturnin}, de cardinal n− 1, la probabilité de survie

de Saturnin est qn =
(n− 1)n

nn
=
(

1− 1

n

)n
. Alors lim

n→+∞
qn = e−1.

Variables aléatoires.

8. Deux variables aléatoires indépendantes X et Y suivent des lois binomiales de tailles n et m
et de même paramètre p. Quelle est la loi suivie par la variable aléatoire Z = X + Y ?

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

On a clairement X(Ω) = [[1, n]], Y (Ω) = [[1,m]] et Z(Ω) = [[1, n+m]]. Pour k ∈ [[1, n+m]],
on a

{Z = k} =

k⊔
j=0

(
{X = j} ∩ {Y = k − j}

)
.

Donc P (Z = k) =

k∑
j=0

P
(
{X = j} ∩ {Y = k − j}

)
=

k∑
j=0

P (X = j) P (Y = k − j) puisque

les variables X et Y sont supposées indépendantes. On obtient donc

P (Z = k) =

k∑
j=0

(
n
j

)
pj(1− p)n−j

(
m

k − j

)
pk−j(1− p)m−(k−j)

= pk (1− p)n+m−k
k∑

j=0

(
n
j

) (
m

k − j

)
.

On conclut grâce à l’identité de Vandermonde:

k∑
j=0

(
n
j

) (
m

k − j

)
=

(
n+m
k

)
, que

∀k ∈ [[0, n+m]] P (Z = k) =

(
n+m
k

)
pk (1− p)(n+m)−k ,

donc Z suit la loi binomiale de paramètres n+m et p.

Remarque. On peut démontrer l’identité de Vandermonde:

- de façon algébrique, en écrivant de deux façons le coefficient de Xk dans le polynôme
(1 +X)n+m = (1 +X)n(1 +X)m;

- de façon combinatoire, en écrivant le nombre de façons de choisir k éléments dans un
ensemble E de cardinal n+m que l’on considérerait comme réunion disjointe d’un ensemble
F de cardinal n et d’un ensemble G de cardinal m (pour un j donné dans [[0, k]], on doit
choisir j éléments dans F et k − j éléments dans G).



9. Une urne contient n boules blanches et n boules rouges. On tire simultanément n boules dans
celle-ci et on note X le nombre de boules rouges obtenues lors de ce tirage. Quelle est la loi
de X, son espérance, sa variance ?

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Clairement, X(Ω) = [[0, n]]. On peut d’ailleurs choisir comme univers l’ensemble Pn

(
[[1, 2n]]

)
des parties à n éléments de l’intervalle entier [[1, 2n]] si l’on convient de numéroter les
boules de 1 à 2n, muni de la probabilité uniforme. Le nombre de tirages possibles est

|Ω| =

(
2n
n

)
. Pour k ∈ [[0, n]], l’événement {X = k} est réalisé si l’on tire k boules parmi

les n rouges, et n − k boules parmi les n blanches, le nombre de tirages “favorables” est

alors

(
n
k

) (
n

n− k

)
=

(
n
k

)2

. Comme on est en situation d’équiprobabilité, on déduit

∀k ∈ [[0, n]] P (X = k) =

(
n
k

)2

(
2n
n

) .

Il est possible à partir de cela de calculer E(X), puis E(X2), puis la variance mais bôf!
Voici une meilleure idée: considérons que les boules rouges sont numérotées de 1 à n. Pour
tout i ∈ [[1, n]], soit Ui la variable aléatoire qui vaut 1 si la boule i a été tirée, et 0 sinon.

Il est clair que P (Ui = 1) =
1

2
(comme on tire la moitié des boules, la boule i a une chance

sur deux de figurer dans le tirage), donc Ui suit la loi de Bernoulli B
(1

2

)
et E(Ui) =

1

2
.

Enfin, X =

n∑
i=1

Ui, donc par linéarité de l’espérance, E(X) =

n∑
i=1

1

2
=

n

2
, résultat assez

évident intuitivement.

Ensuite,X2 =
( n∑

i=1

Ui

)2

=

n∑
i=1

U2
i +
∑
i 6=j

UiUj . Comme Ui suit une loi de Bernoulli, U2
i = Ui.

Si i 6= j, la variable UiUj suit aussi une loi de Bernoulli (les valeurs possibles sont 0 et 1)
et, par un raisonnement simple de dénombrement,

E(UiUj) = P (UiUj = 1) =

(
2n− 2

2n

)
(

2n
n

) =
n− 1

2(2n− 1)
.

Par linéarité de l’espérance,

E(X2) =

n∑
i=1

E(U2
i ) +

∑
i6=j

E(UiUj) = n
1

2
+ n(n− 1)

n− 1

2(2n− 1)
=

n3

2(2n− 1)

après réduction sur feu moyen. Et enfin, par la formule de Koenig-Huygens,

V(X) = E(X2)− E(X)2 =
n2

4(2n− 1)
.



10. Une urne contient N boules numérotées de 1 à N . On tire n boules sans remise (1 ≤ n ≤ N).
On note X et Y le plus petit et le plus grand numéros obtenus.

a. Pour k ∈ [[1, N ]], déterminer P (X ≥ k). En déduire la loi de X.

b. Pour l ∈ [[1, N ]], déterminer P (Y ≤ l). En déduire la loi de l.

c. Quelle est la loi conjointe du couple U = (X,Y ) ?

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

On peut considérer que l’univers est l’ensemble des parties à n éléments de l’intervalle

[[1, N ]], noté Pn

(
[[1, N ]]

)
, de cardinal

(
N
n

)
, muni de l’équiprobabilité.

a. L’événement {X ≥ k} cöıncide donc avec l’ensemble Pn

(
[[k,N ]]

)
, de cardinal

(
N − k + 1

n

)
,

puisque cela signifie que l’on tire n boules dont les numéros sont compris entre k et N .
Notons que cet ensemble est vide si n > N−k+1, mais ceci est cohérent avec la convention(
n
p

)
= 0 lorsque p > n. On a donc P (X ≥ k) =

(
N − k + 1

n

)
(
N
n

) . On en déduit

P (X = k) = P (X ≥ k)− P (X ≥ k + 1) =

(
N − k + 1

n

)
−
(
N − k
n

)
(
N
n

) =

(
N − k
n− 1

)
(
N
n

)
en utilisant la formule de Pascal.

Remarque. On retrouve ce résultat plus simplement en voyant que l’événement {X = k}
correspond aux parties de cardinal n de l’intervalle [[1, N ]] qui contiennent l’élément k et
qui contiennent n− 1 éléments distincts parmi les N − k éléments de l’intervalle [[k+ 1, N ]],

il y a donc

(
N − k
n− 1

)
telles parties.

b. De façon analogue, {Y ≤ l} = Pn

(
[[1, l]]

)
, donc P (Y ≤ l) =

(
l
n

)
(
N
n

) , puis

P (Y = l) = P (Y ≤ l)− P (Y ≤ l − 1) =

(
l
n

)
−
(
l − 1
n

)
(
N
n

) =

(
l − 1
n− 1

)
(
N
n

)
c. L’événement

{
U = (k, l)

}
= {X = k} ∩ {Y = l} correspond aux parties de cardinal n de

l’intervalle [[1, N ]] contenant l’élément k, l’élément l, et n − 2 éléments parmi les l − k − 1

de l’intervalle [[k + 1, l − 1]]. Il y a

(
l − k − 1
n− 2

)
telles parties, donc



∀(k, l) ∈ [[1, N ]]2 P
(
(X,Y ) = (k, l)

)
=

(
l − k − 1
n− 2

)
(
N
n

) .

11. On considère une suite de tirages avec remise dans une urne contenant N boules numérotées
de 1 à N . Pour tout n ≥ 1, on note Xn le nombre de numéros non encore sortis à l’issue du
n-ème tirage.

a. Que dire de la variable aléatoire X1 ?

b. Pour n ≥ 1, quel est l’ensemble Xn(Ω) ?
c. En utilisant la formule des probabilités totales, montrer la relation, pour n ≥ 2 et
k ∈ [[0, N − 1]],

P (Xn = k) =
N − k
N

P (Xn−1 = k) +
k + 1

N
P (Xn−1 = k + 1) .

d. En déduire que la suite
(
E(Xn)

)
n≥1

est géométrique, et donner l’expression de E(Xn).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. La variable aléatoire X1 est constante, de valeur N − 1.

b. On a Xn(Ω) = [[N − n,N − 1]] si 1 ≤ n ≤ N , et Xn(Ω) = [[0, N − 1]] si n ≥ N .

c. Pour n ≥ 2 et k ∈ [[0, N − 1]], on a

{Xn = k} =
(
{Xn = k} ∩ {Xn−1 = k}

)
t
(
{Xn = k} ∩ {Xn−1 = k + 1}

)
(réunion disjointe). On a donc

P (Xn = k) = P (Xn = k et Xn−1 = k) + P (Xn = k et Xn−1 = k + 1)

= P (Xn−1 = k) P (Xn = k|Xn−1 = k) + P (Xn−1 = k + 1) P (Xn = k|Xn−1 = k + 1) .

Or, P (Xn = k|Xn−1 = k) =
N − k
N

puisque la n-ème boule doit alors être tirée parmi les

N −k boules déjà tirées parmi les N boules de l’urne. Et P (Xn = k|Xn−1 = k+1) =
k + 1

N
puisque la n-ème boule doit alors être tirée parmi les k + 1 boules non encore obtenues
parmi les N boules de l’urne. On obtient bien la relation

P (Xn = k) =
N − k
N

P (Xn−1 = k) +
k + 1

N
P (Xn−1 = k + 1) .

d. Pour n ≥ 2, on a

E(Xn) =

N−1∑
k=0

k P (Xn = k) =

N−1∑
k=1

k P (Xn = k)

=

N−1∑
k=1

k
N − k
N

P (Xn−1 = k) +

N−2∑
k=0

k
k + 1

N
P (Xn−1 = k + 1)



=

N−1∑
k=1

k P (Xn−1 = k)− 1

N

N−1∑
k=1

k2 P (Xn−1 = k) +

N−1∑
k=1

(k − 1)k

N
P (Xn−1 = k)

=

N−1∑
k=1

k P (Xn−1 = k)− 1

N

N−1∑
k=1

k2 P (Xn−1 = k) +
1

N

N−1∑
k=1

k2 P (Xn−1 = k)− 1

N

N−1∑
k=1

k P (Xn−1 = k)

=
(

1− 1

N

) N−1∑
k=1

k P (Xn−1 = k)

=
(

1− 1

N

)
E(Xn−1) .

La suite
(
E(Xn)

)
n≥1

est donc géométrique, de raison 1 − 1

N
. Comme E(X1) = N − 1, on

déduit, pour n ≥ 1,

E(Xn) = (N − 1)
(

1− 1

N

)n−1

=
(N − 1)n

Nn−1
.

12. Soient X et Y deux variables aléatoires à valeurs dans [[1, n+ 1]]. On suppose que

∀(i, j) ∈ [[1, n+ 1]]2 P
(
{X = i} ∩ {Y = j}

)
=

1

22n

(
n

i− 1

) (
n

j − 1

)
.

a. Déterminer la loi de X. Reconnâıtre la loi de X − 1, en déduire E(X).

b. Les variables X et Y sont-elles indépendantes ?

c. Soit M = (mi,j) ∈ Mn+1(IR), avec mi,j = P
(
{X = i} ∩ {Y = j}

)
. Calculer M2, en

déduire le spectre de M .

Indication. On pourra utiliser (et éventuellement prouver) la relation

n∑
k=0

(
n
k

)2

=

(
2n
n

)
.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Si l’on fixe i ∈ [[1, n+ 1]], alors

P (X = i) =

n+1∑
j=1

ai,j =
1

4n

(
n

i− 1

) n+1∑
j=1

(
n

j − 1

)
=

1

2n

(
n

i− 1

)
.

Soit Z = X − 1, alors Z(Ω) = [[0, n]] et

∀k ∈ [[0, n]] P (Z = k) = P (X = k + 1) =
1

2n

(
n
k

)
.

On reconnâıt une loi binomiale de paramètres n et
1

2
. Donc E(X − 1) =

n

2
d’après le cours,

puis E(X) =
n

2
+ 1.

b. De façon symétrique, pour j ∈ [[1, n+ 1]], P (Y = j) =
1

2n

(
n

j − 1

)
. Les variables X et Y

ont la même loi. On voit immédiatement alors que



∀(i, j) ∈ [[1, n+ 1]]2 mi,j = P
(
{X = i} ∩ {Y = j}

)
= P (X = i) P (Y = j) ,

donc les variables X et Y sont indépendantes.

c. Posons M2 = A = (ai,j)1≤i,j≤n+1. Alors ai,k =

n+1∑
j=1

mi,jmj,k, soit

ai,k =
1

16n

n+1∑
j=1

(
n

i− 1

)(
n

j − 1

)2(
n

k − 1

)
=

1

16n

(
n

i− 1

)(
n

k − 1

) n∑
l=0

(
n
l

)2

=

(
2n
n

)
16n

(
n

i− 1

)(
n

k − 1

)
.

En changeant de notations et en posant K =

(
2n
n

)
4n

, on voit que ai,j = Kmi,j , autrement

dit M2 = K M . Le polynôme P = X2 − KX = X(X − K) est donc annulateur de M ,
on en déduit que M est diagonalisable (mais on pouvait aussi noter que M est symétrique
réelle) et Sp(M) ⊂ {0,K}. Comme une matrice diagonalisable avec une seule valeur propre
est scalaire (i.e. de la forme λIn+1), ce qui n’est pas le cas ici, on déduit que les nombres 0

et K =

(
2n
n

)
4n

sont tous deux valeurs propres de M et en constituent le spectre.

Quelques remarques. La relation

n∑
k=0

(
n
k

)2

=

(
2n
n

)
s’obtient facilement en observant le

coefficient de Xn dans le polynôme (X+ 1)2n, que l’on peut écrire aussi (X+ 1)n(X+ 1)n.

L’écriture de mi,j sous la forme mi,j = cicj avec ci =

(
n

i− 1

)
2n

montre que la matrice M

est de rang 1 ; en effet, ses lignes sont toutes proportionnelles. La valeur propre 0 est donc

de multiplicité n− 1, et la valeur propre K =

(
2n
n

)
4n

(dont on peut remarquer que c’est la

trace de M) est simple.


