EXERCICES de CALCUL INTEGRAL PSI2 2025-2026

Convergence dominée et intégration terme a terme.

. r -
1. Pour n € IN¥, on définit f,, : 2 +— — e
n

a.

b.

38

Montrer que chaque fonction f,, est intégrable sur IR,..

+oo
Calculer / fn(x) de.
0

. Montrer que la suite (f,,) converge uniformément sur IR vers une fonction intégrable f.

. Quelle remarque peut-on faire ?

. La fonction f, est continue sur IR, et, par croissances comparées, lim 22f, (z) =0, donc
T—r—+00

1
fn(x) est négligeable devant e lorsque x tend vers +o0o. Ainsi, f,, est intégrable sur [0, +oo[
pour tout n > 1.

“+oo
. Calcul facile: pour tout n € IN*, on a / fulz)de = 1.
0

. Pour tout x € Ry fixé, on a lirf fn(x) =0 (évident), la suite de fonctions (f,) converge
n—-+0o0

donc simplement sur IR vers la fonction nulle. Une étude de variations montre que, pour
tout n € IN*, on a
1
[ fallo = sup [fo(z)| = fa(n) = — ? 0,
zeR en n—-+400

donc la suite de fonctions (f,) converge uniformément sur IR; vers la fonction nulle.
—+oo

+oo
.Ona lim fn(z)dz =1, mais / ( lim f, (:c)) dz = 0. Ainsi, sur un intervalle
0 0

n—-+o0o n—-+4oo

quelconque, la convergence uniforme d’une suite de fonctions ne permet pas d’intervertir
limite et intégrale, les théoréemes vus dans le cas d’un segment ne sont plus valables.
C’est pourquoi, sur un intervalle quelconque, on invoquera le théoréme de convergence

dominée, dont les hypotheses sont différentes.

+oo e*t

2. Soit l'intégrale J = / - dt (que l'on ne cherchera pas a calculer).

1
+oo
Donner un équivalent simple de I, = / e~ * dx lorsque n tend vers +oo, faisant
1

intervenir U'intégrale J.

e
La fonction f : t — - est intégrable sur [1,+o0o| car elle est négligeable devant 2
(croissances comparées) en 400, cela assure 'existence de I'intégrale J.

Pour les mémes raisons, pour tout n € IN*, la fonction x e est intégrable sur [1, +o00[

d’ou 'existence de I,,. Par le changement de variable t = x™, on obtient

1 +oo 1.4
In:ﬁ/ fa(t)dt, avec fn(t)=t" e '.
1
—t

Or, pour tout ¢ € [1,+o0[, on a lim f,(t) = f(t) = £ (convergence simple), et
n—-+oo t

(I'exposant de ¢ étant négatif) 0 < f,,(t) < e ", la fonction ¢ : t — e~ étant intégrable sur
[1, +00] (condition de domination). On applique donc le théoréme de convergence dominée :



o0 et
lim fn:/ ( lim fn):/ ¢ at=1J,
n—-+o00 [L,4o00] [L,4o00] n— 400 1 t

puis I,, ~ —.
n

1
3. Soit f:[0,1] — IR continue. Déterminer lim / F(t"™) dt.
0

n——+oo

1
4. Soit f : [0,1] — IR continue, avec f(1) # 0. Trouver un équivalent de I,, = / t" f(¢t) dt.
0

On pourra utiliser le changement de variable v = t"*1.

1 1
Le changement de variable proposé donne (n+1) I, = / f (unH) du.
0

_1
Posons g, (u) = f(u i ) pour n € IN et u €]0, 1], alors la suite de fonctions (g, ) converge

simplement sur |0, 1] vers la fonction constante de valeur f(1) par continuité de f au point 1.
D’autre part, f étant continue sur le segment [0, 1], elle est bornée sur ce segment: il existe
M € R, tel que Vx € [0,1] |f(a:)| < M. On a alors la domination

Vuel0,1] YnelN  |g,(u)| <M,

la fonction constante u +— M étant intégrable sur |0, 1].

Le théoreme de convergence dominée permet alors d’affirmer que

lim Olgn(u) du = /01 ( lim gn(u)) du = /01 f(1)du= f(1).

n——+4oo n——+oo
Donc lim (n+ 1)L, = f(1) et, comme f(1) est non nul, I,, ~ @
n—+o00 ’ ’ n—+oco N

2
5. Pour n entier naturel, on pose I, = / cos™(z) dx.
0

a. Montrer que la suite (I,,) tend vers zéro en décroissant.

b. Montrer la convergence de la série de terme général (—1)"I,, et calculer sa somme.

a.Onalyy;—1,= /2 cos™(x) (cos(x) — 1) da < 0, puisque la fonction que 'on integre est
négative. Donc la sgite (I,) est décroissante.
Posons f,(x) = (cosx)™. Les fonctions f, sont continues sur S = [O,g}, la suite de
fonctions (f,,) converge simplement sur S vers la fonction f continue par morceaux, telle
que f(0) =1et f(x) =0 pour x € ]O, g] Enfin, on a la domination [f,(z)| < 1, la fonction



constante 1 étant intégrable sur S. On peut donc appliquer le théoreme de convergence
dominée (interversion limite-intégrale) qui donne

lim I,= 1l = 1 =0.
n iR, In mﬁy/ﬁ /wﬂ;h Af 0

b. Du coup, la série E 1)"I,, converge, par application du critére spécial des séries alternées.
n>0
Pour obtenir sa somme, travaillons sur une somme partielle S,,:

Commentaires: il n’y a pas de probléme pour intervertir une intégrale et une somme FINIE!
On reconnaitra ensuite, sous lintégrale, une somme géométrique de raison — cosx.

51 _ (_1\n+1 n+1
Sn VI = / Z (cosz)k dz = / 1~ ()" (cosz) dz =S5+ (=1)" Ry ,
0

14 cosx
k:O +

z d z n+1
avee 5= [T g, - [T g
o l+4cosx o l4cosz

A T'aide du théoréme de convergence dominée, comme en a., on montre que lim R, =
n—-+oo

donc lir}rl S, = 5, il ne reste plus qu’a calculer U'intégrale S. Or,
n—-+oo
T d Toa
se [ [ ]
0 2cos2 = o Cos?t
2
+oo

Finalement, Z (-
n=0

S aly

=1.

|
—

6. Soient (a,) et (b,) deux suites réelles bornées. Soient ¢ et d deux réels tels que ¢ < d. On
suppose que
Y € [c,d] lim (an cos(nx) + by, sin(nx)) =0.
n—-+oo

a. Montrer que, pour tout entier n, il existe un réel ¢, tel que
ap, cos(nzx) + by, sin(nz) = /a2 + b2 cos(nz + ¢y,) .

d
b. Calculer I, :/ (an cos(nz) + by, sim(n;l;))2 dz.

(@ +B2)(d— )

c. Montrer que, a partir d’un certain rang, on a I,, > 4

d. Montrer que les suites (a,,) et (b,) tendent vers 0.

a. Si a, et b, sont nuls, alors n’importe quel réel ¢, fera l'affaire.

(79 by, 2 2 . .
——— et B, = ———— sont tels que a; + (5 =1, il existe
Vaz +b2 " a2 + b2 men

alors un réel p,, (déterminé modulo 27) tel que cos(¢,) = o, et sin(p,) = B,. Alnsi,

Sinon, les réels «, =



an cos(nz) + by, sin(nz) = /a2 +b2 (o, cos(nz) — B, sin(nz))
= a2+ (cos(apn) cos(nx) — sin(py,) sin(nx))
= Va2 +b2 cos(nz + p,) .

b. D’abord, Iy = a2(d — ¢) et, pour n € IN*, on a

d
I, = (a®+10%) / cos®(nx + ¢, da

nd+en dt

= @) [ et
neten n
_ai+b? /"d“’" L+ cos(2t) .
neten 2
a2 402t sin(2t)ndten
B n b + 4 :|nc+<pn
_ (a7 +02)(d — ¢) n ap + b
2 4n
d—rc
2

n

{sin(Qnd + 2¢,) — sin(2ne + 290")} .

r
c. On peut donc écrire I, = (a2 +b2) ( + 4—"), avec
n

rn, = sin(2nd + 2¢,,) — sin(2nc + 2¢,,) .

—c Ty d—c
> —— pour n assez

—0,d In
ydone o < T4

On constate que |r,| < 2, donc lim -~
n—-+oo 4N

(ap +b3)(d—0)
4
d. Posons fu(z) = (an cos(nz) + b, sin(nx))2 pour n € IN et = € [c,d]. Alors les fonctions
fn sont continues sur [c, d], la, suite de fonctions (f,,) converge simplement sur [c, d] vers la

fonction nulle, et si on choisit un réel positif M tel que |a,| < M et |b,| < M pour tout n,
on a la domination

grand, puis I, > pour n assez grand.

VneIN Vz € [cd |fn(2)] < (2M)?,

la fonction constante z ~ (2M)? étant intégrable sur le segment [c,d]. Le théoreme de

convergence dominée s’applique donc, et donne lir_{l I, = 0. De l'encadrement
n—-—+oo

4
0<aZ+b2< i I,, valable pour n assez grand, on déduit hr—? (a2 +b2) = 0. Enfin,
C n—-+oo

0<a?<a?+b%, donc lim a2 =0, puis lim a, =0. De méme, lim b, =0.
- n—="n n’ n—-+too P n—-+oo n ’ n=Fo0 n

+oo R ﬁ —+o0 5
7. On admet que / e " du= 5 Calculer J(z) = / e~ " cos(xt) dt pour z réel.
0 0



Fixons un réel x. La fonction cosinus étant développable en série entiere sur IR, on a

2n +oo
J(x) = / (an), avec fn(t) = (—=1)" (Z I 27 ¢~ Posons I, = / $2n o=t dt,
n)! 0
2n+1 2n)!
alors Iy = g et Iy = n2+ I, (i.p.p.), d’'ott I, = %g (apres un calcul classique).
/7 a:2” n!
Donc / [ful = 5 32n , terme général d’une série convergente (facile), on peut donc
R

intégrer terme a terme, resultat :

2

= IX (1) a2 T -Z
DAL Do O R

“+o0

2 —+o00 +o0
8. On donne Z . Calculer I = / In(1+e %)dt et J :/ In(1 — e ") dt.
0 0

e La fonction f : t +— In(1 4+ e™%) est continue sur [0,4o00[ et 0 < f(t) < e7*, ce qui
assure son intégrabilité sur IR, et la convergence de l'intégrale impropre I. Pour ¢t > 0,
+oo (_1)7171 efnt (_1)7171 efnt

ona In(l+e ") = Z

n=1

, les fonctions f, : t — sont continues

n

et intégrables sur IR4, et / |fnl = = (terme général d’une série convergente) : on peut
R

n
donc intégrer terme & terme, cela donne

STROSDE WA e e

par un calcul classique, laissé au lecteur.

e La fonction g : t — In(1—e™") est continue sur |0, +00[, on a g(t) ~ Int en 0 ce qui assure
I'intégrabilité sur ]0,1], et g(t) ~ —e~" en +o0o ce qui assure son intégrabilité sur [1,+oo|

oo —nt
e
et la convergence de l'intégrale J. Pour t > 0, on a In(1—e™") = — Z , les fonctions
n=1
e 1
gn  t— — sont continues et intégrables sur IRy, et / |gn| = — (terme général
R n

d’une série convergente) : on peut donc intégrer terme & terme, cela donne

+oo +oo +oo 1 -
/ (;gn _7;/]11+gn_7;712_6'

b. Prouver 'égalité

+oo

Foo 2 Vi ‘ .
. Sachant que / e du = TR calculer I, = Vte " dt pour n entier naturel
0

0
non nul.

g
T = — .
0 (& 1 2 :111\/5



a.

Pour tout n € IN*, la fonction f, : ¢t — Vte ™ est intégrable sur IR puisque, par
croissances comparées, . 1121 t2fn(t) = 0. En posant nt = u?, on a
—r+00

+oo +oo
u 2 2udu 2 2
I, = — e = — Zem" du .
/O \/ﬁe n TL\/’E/(; ue Y

d
Ensuite, une intégration par parties avec f' = u e v = d—( ~3 67“2) donne
u

2 1 [*
nzif/ e du = VT .
ny/n 2 2n y/n

t t
. Pour t € R, posons s(t) = vt \fe =t Z e = Z fn(t). Les fonctions f,

et—1

sont continues et intégrables sur IR’} , la série de fonctlons g fn converge simplement sur
n>1
IR’} et a pour somme la fonction continue s, il ne reste plus qu’a s’assurer de la convergence

de la série de terme général / | fr.| pour pouvoir appliquer le théoréeme d’intégration terme

1
a terme. Or, / |fnl = / fn=1I, = £ 37 terme général d’une série de Riemann

convergente. Allons v donc

A A LY D S N VRS otr

+ n=1 n=1

10%*.

Soit f : [0,1] — R4 continue. Comparer les natures de lintégrale généralisée

J = f(> dt et de la série Z/ t" f
0 n>0

t
Posons g, (t) = t"f(t) pour n € N et t € [0,1], et g(t) = fc(—)t pour ¢t € [0,1]. Les

fonctions g, sont continues et intégrables sur [0,1] (puisque p.p.c. au point 1), la série
de fonctions Z gn converge simplement sur [0, 1] vers la fonction continue g. Donc, si la
n>0

série Z / t" f(t)dt = Z / |gn| converge, le théoreme d’intégration terme a terme
n>0 n>0
s’applique et donne l'intégrablité sur [0, 1] de la fonction g (i.e. la convergence de l'intégrale

J), et I'égalité
+oo
dt t" f
0 1 —t Z /



1—¢nt!
1—-1¢
pour n € IN et ¢t € [0,1[. Alors les fonctions s, sont continues sur [0, 1], la suite (s,)

converge simplement sur [0, 1[ vers la fonction continue g et on a, sur [0, 1], la domination
0 < s,(t) < g(t), avec g intégrable sur [0, 1[. Le théoréme de convergence dominée s’applique
1 1 nooe1
alors et donne / g(t)dt = lim sp(t)dt = lim (Z/ Ik (t)dt) . La série de terme
0 P

n—-+oo 0 n—-+oo

n
Réciproquement, supposons g intégrable sur [0, 1[. Posons s, (t) = Z gi(t) = f(¢)
k=0

1
général / gk (t) dt est donc convergente.
0

1
11.a. Pour p et g entiers naturels, convergence et calcul de I, , = / 2P (Inx)? dz.
0

1 +oo 1 +o0 —1
d 1 -nH"
b. Prouver les égalités / & — et / ¥ dr = E L
0 xrx — nn 0 — nn

a. La fonction fp,:x+— o (Inz)? est continue sur |0, 1[.
Elle est prolongeable par continuité au point 1, avec la valeur 0 si ¢ > 0, ou 1 si ¢ = 0.
Sip > 0, elle est aussi prolongeable par continuité en 0 avec la valeur 0, d’ou son intégrabilité
sur ]0, 1[. Sinon, de 111% Vz(Inz)? = 0, on déduit I'intégrabilité de fo , en 0 puisque fo ,(z) =
z—

1
(Inz)? = o(—) lorsque = — 0.

VT

1
Pour le calcul, notons d’abord que I, o = o pour tout p € IN. Puis, pour ¢ > 1, intégrons
p

par parties:

1 .p+1
Ipq:_/ . g(lnx)qfl dx:_LIpq*h
’ o P+1lx p+1 7
—1)94! —1)94!
et une récurence facile donne I, , = (=1)%q I (=1)%q

(p+ 1)q p,0 — (p+ 1)q+1.
1 =
b. e Posons g(z) = — pour z € ]0,1], alors g(z) = e * 1@ — g gn(x) en posant
ZI
n=0

(=D" 2" (nz)" (=n"

gn(z) = SR E— soit g, = ] fnn- Les fonctions g, sont donc intégrables sur
! . . !
I 1
10, 1[ d’apres a., on a / lgn| = / gn = | Z'n| = EESIE qui est clairement sommable,
0 0 :

on peut donc intégrer terme a terme, et cela donne

1d:1: 1 +oo +o0 1 +oo 1 +o00 1
@ w)) I DY ATACT IS pRamt ey
[S-[(2 | Sk

e Un calcul semblable (et, surtout, des justifications semblables) donne



/01 e /01 (io(—l)"gn(x))dx - +io(_l)n /Olgn(x)dx - :i (ntgzﬂ - :i (_2# .

n=0 n=0 =0 =1
1 ta—1 +oo (_1)n
12. Pour a > 0, montrer que / dt = Z .
o 1+t n+a
n=0
Notons d’abord que:
a—1
- I'intégrale du premier membre est bien convergente puisque —— avec 1—a < 1;
1+t 50 ti-a

- la série du second membre est bien convergente, en vertu du théoreme spécial des séries

. . . 1 - .
alternées, puisque la suite (T) est décroissante et tend vers zéro.
n+a

Toutefois, cette série n’est pas absolument convergente, et ceci nous empéche d’appliquer le
théoréme d’intégration terme & terme pour conclure. En effet, pour ¢ € |0, 1], on peut écrire

+oo
te
T = ¢o! Z Z(fl)” t2Tm=1 et, si Pon pose f,(t) = (—1)" t*t"~1 alors la
n=0 n=0

1
série de terme général / ‘ fn(t)‘ dt = est divergente!
0 n

Travaillons alors sur une somme partielle de la série: Pour tout n € IN*, on a

zn: (/;i)s _ 241(_1)%;@“1 gt — /1 (Z":(_l)kt(ﬂrkfl) dt :/ a1 (zn: )

k=0 0 “k=0 k=0

(il n’y aucun probléme pour intervertir somme et intégrale, tant qu’il s’agit d’une somme
finie!). On reconnait maintenant sous I'intégrale une somme partielle d’une série géométrique,
et cela on sait 'expliciter. Donc

"o(=1)F 1 1 — (=)t ta—1 1 tat+n
Z( ) =/ t‘H#dtz/ dt + (=1)" / dt .
k=0k+a 0 1+t 0 1+ 0 1+t

Pour parvenir & nos fins, il ne reste plus qu’a prouver que l'intégrale R, = /
0

1 ta—f—n
14+t

tend vers 0 lorsque n — +o0o. C’est facile puisque

1 ga+n 1 1
Oan:/ dtg/t””dt:i — 0.
o 141 0 a+n+1 notoo

Remarque. Une variante consistait a appliquer le théoréeme de convergence dominée a la
n

suite (sy,) des sommes partielles, avec s, = E fr-
k=0




Intégrales dépendant d’un parametre.

tee At
13. Soit f la fonction définie sur IR, = —_—.
oit f la fonction définie sur IR, par f(x) /1 O

a. Montrer que f est définie et monotone sur IR’ .

b. Trouver une relation entre f(x) et f(z + 1). En déduire un équivalent de f(x) lorsque
x — +o00, et aussi lorsque z — 0.

a. Soit lapplication ¢ : 1 . Alors, pour x > 0 fixé, on a
(2,t) » ————
tr(1+1t)
1
o(x,t) ~ ——= ;comme z+ 1> 1, on a prouvé la convergence de l'intégrale impropre,
t—+oo tTt1
c’est-a-dire Vexistence de f(x).
Montrons la décroissance de f sans calculer sa dérivée : si z et y vérifient 0 < = < y,
alors, pour tout ¢ € |1,+o00[, on a ¢(x,t) > ¢(y,t) ; en intégrant cette inégalité, on obtient
f(z) > f(y) : I'inégalité est stricte car on intégre des fonctions continues et non identiques.
La fonction f est donc strictement décroissante sur IR’ .

b. e On a, pour tout = > 0,

too g 117 1
R A

t=1

e Comme f est décroissante sur IR’ , on a, pour tout = > 1,
1
f@)+ f@+1) S20(@) £ fw— 1)+ f(@), soit o < fla) <

1
d’ou ’équivalence f(x) N oo Oa
rz——4o0 21

1
e D’autre part, f(x) = — — f(z + 1) ; lorsque z tend vers zéro, f(z + 1) est borné
x

1
(0 < f(x+1) < f(1) pour & €]0,1[) et est donc négligeable devant — qui tend vers
x

1
Iinfini. Donc f(z) ~ —.
z—0 T
) L . O Int L
Annexe. La fonction ¢ admet une dérivée partielle ——(z,t) = —————. En considérant
O t=(1+1)

0
a > 0, la majoration ’a(p(x,t)‘ < est valable pour tout (z,t) € [a,+o0[X[1, +00]
x

ta+1

et, la fonction t — est intégrable sur [1,+oo[ car, pour ¢ assez grand, on a

Int 1
tat+l < t1+%

ta—i—l

0 < (croissance comparée des fonctions puissances et logarithmes) ; on a

ainsi prouvé que f est de classe C! sur [a, +oo[ pour tout a > 0, donc sur R, avec



T Intdt
Vr € R ! :f/ _—.
TeRL  f(@) L (11

Donc f'(x) < 0 et on retrouve bien ainsi la stricte décroissante de f sur IR’ (question a.).

3 Arct -tant
14. Pour x > 0, calculer g(z) = / Arctan(z - tant)
0 tant

Arct tant
Posons f(x,1) = %ﬁ)
an

ensemble (ce qui entraine la continuité des applications partielles) et, si A > 0, la majoration

o) < Arctantd tand)

pour (z,t) € Ry X ]07 g [ Ainsi, f est continue sur cet

tant

valable pour (z,t) € [0, A] x } 0, g {, prouve la définition et la continuité de g sur [0, A] pour
tout A > 0, donc sur IR : on a, en effet, %iH(l) pa(t)=Aet lim p4(t) =0 ; la fonction @4,
— t—%

prolongeable en une fonction continue sur {0, g} , est intégrable sur }O, g {

0 1
P;)}II‘ tout (z,t) € Ry X }0, g {, on a a—i(x, t) = ER—— et la majoration immédiate

3 (z, t)‘ < 1 (la fonction constante ¢ +— 1 étant intégrable sur 'intervalle borné ]0, g [ )
x

z dt
montre que g est de classe C' sur Ry et ¢'(x) = / ———————. Le calcul de cette
o 1+ z2 tan®t

intégrale (par exemple, en posant 7 = tant, puis en décomposant en éléments simples la
1

fraction AT T +22T) avec T = 72), donne ¢'(x) = ﬁ Comme ¢g(0) =0, on a

T [T dt T
= — _— - 1 1 .
Ve e Ry g(x) 5 ) T51 2 n(l+x)

—+oo
15. Soit g(z) :/ Arctan(at) dt.

0 1+¢2
a. Montrer que g est continue sur IR, de classe C' sur IR* et expliciter ¢'(z).

Int
2 -1

Arct t
Lﬂ(x) pour (Jj,t) € R x ]R+. La majoration |f(1'7t)| < 2(%4_152)
0] t
permet de prouver que g est définie et continue sur IR. On a 6—£(x, t) = A+ 2215 2)
t

1+ a2t2)(1 + t2)’

1
b. Calculer directement g(1) ; en déduire la valeur de I = / dt.
0

a. Posons f(z,t) =

et, si on fixe a > 0, la majoration valable pour

gim,t)‘ < (



(z,t) € [a,+oo[xR,, permet de montrer que g est de classe C* sur [a, +oo[ pour tout
a > 0, donc sur IR}, et de méme sur IR" (g est une fonction impaire). La formule de

Leibniz (dérivation sous le signe / ) donne, pour tout € R* :

/ _ oo tdt 1 e du
g(m)_/o (1+a262)(1+¢2) 2 /0 1+ 22u)(1+u) |

On décompose alors en éléments simples :

1 1 ( 22 1 ) Szl 41
1+ 22u)(1+u) 22—1\1+22u 1+u v '
Donc, si |z| # 1,
—+
&) = 1 1n(1+x2u) T ~ In(z?) Infzl
g o 2(22 - 1) 1+u B 22 —-1) 22-1°
oo tadt 1 [T du 1 gt 1
Enfin, ¢'(1) = ¢/(—1) = B 7:%7} S
ufin, g'(1) = ¢'(=1) /0 (1+2)2 2/0 1+ u)? 20 +wlo 2
oo Arctant 1 oo g2
b. Directement, g(1) = / % dt = [2 (Arctan t)z] - par une intégration par
0 0

1
parties. Par ailleurs, pour tout a > 0, on a (*) : / g'(z)dz = g(1) —g(a) car g est de classe

a
C' sur IR, donc sur le segment [a, 1]. Mais la fonction ¢’ est intégrable sur ]0,1] car elle
est continue sur cet intervalle et que ¢'(z) ~ [Inz| et on sait que la fonction = — |In x|
x—0

est intégrable sur |0, 1]. Comme enfin g est continue sur IR, en faisant tendre a vers 0 dans
1

(*), on obtient /0 g'(z) dz = g(1) — g(0), soit

1 2
Inz s
——dr = —.

/09:271 T

—xt?

—+o0
e
16.a. Soit la fonction ¢ :z +— / 7 dt. Montrer que g est continue sur IR, de classe C*
0

sur R, et écrire une équation différentielle du premier ordre vérifiée par g sur IR}, .

+oo
b. En déduire la valeur de l'intégrale de Gauss G = / e du.
0

efth
a. La fonction g est définie sur IRy et, si on pose f(z,t) = T2 pour z > 0ett >0, la
fonction f est continue sur (IR+)2 et la majoration 0 < f(z,t) < T prouve que g est

continue sur R;.



2
7t2 efajt

Tie Si S = [a,b] est un segment inclus

Pour tout (z,t) € (IRy)?, on a %(w,t) =
dans R, (0 <a <b),ona

—at?

)

2
V(z,t) € S x Ry ’gi(x,t)‘glit?e

cette derniere fonction de la variable ¢ étant intégrable sur IR4. On en déduit que g est de
classe C' sur tout segment S inclus sans IR’,, donc sur IR’} , et que

+oo R
VeeR, ¢(z)= —/ dt = g(x) — / e " dt .
0 0

Le changement de variable linéaire tv/z = u dans cette derniére intégrale montre que g
vérifie, sur IRY , '’équation différentielle

400 t2 e—wtz

1+ ¢2

G
g'(z) —g(z) = VA
. En posant g(x) = A(z) e® (méthode de “variation de la constante”), on obtient
—x
N (z) = —G —= donc (le choix de la borne fixe 0 étant permis car on a une intégrale

Jz

généralisée convergente)
x eft
Az) = -G / C_dt+c.
0o Vit

La fonction A : z — e~ % g(z) étant continue sur IR, de A(0) = ¢(0) = g, on tire C' = — et

(@) = € A(x) = e <72T—G/Oze\;;dt) .

—axt?

+oo
Enfin, la majoration immédiate 0 < A(z) = e * / ﬁ dt < g e~ % montre que
0
lim A(z) =0, donc
Tr—+o0
+oo _—t +oo —u?
T_a C_dat=a 2u du = 2G2 .
2 0 \/?E 0 u

Comme G est positif, on conclut

+oo 9
/ e " du= ﬁ .
O 2

1
t—1
17. Pour = > —1, on pose g(z) = / — t7 dt.
o Int
a. Montrer que g est bien définie et de classe C* sur | — 1, 4+-ocl.

b. Calculer ¢'(z). En déduire g(z).



(t—1)t

Int
fixant x €] — 1,400], du fait que Int ~ ¢t —1, on constate que lim f(z,t) = lim¢t* = 1,
t—1 t—1 t—1

a. Pour (z,t) €] — 1, 400[x]0, 1], posons f(z,t) = , cela pourra toujours servir. En

lintégrande est donc prolongeable par continuité au point 1 (Uintégrale est “faussement
impropre” en ce point). Par ailleurs, lorsque ¢t — 0, on a

Flat) oy =)

50 [Int| - |Int|t—= t—=

1
et comme —z < 1, la fonction ¢ — -— est intégrable sur 10,1] ; par comparaison de
fonctions positives, on a l'intégrabilité de ¢t — f(x,¢) sur |0, 1[, d’olt Pexistence de g(z).
0
On a ensuite —f(x,t) = (t—1)t" = t*T' —¢*. La fonction f est de classe C' sur
] — 1, 4+00[x]0, 1], et si on fixe a > —1, pour (z,t) € [a, +00[X]0, 1], on a la domination

la fonction ¢ — (1—t)t* étant intégrable sur ]0, 1] puisque a > —1. Le théoréme de dérivation
des intégrales paramétrées s’applique alors : la fonction g est de classe C! sur [a, +o0[ pour
tout a > —1, elle est donc de classe C' sur | — 1, 4-oc], et...

b.
1 1
1 1 1
~g'(x) = / g(x,t) dt = / (¢t — ") dt = - =— .
o Ox 0 r+2 z+1 (x+1)(x+2)
2
Par intégration, on a g(z) = In (%) + C, ot C est une constante. Mais, pour ¢ €]0,1],
x

on a par concavité du logarithme, Int < ¢ — 1, soit (ce sont des quantités négatives) :

< 1. Donc

t
|Int| > |t — 1] =1 —t, donc ‘
Int

— 0.

1
tmdtﬁ/ ¥ dt =
0 r+1 a=+o00

oo =oto) = [ [

On en déduit que C =0, donc Vo €] —1,+00[ g(z)=1In (

x+2)
x+1/°

1 ™
18. On pose g(z) = — / cos(z sint) dt.
T Jo

a. Montrer que g est définie et de classe C? sur IR.
b. Déterminer une équation différentielle linéaire d’ordre deux dont g est solution.
c. Montrer que g est développable en série entiere sur IR.

d. A l'aide de I’équation différentielle obtenue en b., obtenir ce développement.

a. Posons f(x,t) = cos(z sint) pour (z,t) € Rx [0, 7]. Alors x — f(z,t) est de classe C* sur IR
et on a



of . . . O*f . 9 .
%(x,t) = —sin(t) sin(z sint) et @(x,t) = —sin“(¢) cos(x sint) .
- . of .

Les applications partielles t — f(z,t) et ¢ — —=(x,t) sont continues sur le segment [0, 7]
donc intégrables sur ce segment. Et on a la domgicnation
0% f
0x2
la fonction constante ¢ — 1 étant intégrable sur le segment [0, 7]. Le théoréme de dérivation
des intégrales & parametre s’applique et montre que g est de classe C? sur IR. Ce théoreme
donne aussi

V(z,t) € R x [0, 7] (x,t)’ <1,

1 (" 1 (7
g(x)=—= / sin(t) sin(z sint)dt et ¢’ (z)=—— / sin?(t) cos(x sint)dt .
0 0

s s

b. Intégrons par parties en partant par exemple de —7 g’(z), on dérive le facteur sin(z sint)
et on primitive le facteur sin(t):

—-ng(x) = / sin(t) sin(z sint) dt
0
= [ = cos(t) sin(zsin t)]zg +x / cos?(t) cos(zsint) dt
0
= / (1 —sin®t) cos(zsint) dt
0
= mag(@)+rag’(z),

donc g est solution de ’équation différentielle xy” +y' + zy = 0.
c. La fonction cosinus étant développable en série entiere sur IR, on peut écrire, pour tout z,

IR (L1)m a2n gin2n

(2n)!

et il ne reste plus qu’a intervertir série et intégrale. Or, pour tout z réel fixé, si on pose
Fult) = (—1)" 2™ sin®"(t)
" (2n)!

, on a la convergence normale de la série de fonctions E fn

2n

sur le segment [0, ] puisque || fr]loo = ; est le terme général d’une série convergente,

(2n)!

I'interversion est donc permise. On obtient alors

= S (_]_)Tl 2n
v € R g(x) Z )] Woa“™
n=0 :

us

en posant W, = / sin®"(t) dt (intégrales de Wallis). La fonction g est donc développable

0
en série entiere sur IR.



d. On pourrait calculer par récurrence ces intégrales de Wallis et obtenir le développement
explicite, mais I’énoncé demande d’exploiter I’équation différentielle!

400
Posons donc f(x Z anz", donc z f(x Zan 12", puis f'(z) = Z(n + Dapprz™
n=0 n=1 n=0
+o0
et x f'(x) = Z n(n + 1)a,+12". On réinjecte dans I'équation différentielle:
n=1
+o0 +oo +oo
Z nn+ Dap412" +Zn+1an+1x —|—Zan 12" =0,
n=1 n=0 n=1

soit, grace a I'unicité du développement en série entiere,

ayp = 0
Vne IN* (n4+1)%ap1 =an1
On en déduit que agpy1 = 0 pour tout p (mais ce n’est pas une surprise, la fonction f étant
évidemment paire) et que
(=1 (=1)”
Vp e IN = = )
3 T e -2 22T 2l

Enfin, ag = f(0) = 1. Finalement

VzeR = > L
T HGEDY 22 (pl)2 o
p=0
19. Soit f : [0,1] — IR", une fonction continue. Montrer que ¢ : x / “dt est de classe

8=

C! sur IR. Calculer ¢(0) et ¢'(0). En déduire lim (o(x))
xr—r

Posons h(z,t) = (f())" = €” nf® pour (z,t) € R x [0,1] ; alors h est continue (car
produit, composée) sur IR x [0, 1] (donc V'application partielle ¢ — h(z,t) est continue sur
le segment [0, 1], ce qui garantit déja lexistence de ¢(x)), et admet une dérivée partielle

O 1) = In (F(1) - (10))"

Si S est un segment de IR, alors Papplication —, qui est continue sur le pavé S'x [0, 1] (partie

ox

Oh
fermée et bornée de IR?), est bornée sur ce pavé : V(x,t) € S x [0,1] ‘&E($7t) < Mg ;

comme la fonction constante ¢ — Mg est intégrable sur le segment [0, 1], on a une condition
de domination qui permet d’affirmer que ¢ est de classe C! sur le segment S. La fonction
@ est alors C! sur IR, et



VvieR  ¢'(z)= ah(x,t) dt:/0 In(f(®) - (f@®)" dt.

[0,1] 0z
1 1
En particulier, ¢(0) = / dt =1 et ¢'(0) = / In (f(t)) dt = / Inof, notons K cette
0 0 [0,1]

derniere intégrale.

La fonction ¢ admet donc un développement limité a lordre 1 en zéro, a savoir
o(z) =14 Kz + o(x), puis

1 (Kz+o(z)) =K +o(1),

%ln(go(:ﬁ)):é ln(1—|—Kx—|—o(a:))=;

1
autrement dit lim — In ((p(:l:)) = K ; en prenant ’exponentielle, on a
z—0 X

lim (gp(m))% =ef =exp (/01 In (f(t)) dt> .

%
20. On pose f(x) = / (sint)” dt.
0
a. Déterminer I’ensemble de définition de f.
b. Montrer que f est de classe C! sur son ensemble de définition, et déterminer ses variations.

c. Pour € Dy, on pose g(z) = (x+1) f(z) f(x +1). Montrer que Vo € Dy g(z+1) = g(z).
d*. Montrer que g est constante sur Dy.

e—t

+oo
21. 0 =
n pose f(zx) /0 o

a. Ensemble de définition de f.
b. Montrer que f est de classe C* sur Dy.

dt.

c. Donner un équivalent de f(z) lorsque x tend vers +oo.

d. Donner un équivalent de f(z) lorsque = tend vers 0.

€

€ . e .
~ —— fonction intégrable au voisinage de +oo.
T+t tatoo ¢

Siz > 0, intégrande est une fonction de ¢ continue sur [0, +o00[ d’ott 'existence de I'intégrale
grace & (1).

a. Dans tous les cas, on a (1):

Sizx=0,ona — ~ =, dou lanon-intégrabilité.

t t—=0t
Si x < 0, on retrouve le méme probleme d’intégrale divergente en la borne —z € IR}
En conclusion, Dy = R’

—t oF —t
b. Posons g(z,t) = ;—H, alors z — g(x,t) est de classe C™, avec a—xz(x, t) = (—l)kk!@fw.
Si on fixe a > 0, alors



g kle™t k!
V(z,t) € |a,+oo[xIR ’— z,t’< < et
(z,1) €[ [ + axk( ) = (t+a)k+l = ghtl
fonction de t intégrable sur IR . Cette domination permet d’affirmer que f est de classe
C* sur R avec

€7t

“+o0o
* (k) — (_ k | - -
VkeN VeeR:L  f®(2)=(-1) k-/o @i o

et et Foo gt 1
c.Ona ~ ——. On peut conjecturer que f(z) ~ / —dt = —, il reste a le
T+t rxato x r—+00 0 x X

prouver! Remarquons pour cela que
1 Foo 1 1 oo pet 1t
ogf_f(x):/ e—f(f— )dt:/ eidtg—/ te " dt .
x o x x+t o x(z+t) z2 Jy

+oo
L’intégrale (convergente!) J = / te”" dt est une constante, on a donc prouvé que
0

f(z) — l = O(%) en +00, ce qui entraine f(x) — % = O(%), soit f(z) ~ 1

x z—+oo T
d. Posons le changement de variable v = x + ¢, on a alors

+o0 eT U +o0 e U o0 e~ U
f(a:)z/ du = e” / —du No/ du .
- u - u =0 [ u

400 _—u 1 d 1 _—u _ 1 +oo —u
Or, / ¢ qu= / au +/ A du+/ ¢ du. Le premier terme vaut — In(z)
z u . U - u 1 U

et tend vers 4+oo lorsque = tend vers 0, le deuxiéme a une limite finie qui est 'intégrale

—Uu

convergente / —— du, le troisieme est constant. En conclusion, f(z) ~ —In(z).
0 u xT—>

22. Soient w,v : I — IR continues, telles que Vz € I wu(z) < v(z). Soit f : I xR — IR continue.

v(z)
Montrer que 'application g : x — f(z,t) dt est continue sur I. On pourra poser
t=u(z)+ s (v(z) —u(z)), ot s désigne une nouwvelle variable.

Le changement de variable proposé donne

Ve el g(z) = (v(z) — u(z)) /0 flz, (1=s)u(z)+sv(z))ds.

La fonction ¢ : (z,s) — f(z, (1 — s)u(z) + sv(x)) est continue sur I x [0,1] et, si S est
un segment inclus dans I, sa continuité sur la partie fermée bornée S x [0, 1] de IR? permet
de la majorer en valeur absolue par une constante Mg sur cette partie. Comme la fonction
constante s — Mg est intégrable sur le segment [0, 1], ceci nous fournit une domination
valide pour appliquer le théoréeme de continuité des intégrales a parametre: 'application

1

T ; [z, (1= s)u(z)+sv(z)) ds



est donc continue sur I. Comme il en est de méme de v — u, on déduit, par produit, que g
est continue sur I.

Transformées de Laplace et de Fourier. Intégrales eulériennes

Si f IR — C est une fonction continue par morceauz et intégrable sur R, on note T'f ou

encore f la fonction définie par
“+o0

vreR  Tf(x) = fla) :/ F(t) e=nt dt

— 00
La fonction f =T f est la transformée de Fourier de f. L’application T : f — T f est
la transformation de Fourier.

+o0 +oo
23. On admet / e~ dz = /7. Montrer que I'application f: a > f(a) = / e~ etz

est définie etoiiérivable sur IR. Trouver une équation différentielle vérifiée pz;; f, en déduire
son expression.

Pour (a,z) € R?, posons g(a,x) = e e~ Alors g est de classe C' (et méme C*)
sur IR?, et pour tout @ € IR fixé, 'application partielle 2 — g(a, x) est intégrable sur IR
puisque |g(a, z)| = e (remarquons que cela nous fournit une domination par une fonction
intégrable ne dépendant que de x, ce qui garantit non seulement la définition de f, mais
aussi sa continuité sur IR).

0] 0
On a %(a,x) = —izg(a,z), d’ou %(a, x)| = |z| e*‘TQ, la fonction ¢ : & — |z e~ étant
1
intégrable sur IR puisqu’elle est o(—z) au voisinage des deux infinis. On a ainsi obtenu une
x

condition de domination qui permet d’affirmer que f est de classe C* sur IR, avec (formule
de Leibniz)

/ i oo —z? —iaz
fla)=—i ze e dz .

— 00
Une intégration par parties (en choisissant v’ = —z e_””2) conduit a ’équation différentielle
!
du premier ordre f'(a) = ~3 fla) (détail du calcul laissé au lecteur). On en déduit

042

que f(a)=Ce *.Comme f(0) = /7 (intégrale de Gauss, donnée par I'énoncé), on a
()(2

finalement f(a)=+v7e .

24.a. Si f : IR — C est continue par morceaux et intégrable sur IR, montrer que sa transformée
de Fourier f est définie sur IR, et que c’est une fonction continue et bornée sur IR.

b. Soit la fonction “créneau” ¢ définie par ¢(t) = 1sit € [—1,1] et ¢(¢) = 0 sinon. Calculer
sa transformée de Fourier z — @(z).

c. Soit a un réel strictement positif, soit la fonction f définie par Vi € R f(t) = el
Montrer que f est intégrable sur IR et expliciter sa transformée de Fourier f.



d. On suppose dans cette question que f : IR — C est de classe C! et intégrable sur IR, et que
sa dérivée f’ est intégrable sur IR. Montrer que tlim f@®) = , 1i£1 f(t) = 0, puis prouver
——00 —+o0

la relation Va € R f’(x) =iz f(x)

a. On a |f(t) e ™| = |f(t)|, et f est supposée intégrable sur IR donc, pour tout réel =, la

fonction t — f(t) e est intégrable sur IR, et l'intégrale impropre définissant f(x) est
convergente pour tout réel x.
Pour (z,t) € R?, posons h(z,t) = f(t) e **. La fonction h est continue par rapport i
la variable z, continue par morceaux par rapport a la variable ¢, et on a la domination
|h(z,t)] < |f(t)] (qui est en fait une égalité) avec f intégrable sur IR. Le théoréme de
continuité sous le signe intégrale s’applique alors et garantit la continuité de la fonction f
sur IR.

La fonction f étant intégrable sur IR, on peut écrire

wem (fwl=| [ setal < [mea= [ =1,

—0o0
ce qui montre que f est bornée sur IR.

b. La fonction ¢ est continue par morceaux sur IR et intégrable (car elle est nulle en dehors
1

du segment [—1,1]), et Vz € R o(x) = / e dt. Pour z = 0, on obtient 3(0) = 2.
-1
Pour x # 0, on a

sinx

o i —ix x
g —_ :2
Bla) == (77— ) =222

La transformée de Fourier ¢ de la fonction ¢ est donc ¢ = 2 sinc, ol sinc est la fonction

. . N . smoT ) e s .
sinus cardinal, a savoir z — —— prolongée par continuité en zéro.
x

c. La fonction f est intégrable sur [0, +oco car, sur cet intervalle, on a f(t) = e~ " et c’est du
cours! Comme f est paire, elle est aussi intégrable sur | — 0o, 0], donc elle est intégrable sur

IR. Bon, on calcule

—~ +oo ) 0 _ +o00 .
Vr e R flx) = / e—altl g=izt qp — / ela—iz)t 4z +/ e (atiz)t qu
0

— 00 — 00

_ [ 1 e<a_m)t} = [ 1 e_<a+m)t} foe
a— 1T t——o00 a+1ix t=0
1 1 2a

a—ir a-+ir a4+’

Rappel : on a par ezemple lim e~ @Tt =0 car ‘e_(a+i””)t| =e — 0.
t—+oo t—+oo

t
d. Pour tout ¢t € IR, ,on a f(t) = f(0) —I—/ f'(u)du et l'intégrabilité de f’ sur IR montre que

0
I'intégrale du second membre a une limite finie lorsque t tend vers +o0o. Ainsi, la fonction



“+o0
f admet une limite finie [ en +o0o, précisément | = t_l}gl f() = f(0) —|—/ f/(u) du. Si

0
cette limite [ n’était pas nulle, alors au voisinage de 4+00, on pourrait écrire f(t) ~ [ et, la
fonction constante [ n’étant évidemment pas intégrable sur [0, +oo], la fonction f ne serait
pas non plus intégrable sur cet intervalle. En conclusion, [ = 1+im f =0. On prouve de méme
o0

que lim f = 0.

Soit a > 0. Intégrons par parties :

/ et ar = 7ty ] T via / et

s t——oo —0

Cette i.p.p. est justifiée par I’étude précédente (le terme entre crochets admet des limites
finies, ici nulles, aux bornes de I'intervalle d’intégration), il reste alors la relation

-~

Ve e R ?(J;):zxf(m)

Si f : Ry — C est une fonction continue par morceauz, la transformée de Laplace de
f est la fonction L[f] définie par N
o0

clfp) = / P F(8) dt

pour tout réel p tel que cette intégrale est convergente.

25. Soit f : IRy — C une fonction continue. On suppose qu’il existe un réel pg tel que la fonction
t+> e Pl f(t) soit intégrable sur R .
a. Montrer que la transformée de Laplace L[f] est définie et continue sur I'intervalle [pg, +00].
b. Montrer que la fonction L[f] est de classe C* sur lintervalle ouvert |pg, +00[ et que, sur
cet intervalle, on a, pour tout n entier naturel, la relation (E[f])(n) = (=1)" L[gn], ol gn
est la fonction définie par g, (t) =t f(t).

a. Soit h : [pg, +oo[xIRy — C, (p,t) — e P! f(t). Alors h est continue et on a la domination

V(p,t) € [po, +oo[xRy  |h(p,t)| < e ™ |f(#)],

cette fonction majorante étant intégrable sur IR, . Le théoréme de continuité des intégrales
dépendant d’un parametre permet alors d’affirmer que la fonction £[f] est définie et continue
sur [pg, +0oo[.

n
op™

On a alors la domination

b. Pour tout n € IN, on a (p,t) = (=1)" t" e P! f(t) = (—=1)" e P! g, (t). Fixons p; > po.

o"h _ _
——(p, t)‘ =e lgn(t)] < e pit l9n ()],

Vip.t) € ool Ry |

et la fonction ¢ — e P! |g,(t)| est intégrable sur IR, : en effet, par croissances comparées,

on a tliin t" e~ @7t — 0, donc e g, (t)] = " e P [f(t)| est négligeable devant
—+00

e Pol | f(t)| lorsque t tend vers +oo. On peut donc appliquer le théoreme de dérivation



des intégrales & parametre, et en déduire que la fonction L[f] est de classe C" pour tout n,
donc de classe C* sur tout intervalle de la forme [p;, +oo] avec p; > po, donc finalement
sur |pg, +oo[. La formule de Leibniz donne alors
(n) +oo o"h N +00 ot "
(LL1) ™ (p) = g PO = (D" | e gu(t)dt = (-1)" Lgu)(p) -

0

26. Théoréme de la valeur finale

Soit f : IRy — C, continue par morceaux, admettant une limite finie en 400 : . ligl f) =1
—+00

Montrer que la transformée L[f] est définie (au moins) sur IR’ et que

plgg)gp Llflp) =1=lim f(t).

Pour p > 0, le changement de variable linéaire x = pt donne

p LIf(p) = /Om 7(5) e ar.

On veut montrer que cette intégrale tend vers [ lorsque p tend vers 0. Utilisons pour

cela le théoreme de convergence dominée a parametre continu. Pour tout z € IR}, on a
x x

lim f(f) e ® = le " Les fonctions = f(f) e ¥ et x — le * sont continues par

p—0 p p
morceaux sur IR} . Enfin, la fonction f est bornée sur IR, (elle est bornée au voisinage de

+00, i.e. sur un certain intervalle de la forme [A, +o00[ avec A > 0 car elle admet une limite
finie en +o00, et elle est bornée aussi sur [0, A] car elle est continue sur ce segment), on a
donc la domination

W) R xR |7(2) e < ol = e

cette fonction ¢ étant intégrable sur IR’ . Le théoreme s’applique donc et donne

+oo
;g%pﬁ[f](p):/o lede =1,

ce qu’il fallait démontrer.

Exercices avec Python
27. Soit ¢ :]0,1] — IR définie par g(x) = z”.
a. Prolonger g par continuité en 0.

b. Représenter graphiquement g. Justifier 'allure de g au voisinage de 0. Déterminer les coor-
données du minimum.

1
c. Donner une valeur approchée de I = / g(z) dz.
0



pour tout n entier naturel. Montrer que

! —1)" n!
d. On admettra que / (z Inz)" do = (( )" n
0

n+ 1)ntl
“+oo _
B (71)n 1
1=
n=1

e. Ecrire une fonction calcul(e) retournant la valeur de 'intégrale I avec une précision e
passée en argument.



