
EXERCICES de CALCUL INTÉGRAL PSI2 2025-2026

Convergence dominée et intégration terme à terme.

1. Pour n ∈ IN∗, on définit fn : x 7→ x

n2
e
− xn .

a. Montrer que chaque fonction fn est intégrable sur IR+.

b. Calculer

∫ +∞

0

fn(x) dx.

c. Montrer que la suite (fn) converge uniformément sur IR+ vers une fonction intégrable f .

d. Quelle remarque peut-on faire ?

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. La fonction fn est continue sur IR+ et, par croissances comparées, lim
x→+∞

x2fn(x) = 0, donc

fn(x) est négligeable devant
1

x2
lorsque x tend vers +∞. Ainsi, fn est intégrable sur [0,+∞[

pour tout n ≥ 1.

b. Calcul facile: pour tout n ∈ IN∗, on a

∫ +∞

0

fn(x) dx = 1.

c. Pour tout x ∈ IR+ fixé, on a lim
n→+∞

fn(x) = 0 (évident), la suite de fonctions (fn) converge

donc simplement sur IR+ vers la fonction nulle. Une étude de variations montre que, pour
tout n ∈ IN∗, on a

‖fn‖∞ = sup
x∈IR+

|fn(x)| = fn(n) =
1

en
−→

n→+∞
0 ,

donc la suite de fonctions (fn) converge uniformément sur IR+ vers la fonction nulle.

d. On a lim
n→+∞

∫ +∞

0

fn(x) dx = 1, mais

∫ +∞

0

(
lim

n→+∞
fn(x)

)
dx = 0. Ainsi, sur un intervalle

quelconque, la convergence uniforme d’une suite de fonctions ne permet pas d’intervertir
limite et intégrale, les théorèmes vus dans le cas d’un segment ne sont plus valables.
C’est pourquoi, sur un intervalle quelconque, on invoquera le théorème de convergence
dominée, dont les hypothèses sont différentes.

2. Soit l’intégrale J =

∫ +∞

1

e−t

t
dt (que l’on ne cherchera pas à calculer).

Donner un équivalent simple de In =

∫ +∞

1

e−x
n

dx lorsque n tend vers +∞, faisant

intervenir l’intégrale J .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

La fonction f : t 7→ e−t

t
est intégrable sur [1,+∞[ car elle est négligeable devant

1

t2
(croissances comparées) en +∞, cela assure l’existence de l’intégrale J .

Pour les mêmes raisons, pour tout n ∈ IN∗, la fonction x 7→ e−x
n

est intégrable sur [1,+∞[
d’où l’existence de In. Par le changement de variable t = xn, on obtient

In =
1

n

∫ +∞

1

fn(t) dt , avec fn(t) = t
1
n
−1

e−t .

Or, pour tout t ∈ [1,+∞[, on a lim
n→+∞

fn(t) = f(t) =
e−t

t
(convergence simple), et

(l’exposant de t étant négatif) 0 ≤ fn(t) ≤ e−t, la fonction ϕ : t 7→ e−t étant intégrable sur
[1,+∞[ (condition de domination). On applique donc le théorème de convergence dominée :



lim
n→+∞

∫
[1,+∞[

fn =

∫
[1,+∞[

(
lim

n→+∞
fn

)
=

∫ +∞

1

e−t

t
dt = J ,

puis In ∼
J

n
.

3. Soit f : [0, 1]→ IR continue. Déterminer lim
n→+∞

∫ 1

0

f(tn) dt.

4. Soit f : [0, 1] → IR continue, avec f(1) 6= 0. Trouver un équivalent de In =

∫ 1

0

tn f(t) dt.

On pourra utiliser le changement de variable u = tn+1.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Le changement de variable proposé donne (n+ 1) In =

∫ 1

0

f
(
u

1
n+1

)
du.

Posons gn(u) = f
(
u

1
n+1

)
pour n ∈ IN et u ∈]0, 1], alors la suite de fonctions (gn) converge

simplement sur ]0, 1] vers la fonction constante de valeur f(1) par continuité de f au point 1.
D’autre part, f étant continue sur le segment [0, 1], elle est bornée sur ce segment: il existe
M ∈ IR+ tel que ∀x ∈ [0, 1]

∣∣f(x)
∣∣ ≤M . On a alors la domination

∀u ∈ ]0, 1] ∀n ∈ IN
∣∣gn(u)

∣∣ ≤M ,

la fonction constante u 7→M étant intégrable sur ]0, 1].

Le théorème de convergence dominée permet alors d’affirmer que

lim
n→+∞

∫ 1

0

gn(u) du =

∫ 1

0

(
lim

n→+∞
gn(u)

)
du =

∫ 1

0

f(1) du = f(1) .

Donc lim
n→+∞

(n+ 1)In = f(1) et, comme f(1) est non nul, In ∼
n→+∞

f(1)

n
.

5. Pour n entier naturel, on pose In =

∫ π
2

0

cosn(x) dx.

a. Montrer que la suite (In) tend vers zéro en décroissant.

b. Montrer la convergence de la série de terme général (−1)nIn et calculer sa somme.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. On a In+1 − In =

∫ π
2

0

cosn(x)
(

cos(x)− 1
)

dx ≤ 0, puisque la fonction que l’on intègre est

négative. Donc la suite (In) est décroissante.

Posons fn(x) = (cosx)n. Les fonctions fn sont continues sur S =
[
0,
π

2

]
, la suite de

fonctions (fn) converge simplement sur S vers la fonction f continue par morceaux, telle

que f(0) = 1 et f(x) = 0 pour x ∈
]
0,
π

2

]
. Enfin, on a la domination [fn(x)| ≤ 1, la fonction



constante 1 étant intégrable sur S. On peut donc appliquer le théorème de convergence
dominée (interversion limite-intégrale) qui donne

lim
n→+∞

In = lim
n→+∞

∫
S

fn =

∫
S

lim
n→+∞

fn =

∫
S

f = 0 .

b. Du coup, la série
∑
n≥0

(−1)nIn converge, par application du critère spécial des séries alternées.

Pour obtenir sa somme, travaillons sur une somme partielle Sn:

Commentaires: il n’y a pas de problème pour intervertir une intégrale et une somme FINIE!
On reconnâıtra ensuite, sous l’intégrale, une somme géométrique de raison − cosx.

Sn =

n∑
k=0

(−1)kIk =

∫ π
2

0

n∑
k=0

(−1)k(cosx)k dx =

∫ π
2

0

1− (−1)n+1(cosx)n+1

1 + cosx
dx = S + (−1)n Rn ,

avec S =

∫ π
2

0

dx

1 + cosx
et Rn =

∫ π
2

0

(cosx)n+1

1 + cosx
dx.

À l’aide du théorème de convergence dominée, comme en a., on montre que lim
n→+∞

Rn = 0,

donc lim
n→+∞

Sn = S, il ne reste plus qu’à calculer l’intégrale S. Or,

S =

∫ π
2

0

dx

2 cos2
x

2

=

∫ π
4

0

dt

cos2 t
=
[

tan(t)
]π

4

0
= 1 .

Finalement,

+∞∑
n=0

(−1)nIn = 1.

6. Soient (an) et (bn) deux suites réelles bornées. Soient c et d deux réels tels que c < d. On
suppose que

∀x ∈ [c, d] lim
n→+∞

(
an cos(nx) + bn sin(nx)

)
= 0 .

a. Montrer que, pour tout entier n, il existe un réel ϕn tel que

an cos(nx) + bn sin(nx) =
√
a2n + b2n cos(nx+ ϕn) .

b. Calculer In =

∫ d

c

(
an cos(nx) + bn sin(nx)

)2
dx.

c. Montrer que, à partir d’un certain rang, on a In ≥
(a2n + b2n)(d− c)

4
.

d. Montrer que les suites (an) et (bn) tendent vers 0.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Si an et bn sont nuls, alors n’importe quel réel ϕn fera l’affaire.

Sinon, les réels αn =
an√
a2n + b2n

et βn = − bn√
a2n + b2n

sont tels que α2
n + β2

n = 1, il existe

alors un réel ϕn (déterminé modulo 2π) tel que cos(ϕn) = αn et sin(ϕn) = βn. Ainsi,



an cos(nx) + bn sin(nx) =
√
a2n + b2n

(
αn cos(nx)− βn sin(nx)

)
=

√
a2n + b2n

(
cos(ϕn) cos(nx)− sin(ϕn) sin(nx)

)
=

√
a2n + b2n cos(nx+ ϕn) .

b. D’abord, I0 = a20(d− c) et, pour n ∈ IN∗, on a

In = (a2n + b2n)

∫ d

c

cos2(nx+ ϕn) dx

= (a2n + b2n)

∫ nd+ϕn

nc+ϕn

cos2(t)
dt

n

=
a2n + b2n

n

∫ nd+ϕn

nc+ϕn

1 + cos(2t)

2
dt

=
a2n + b2n

n

[ t
2

+
sin(2t)

4

]nd+ϕn
nc+ϕn

=
(a2n + b2n)(d− c)

2
+
a2n + b2n

4n

[
sin(2nd+ 2ϕn)− sin(2nc+ 2ϕn)

]
.

c. On peut donc écrire In = (a2n + b2n)
(d− c

2
+
rn
4n

)
, avec

rn = sin(2nd+ 2ϕn)− sin(2nc+ 2ϕn) .

On constate que |rn| ≤ 2, donc lim
n→+∞

rn
4n

= 0, donc
d− c

2
+
rn
4n
≥ d− c

4
pour n assez

grand, puis In ≥
(a2n + b2n)(d− c)

4
pour n assez grand.

d. Posons fn(x) =
(
an cos(nx) + bn sin(nx)

)2
pour n ∈ IN et x ∈ [c, d]. Alors les fonctions

fn sont continues sur [c, d], la, suite de fonctions (fn) converge simplement sur [c, d] vers la
fonction nulle, et si on choisit un réel positif M tel que |an| ≤M et |bn| ≤M pour tout n,
on a la domination

∀n ∈ IN ∀x ∈ [c, d] |fn(x)| ≤ (2M)2 ,

la fonction constante x 7→ (2M)2 étant intégrable sur le segment [c, d]. Le théorème de
convergence dominée s’applique donc, et donne lim

n→+∞
In = 0. De l’encadrement

0 ≤ a2n + b2n ≤
4

d− c
In valable pour n assez grand, on déduit lim

n→+∞
(a2n + b2n) = 0. Enfin,

0 ≤ a2n ≤ a2n + b2n, donc lim
n→+∞

a2n = 0, puis lim
n→+∞

an = 0. De même, lim
n→+∞

bn = 0.

7. On admet que

∫ +∞

0

e−u
2

du =

√
π

2
. Calculer J(x) =

∫ +∞

0

e−t
2

cos(xt) dt pour x réel.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



Fixons un réel x. La fonction cosinus étant développable en série entière sur IR, on a

J(x) =

∫
IR+

( +∞∑
n=0

fn

)
, avec fn(t) = (−1)n

x2n

(2n)!
t2n e−t

2

. Posons In =

∫ +∞

0

t2n e−t
2

dt,

alors I0 =

√
π

2
et In+1 =

2n+ 1

2
In (i.p.p.), d’où In =

(2n)!

22n n!

√
π

2
(après un calcul classique).

Donc

∫
IR+

|fn| =

√
π

2

x2n

22n n!
, terme général d’une série convergente (facile), on peut donc

intégrer terme à terme, résultat :

J(x) =

+∞∑
n=0

∫
IR+

fn =

√
π

2

+∞∑
n=0

(−1)n

n!

(x
2

)2n
=

√
π

2
e
−x

2

4 .

8. On donne

+∞∑
n=1

1

n2
=
π2

6
. Calculer I =

∫ +∞

0

ln(1 + e−t) dt et J =

∫ +∞

0

ln(1− e−t) dt.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• La fonction f : t 7→ ln(1 + e−t) est continue sur [0,+∞[ et 0 ≤ f(t) ≤ e−t, ce qui
assure son intégrabilité sur IR+ et la convergence de l’intégrale impropre I. Pour t > 0,

on a ln(1 + e−t) =

+∞∑
n=1

(−1)n−1 e−nt

n
, les fonctions fn : t 7→ (−1)n−1 e−nt

n
sont continues

et intégrables sur IR+, et

∫
IR+

|fn| =
1

n2
(terme général d’une série convergente) : on peut

donc intégrer terme à terme, cela donne

I =

∫
IR+

( +∞∑
n=1

fn

)
=

+∞∑
n=1

∫
IR+

fn =

+∞∑
n=1

(−1)n−1

n2
=
π2

12

par un calcul classique, laissé au lecteur.

• La fonction g : t 7→ ln(1−e−t) est continue sur ]0,+∞[, on a g(t) ∼ ln t en 0 ce qui assure
l’intégrabilité sur ]0, 1], et g(t) ∼ −e−t en +∞ ce qui assure son intégrabilité sur [1,+∞[

et la convergence de l’intégrale J . Pour t > 0, on a ln(1− e−t) = −
+∞∑
n=1

e−nt

n
, les fonctions

gn : t 7→ −e
−nt

n
sont continues et intégrables sur IR+, et

∫
IR+

|gn| =
1

n2
(terme général

d’une série convergente) : on peut donc intégrer terme à terme, cela donne

J =

∫
IR+

( +∞∑
n=1

gn

)
=

+∞∑
n=1

∫
IR+

gn = −
+∞∑
n=1

1

n2
= −π

2

6
.

9.a. Sachant que

∫ +∞

0

e−u
2

du =

√
π

2
, calculer In =

∫ +∞

0

√
t e−nt dt pour n entier naturel

non nul.

b. Prouver l’égalité

∫ +∞

0

√
t

et − 1
dt =

√
π

2

+∞∑
n=1

1

n
√
n

.



- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Pour tout n ∈ IN∗, la fonction fn : t 7→
√
t e−nt est intégrable sur IR+ puisque, par

croissances comparées, lim
t→+∞

t2fn(t) = 0. En posant nt = u2, on a

In =

∫ +∞

0

u√
n
e−u

2 2u du

n
=

2

n
√
n

∫ +∞

0

u2 e−u
2

du .

Ensuite, une intégration par parties avec f ′ = u e−u
2

=
d

du

(
− 1

2
e−u

2
)

donne

In =
2

n
√
n

1

2

∫ +∞

0

e−u
2

du =

√
π

2n
√
n
.

b. Pour t ∈ IR∗+, posons s(t) =

√
t

et − 1
=

√
t e−t

1− e−t
=
√
t

+∞∑
n=1

e−nt =
+∞∑
n=1

fn(t). Les fonctions fn

sont continues et intégrables sur IR∗+, la série de fonctions
∑
n≥1

fn converge simplement sur

IR∗+ et a pour somme la fonction continue s, il ne reste plus qu’à s’assurer de la convergence

de la série de terme général

∫
IR∗

+

|fn| pour pouvoir appliquer le théorème d’intégration terme

à terme. Or,

∫
IR∗

+

|fn| =

∫
IR∗

+

fn = In =

√
π

2

1

n3/2
, terme général d’une série de Riemann

convergente. Allons-y donc :∫ +∞

0

√
t

et − 1
dt =

∫
IR∗

+

s =

∫
IR∗

+

+∞∑
n=1

fn =

+∞∑
n=1

∫
IR∗

+

fn =

+∞∑
n=1

In =

√
π

2

+∞∑
n=1

1

n
√
n
.

10*. Soit f : [0, 1] → IR+ continue. Comparer les natures de l’intégrale généralisée

J =

∫ 1

0

f(t)

1− t
dt et de la série

∑
n≥0

∫ 1

0

tn f(t) dt.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Posons gn(t) = tnf(t) pour n ∈ IN et t ∈ [0, 1], et g(t) =
f(t)

1− t
pour t ∈ [0, 1[. Les

fonctions gn sont continues et intégrables sur [0, 1[ (puisque p.p.c. au point 1), la série

de fonctions
∑
n≥0

gn converge simplement sur [0, 1[ vers la fonction continue g. Donc, si la

série
∑
n≥0

∫ 1

0

tn f(t) dt =
∑
n≥0

∫
[0,1[

|gn| converge, le théorème d’intégration terme à terme

s’applique et donne l’intégrablité sur [0, 1[ de la fonction g (i.e. la convergence de l’intégrale
J), et l’égalité ∫ 1

0

f(t)

1− t
dt =

+∞∑
n=0

∫ 1

0

tn f(t) dt .



Réciproquement, supposons g intégrable sur [0, 1[. Posons sn(t) =

n∑
k=0

gk(t) = f(t)
1− tn+1

1− t
pour n ∈ IN et t ∈ [0, 1[. Alors les fonctions sn sont continues sur [0, 1[, la suite (sn)
converge simplement sur [0, 1[ vers la fonction continue g et on a, sur [0, 1[, la domination
0 ≤ sn(t) ≤ g(t), avec g intégrable sur [0, 1[. Le théorème de convergence dominée s’applique

alors et donne

∫ 1

0

g(t)dt = lim
n→+∞

∫ 1

0

sn(t)dt = lim
n→+∞

( n∑
k=0

∫ 1

0

gk(t)dt

)
. La série de terme

général

∫ 1

0

gk(t) dt est donc convergente.

11.a. Pour p et q entiers naturels, convergence et calcul de Ip,q =

∫ 1

0

xp (lnx)q dx.

b. Prouver les égalités

∫ 1

0

dx

xx
=

+∞∑
n=1

1

nn
et

∫ 1

0

xx dx =

+∞∑
n=1

(−1)n−1

nn
.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. La fonction fp,q : x 7→ xp (lnx)q est continue sur ]0, 1[.

Elle est prolongeable par continuité au point 1, avec la valeur 0 si q > 0, ou 1 si q = 0.

Si p > 0, elle est aussi prolongeable par continuité en 0 avec la valeur 0, d’où son intégrabilité
sur ]0, 1[. Sinon, de lim

x→0

√
x(lnx)q = 0, on déduit l’intégrabilité de f0,q en 0 puisque f0,q(x) =

(lnx)q = o
( 1√

x

)
lorsque x→ 0.

Pour le calcul, notons d’abord que Ip,0 =
1

p+ 1
pour tout p ∈ IN. Puis, pour q ≥ 1, intégrons

par parties:

Ip,q = −
∫ 1

0

xp+1

p+ 1

q

x
(lnx)q−1 dx = − q

p+ 1
Ip,q−1 ,

et une récurence facile donne Ip,q =
(−1)q q!

(p+ 1)q
Ip,0 =

(−1)q q!

(p+ 1)q+1
.

b. • Posons g(x) =
1

xx
pour x ∈ ]0, 1[, alors g(x) = e−x ln(x) =

+∞∑
n=0

gn(x) en posant

gn(x) =
(−1)n xn (lnx)n

n!
, soit gn =

(−1)n

n!
fn,n. Les fonctions gn sont donc intégrables sur

]0, 1[ d’après a., on a

∫ 1

0

|gn| =
∫ 1

0

gn =
|In,n|
n!

=
1

(n+ 1)n+1
qui est clairement sommable,

on peut donc intégrer terme à terme, et cela donne∫ 1

0

dx

xx
=

∫ 1

0

( +∞∑
n=0

gn(x)

)
dx =

+∞∑
n=0

∫ 1

0

gn(x) dx =

+∞∑
n=0

1

(n+ 1)n+1
=

+∞∑
n=1

1

nn
.

• Un calcul semblable (et, surtout, des justifications semblables) donne



∫ 1

0

xx dx =

∫ 1

0

( +∞∑
n=0

(−1)ngn(x)

)
dx =

+∞∑
n=0

(−1)n
∫ 1

0

gn(x)dx =

+∞∑
n=0

(−1)n

(n+ 1)n+1
=

+∞∑
n=1

(−1)n−1

nn
.

12. Pour a > 0, montrer que

∫ 1

0

ta−1

1 + t
dt =

+∞∑
n=0

(−1)n

n+ a
.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Notons d’abord que:

- l’intégrale du premier membre est bien convergente puisque
ta−1

1 + t
∼
t→0

1

t1−a
avec 1−a < 1 ;

- la série du second membre est bien convergente, en vertu du théorème spécial des séries

alternées, puisque la suite
( 1

n+ a

)
est décroissante et tend vers zéro.

Toutefois, cette série n’est pas absolument convergente, et ceci nous empêche d’appliquer le
théorème d’intégration terme à terme pour conclure. En effet, pour t ∈ ]0, 1[, on peut écrire

ta−1

1 + t
= ta−1

+∞∑
n=0

(−t)n =

+∞∑
n=0

(−1)n ta+n−1 et, si l’on pose fn(t) = (−1)n ta+n−1, alors la

série de terme général

∫ 1

0

∣∣fn(t)
∣∣ dt =

1

a+ n
est divergente!

Travaillons alors sur une somme partielle de la série: Pour tout n ∈ IN∗, on a

n∑
k=0

(−1)k

k + a
=

n∑
k=0

∫ 1

0

(−1)ktk+a−1 dt =

∫ 1

0

( n∑
k=0

(−1)kta+k−1
)

dt =

∫ 1

0

ta−1
( n∑
k=0

(−t)k
)

dt

(il n’y aucun problème pour intervertir somme et intégrale, tant qu’il s’agit d’une somme
finie!). On reconnâıt maintenant sous l’intégrale une somme partielle d’une série géométrique,
et cela on sait l’expliciter. Donc

n∑
k=0

(−1)k

k + a
=

∫ 1

0

ta−1
1− (−t)n+1

1 + t
dt =

∫ 1

0

ta−1

1 + t
dt+ (−1)n

∫ 1

0

ta+n

1 + t
dt .

Pour parvenir à nos fins, il ne reste plus qu’à prouver que l’intégrale Rn =

∫ 1

0

ta+n

1 + t
dt

tend vers 0 lorsque n→ +∞. C’est facile puisque

0 ≤ Rn =

∫ 1

0

ta+n

1 + t
dt ≤

∫ 1

0

ta+n dt =
1

a+ n+ 1
−→

n→+∞
0 .

Remarque. Une variante consistait à appliquer le théorème de convergence dominée à la

suite (sn) des sommes partielles, avec sn =

n∑
k=0

fk.



Intégrales dépendant d’un paramètre.

13. Soit f la fonction définie sur IR∗+ par f(x) =

∫ +∞

1

dt

tx (1 + t)
.

a. Montrer que f est définie et monotone sur IR∗+.

b. Trouver une relation entre f(x) et f(x + 1). En déduire un équivalent de f(x) lorsque
x→ +∞, et aussi lorsque x→ 0+.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Soit l’application ϕ :


IR∗+ × [1,+∞[ → IR

(x, t) 7→ 1

tx(1 + t)

. Alors, pour x > 0 fixé, on a

ϕ(x, t) ∼
t→+∞

1

tx+1
; comme x+ 1 > 1, on a prouvé la convergence de l’intégrale impropre,

c’est-à-dire l’existence de f(x).
Montrons la décroissance de f sans calculer sa dérivée : si x et y vérifient 0 < x < y,
alors, pour tout t ∈ ]1,+∞[, on a ϕ(x, t) > ϕ(y, t) ; en intégrant cette inégalité, on obtient
f(x) > f(y) : l’inégalité est stricte car on intègre des fonctions continues et non identiques.
La fonction f est donc strictement décroissante sur IR∗+.

b. • On a, pour tout x > 0,

f(x) + f(x+ 1) =

∫ +∞

1

dt

tx+1
=

[
− 1

x tx

]t→+∞

t=1

=
1

x
.

• Comme f est décroissante sur IR∗+, on a, pour tout x > 1,

f(x) + f(x+ 1) ≤ 2f(x) ≤ f(x− 1) + f(x) , soit
1

2x
≤ f(x) ≤ 1

2(x− 1)
,

d’où l’équivalence f(x) ∼
x→+∞

1

2x
.

• D’autre part, f(x) =
1

x
− f(x + 1) ; lorsque x tend vers zéro, f(x + 1) est borné

(0 < f(x + 1) < f(1) pour x ∈ ]0, 1[) et est donc négligeable devant
1

x
qui tend vers

l’infini. Donc f(x) ∼
x→0

1

x
.

Annexe. La fonction ϕ admet une dérivée partielle
∂ϕ

∂x
(x, t) = − ln t

tx(1 + t)
. En considérant

a > 0, la majoration

∣∣∣∣∂ϕ∂x (x, t)

∣∣∣∣ ≤ ln t

ta+1
est valable pour tout (x, t) ∈ [a,+∞[×[1,+∞[

et, la fonction t 7→ ln t

ta+1
est intégrable sur [1,+∞[ car, pour t assez grand, on a

0 <
ln t

ta+1
<

1

t
1+a2

(croissance comparée des fonctions puissances et logarithmes) ; on a

ainsi prouvé que f est de classe C1 sur [a,+∞[ pour tout a > 0, donc sur IR∗+, avec



∀x ∈ IR∗+ f ′(x) = −
∫ +∞

1

ln t dt

tx(1 + t)
.

Donc f ′(x) < 0 et on retrouve bien ainsi la stricte décroissante de f sur IR∗+ (question a.).

14. Pour x ≥ 0, calculer g(x) =

∫ π
2

0

Arctan(x · tan t)

tan t
dt.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Posons f(x, t) =
Arctan(x tan t)

tan t
pour (x, t) ∈ IR+ ×

]
0,
π

2

[
. Ainsi, f est continue sur cet

ensemble (ce qui entrâıne la continuité des applications partielles) et, si A > 0, la majoration

|f(x, t)| ≤ Arctan(A tan t)

tan t
= ϕA(t) ,

valable pour (x, t) ∈ [0, A]×
]
0,
π

2

[
, prouve la définition et la continuité de g sur [0, A] pour

tout A > 0, donc sur IR+ : on a, en effet, lim
t→0

ϕA(t) = A et lim
t→π

2

ϕA(t) = 0 ; la fonction ϕA,

prolongeable en une fonction continue sur
[
0,
π

2

]
, est intégrable sur

]
0,
π

2

[
.

Pour tout (x, t) ∈ IR+ ×
]
0,
π

2

[
, on a

∂f

∂x
(x, t) =

1

1 + x2 tan2 t
et la majoration immédiate∣∣∣∂f

∂x
(x, t)

∣∣∣ ≤ 1 (la fonction constante t 7→ 1 étant intégrable sur l’intervalle borné
]
0,
π

2

[
)

montre que g est de classe C1 sur IR+ et g′(x) =

∫ π
2

0

dt

1 + x2 tan2 t
. Le calcul de cette

intégrale (par exemple, en posant τ = tan t, puis en décomposant en éléments simples la

fraction
1

(1 + T )(1 + x2T )
, avec T = τ2), donne g′(x) =

π

2(x+ 1)
. Comme g(0) = 0, on a

∀x ∈ IR+ g(x) =
π

2

∫ x

0

dt

t+ 1
=
π

2
ln(1 + x) .

15. Soit g(x) =

∫ +∞

0

Arctan(xt)

1 + t2
dt.

a. Montrer que g est continue sur IR, de classe C1 sur IR∗ et expliciter g′(x).

b. Calculer directement g(1) ; en déduire la valeur de I =

∫ 1

0

ln t

t2 − 1
dt.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Posons f(x, t) =
Arctan(xt)

1 + t2
pour (x, t) ∈ IR × IR+. La majoration |f(x, t)| ≤ π

2(1 + t2)

permet de prouver que g est définie et continue sur IR. On a
∂f

∂x
(x, t) =

t

(1 + x2t2)(1 + t2)

et, si on fixe a > 0, la majoration

∣∣∣∣∂f∂x (x, t)

∣∣∣∣ ≤ t

(1 + a2t2)(1 + t2)
, valable pour



(x, t) ∈ [a,+∞[×IR+, permet de montrer que g est de classe C1 sur [a,+∞[ pour tout
a > 0, donc sur IR∗+, et de même sur IR∗− (g est une fonction impaire). La formule de

Leibniz (dérivation sous le signe

∫
) donne, pour tout x ∈ IR∗ :

g′(x) =

∫ +∞

0

t dt

(1 + x2t2)(1 + t2)
=

1

2

∫ +∞

0

du

(1 + x2u)(1 + u)
.

On décompose alors en éléments simples :

1

(1 + x2u)(1 + u)
=

1

x2 − 1

( x2

1 + x2u
− 1

1 + u

)
si |x| 6= 1 .

Donc, si |x| 6= 1,

g′(x) =
1

2(x2 − 1)

[
ln
(1 + x2u

1 + u

)]u→+∞

u=0

=
ln(x2)

2(x2 − 1)
=

ln |x|
x2 − 1

.

Enfin, g′(1) = g′(−1) =

∫ +∞

0

t dt

(1 + t2)2
=

1

2

∫ +∞

0

du

(1 + u)2
=
[
− 1

2(1 + u)

]+∞
0

=
1

2
.

b. Directement, g(1) =

∫ +∞

0

Arctan t

1 + t2
dt =

[
1

2
(Arctan t)2

]+∞
0

=
π2

8
par une intégration par

parties. Par ailleurs, pour tout a > 0, on a (*) :

∫ 1

a

g′(x)dx = g(1)−g(a) car g est de classe

C1 sur IR∗+, donc sur le segment [a, 1]. Mais la fonction g′ est intégrable sur ]0, 1] car elle
est continue sur cet intervalle et que g′(x) ∼

x→0+
| lnx| et on sait que la fonction x 7→ | lnx|

est intégrable sur ]0, 1]. Comme enfin g est continue sur IR, en faisant tendre a vers 0 dans

(*), on obtient

∫ 1

0

g′(x) dx = g(1)− g(0), soit

∫ 1

0

lnx

x2 − 1
dx =

π2

8
.

16.a. Soit la fonction g : x 7→
∫ +∞

0

e−xt
2

1 + t2
dt. Montrer que g est continue sur IR+, de classe C1

sur IR∗+, et écrire une équation différentielle du premier ordre vérifiée par g sur IR∗+.

b. En déduire la valeur de l’intégrale de Gauss G =

∫ +∞

0

e−u
2

du.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. La fonction g est définie sur IR+ et, si l’on pose f(x, t) =
e−xt

2

1 + t2
pour x ≥ 0 et t ≥ 0, la

fonction f est continue sur (IR+)2 et la majoration 0 ≤ f(x, t) ≤ 1

1 + t2
prouve que g est

continue sur IR+.



Pour tout (x, t) ∈ (IR+)2, on a
∂f

∂x
(x, t) =

−t2 e−xt2

1 + t2
. Si S = [a, b] est un segment inclus

dans IR∗+ (0 < a < b), on a

∀(x, t) ∈ S × IR+

∣∣∣∣∂f∂x (x, t)

∣∣∣∣ ≤ t2

1 + t2
e−at

2

,

cette dernière fonction de la variable t étant intégrable sur IR+. On en déduit que g est de
classe C1 sur tout segment S inclus sans IR∗+, donc sur IR∗+, et que

∀x ∈ IR∗+ g′(x) = −
∫ +∞

0

t2 e−xt
2

1 + t2
dt = g(x)−

∫ +∞

0

e−xt
2

dt .

Le changement de variable linéaire t
√
x = u dans cette dernière intégrale montre que g

vérifie, sur IR∗+, l’équation différentielle

g′(x)− g(x) = − G√
x
.

b. En posant g(x) = λ(x) ex (méthode de “variation de la constante”), on obtient

λ′(x) = −G e−x√
x

donc (le choix de la borne fixe 0 étant permis car on a une intégrale

généralisée convergente)

λ(x) = −G
∫ x

0

e−t√
t

dt+ C .

La fonction λ : x 7→ e−x g(x) étant continue sur IR+, de λ(0) = g(0) =
π

2
, on tire C =

π

2
et

g(x) = ex λ(x) = ex
(
π

2
−G

∫ x

0

e−t√
t

dt

)
.

Enfin, la majoration immédiate 0 ≤ λ(x) = e−x
∫ +∞

0

e−xt
2

1 + t2
dt ≤ π

2
e−x montre que

lim
x→+∞

λ(x) = 0, donc

π

2
= G

∫ +∞

0

e−t√
t

dt = G

∫ +∞

0

e−u
2

u
2u du = 2G2 .

Comme G est positif, on conclut∫ +∞

0

e−u
2

du =

√
π

2
.

17. Pour x > −1, on pose g(x) =

∫ 1

0

t− 1

ln t
tx dt.

a. Montrer que g est bien définie et de classe C1 sur ]− 1,+∞[.

b. Calculer g′(x). En déduire g(x).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



a. Pour (x, t) ∈] − 1,+∞[×]0, 1[, posons f(x, t) =
(t− 1) tx

ln t
, cela pourra toujours servir. En

fixant x ∈] − 1,+∞[, du fait que ln t ∼
t→1

t − 1, on constate que lim
t→1

f(x, t) = lim
t→1

tx = 1,

l’intégrande est donc prolongeable par continuité au point 1 (l’intégrale est “faussement
impropre” en ce point). Par ailleurs, lorsque t→ 0, on a

f(x, t) ∼
t→0

tx

| ln t|
=

1

| ln t| t−x
= o
( 1

t−x

)
,

et comme −x < 1, la fonction t 7→ 1

t−x
est intégrable sur ]0, 1] ; par comparaison de

fonctions positives, on a l’intégrabilité de t 7→ f(x, t) sur ]0, 1[, d’où l’existence de g(x).

On a ensuite
∂f

∂x
(x, t) = (t − 1) tx = tx+1 − tx. La fonction f est de classe C1 sur

]− 1,+∞[×]0, 1[, et si on fixe a > −1, pour (x, t) ∈ [a,+∞[×]0, 1[, on a la domination∣∣∣∂f
∂x

(x, t)
∣∣∣ = (1− t) tx ≤ (1− t) ta ,

la fonction t 7→ (1−t)ta étant intégrable sur ]0, 1[ puisque a > −1. Le théorème de dérivation
des intégrales paramétrées s’applique alors : la fonction g est de classe C1 sur [a,+∞[ pour
tout a > −1, elle est donc de classe C1 sur ]− 1,+∞[, et...

b.

... g′(x) =

∫ 1

0

∂f

∂x
(x, t) dt =

∫ 1

0

(
tx+1 − tx

)
dt =

1

x+ 2
− 1

x+ 1
= − 1

(x+ 1)(x+ 2)
.

Par intégration, on a g(x) = ln
(x+ 2

x+ 1

)
+ C, où C est une constante. Mais, pour t ∈]0, 1[,

on a par concavité du logarithme, ln t ≤ t − 1, soit (ce sont des quantités négatives) :

| ln t| ≥ |t− 1| = 1− t, donc
∣∣∣ t− 1

ln t

∣∣∣ ≤ 1. Donc

|g(x)| = g(x) =

∫ 1

0

∣∣∣ t− 1

ln t

∣∣∣ tx dt ≤
∫ 1

0

tx dt =
1

x+ 1
−→
x→+∞

0 .

On en déduit que C = 0, donc ∀x ∈ ]− 1,+∞[ g(x) = ln
(x+ 2

x+ 1

)
.

18. On pose g(x) =
1

π

∫ π

0

cos(x sin t) dt.

a. Montrer que g est définie et de classe C2 sur IR.

b. Déterminer une équation différentielle linéaire d’ordre deux dont g est solution.

c. Montrer que g est développable en série entière sur IR.

d. À l’aide de l’équation différentielle obtenue en b., obtenir ce développement.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Posons f(x, t) = cos(x sin t) pour (x, t) ∈ IR× [0, π]. Alors x 7→ f(x, t) est de classe C2 sur IR
et on a



∂f

∂x
(x, t) = − sin(t) sin(x sin t) et

∂2f

∂x2
(x, t) = − sin2(t) cos(x sin t) .

Les applications partielles t 7→ f(x, t) et t 7→ ∂f

∂x
(x, t) sont continues sur le segment [0, π]

donc intégrables sur ce segment. Et on a la domination

∀(x, t) ∈ IR× [0, π]
∣∣∣∂2f
∂x2

(x, t)
∣∣∣ ≤ 1 ,

la fonction constante t 7→ 1 étant intégrable sur le segment [0, π]. Le théorème de dérivation
des intégrales à paramètre s’applique et montre que g est de classe C2 sur IR. Ce théorème
donne aussi

g′(x) = − 1

π

∫ π

0

sin(t) sin(x sin t) dt et g′′(x) = − 1

π

∫ π

0

sin2(t) cos(x sin t) dt .

b. Intégrons par parties en partant par exemple de −π g′(x), on dérive le facteur sin(x sin t)
et on primitive le facteur sin(t):

−π g′(x) =

∫ π

0

sin(t) sin(x sin t) dt

=
[
− cos(t) sin(x sin t)

]t=π
t=0

+ x

∫ π

0

cos2(t) cos(x sin t) dt

= x

∫ π

0

(1− sin2 t) cos(x sin t) dt

= π x g(x) + π x g′′(x) ,

donc g est solution de l’équation différentielle xy′′ + y′ + xy = 0.

c. La fonction cosinus étant développable en série entière sur IR, on peut écrire, pour tout x,

g(x) =

∫ π

0

+∞∑
n=0

(−1)n x2n sin2n(t)

(2n)!
dt ,

et il ne reste plus qu’à intervertir série et intégrale. Or, pour tout x réel fixé, si on pose

fn(t) =
(−1)n x2n sin2n(t)

(2n)!
, on a la convergence normale de la série de fonctions

∑
fn

sur le segment [0, π] puisque ‖fn‖∞ =
x2n

(2n)!
est le terme général d’une série convergente,

l’interversion est donc permise. On obtient alors

∀x ∈ IR g(x) =

+∞∑
n=0

(−1)n

(2n)!
Wnx

2n ,

en posant Wn =

∫ π

0

sin2n(t) dt (intégrales de Wallis). La fonction g est donc développable

en série entière sur IR.



d. On pourrait calculer par récurrence ces intégrales de Wallis et obtenir le développement
explicite, mais l’énoncé demande d’exploiter l’équation différentielle!

Posons donc f(x) =

+∞∑
n=0

anx
n, donc x f(x) =

+∞∑
n=1

an−1x
n, puis f ′(x) =

+∞∑
n=0

(n + 1)an+1x
n

et x f ′′(x) =

+∞∑
n=1

n(n+ 1)an+1x
n. On réinjecte dans l’équation différentielle:

+∞∑
n=1

n(n+ 1)an+1x
n +

+∞∑
n=0

(n+ 1)an+1x
n +

+∞∑
n=1

an−1x
n = 0 ,

soit, grâce à l’unicité du développement en série entière,{
a1 = 0

∀n ∈ IN∗ (n+ 1)2 an+1 = an−1
.

On en déduit que a2p+1 = 0 pour tout p (mais ce n’est pas une surprise, la fonction f étant
évidemment paire) et que

∀p ∈ IN a2p =
(−1)p

(2p)2 (2p− 2)2 · · · (2)2
a0 =

(−1)p

22p (p!)2
.

Enfin, a0 = f(0) = 1. Finalement

∀x ∈ IR f(x) =

+∞∑
p=0

(−1)p

22p (p!)2
x2p .

19. Soit f : [0, 1]→ IR∗+ une fonction continue. Montrer que ϕ : x 7→
∫ 1

0

(
f(t)

)x
dt est de classe

C1 sur IR. Calculer ϕ(0) et ϕ′(0). En déduire lim
x→0

(
ϕ(x)

) 1x
.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Posons h(x, t) =
(
f(t)

)x
= ex ln f(t) pour (x, t) ∈ IR × [0, 1] ; alors h est continue (car

produit, composée) sur IR × [0, 1] (donc l’application partielle t 7→ h(x, t) est continue sur
le segment [0, 1], ce qui garantit déjà l’existence de ϕ(x)), et admet une dérivée partielle
∂h

∂x
(x, t) = ln

(
f(t)

)
·
(
f(t)

)x
.

Si S est un segment de IR, alors l’application
∂h

∂x
, qui est continue sur le pavé S×[0, 1] (partie

fermée et bornée de IR2), est bornée sur ce pavé : ∀(x, t) ∈ S × [0, 1]

∣∣∣∣∂h∂x (x, t)

∣∣∣∣ ≤ MS ;

comme la fonction constante t 7→MS est intégrable sur le segment [0, 1], on a une condition
de domination qui permet d’affirmer que ϕ est de classe C1 sur le segment S. La fonction
ϕ est alors C1 sur IR, et



∀x ∈ IR ϕ′(x) =

∫
[0,1]

∂h

∂x
(x, t) dt =

∫ 1

0

ln
(
f(t)

)
·
(
f(t)

)x
dt .

En particulier, ϕ(0) =

∫ 1

0

dt = 1 et ϕ′(0) =

∫ 1

0

ln
(
f(t)

)
dt =

∫
[0,1]

ln ◦f , notons K cette

dernière intégrale.

La fonction ϕ admet donc un développement limité à l’ordre 1 en zéro, à savoir
ϕ(x) = 1 +K x+ o(x), puis

1

x
ln
(
ϕ(x)

)
=

1

x
ln
(
1 +K x+ o(x)

)
=

1

x

(
K x+ o(x)

)
= K + o(1) ,

autrement dit lim
x→0

1

x
ln
(
ϕ(x)

)
= K ; en prenant l’exponentielle, on a

lim
x→0

(
ϕ(x)

) 1x
= eK = exp

(∫ 1

0

ln
(
f(t)

)
dt

)
.

20. On pose f(x) =

∫ π
2

0

(sin t)x dt.

a. Déterminer l’ensemble de définition de f .

b. Montrer que f est de classe C1 sur son ensemble de définition, et déterminer ses variations.

c. Pour x ∈ Df , on pose g(x) = (x+ 1) f(x) f(x+ 1). Montrer que ∀x ∈ Df g(x+ 1) = g(x).

d*. Montrer que g est constante sur Df .

21. On pose f(x) =

∫ +∞

0

e−t

x+ t
dt.

a. Ensemble de définition de f .

b. Montrer que f est de classe C∞ sur Df .

c. Donner un équivalent de f(x) lorsque x tend vers +∞.

d. Donner un équivalent de f(x) lorsque x tend vers 0+.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Dans tous les cas, on a (1):
e−t

x+ t
∼

t→+∞

e−t

t
, fonction intégrable au voisinage de +∞.

Si x > 0, l’intégrande est une fonction de t continue sur [0,+∞[ d’où l’existence de l’intégrale
grâce à (1).

Si x = 0, on a
e−t

t
∼
t→0

1

t
, d’où la non-intégrabilité.

Si x < 0, on retrouve le même problème d’intégrale divergente en la borne −x ∈ IR∗+.

En conclusion, Df = IR∗+.

b. Posons g(x, t) =
e−t

x+ t
, alors x 7→ g(x, t) est de classe C∞, avec

∂kg

∂xk
(x, t) = (−1)kk!

e−t

(x+ t)k+1
.

Si on fixe a > 0, alors



∀(x, t) ∈ [a,+∞[×IR+

∣∣∣∂kg
∂xk

(x, t)
∣∣∣ ≤ k! e−t

(t+ a)k+1
≤ k!

ak+1
e−t ,

fonction de t intégrable sur IR+. Cette domination permet d’affirmer que f est de classe
C∞ sur IR∗+ avec

∀k ∈ IN ∀x ∈ IR∗+ f (k)(x) = (−1)k k!

∫ +∞

0

e−t

(x+ t)k+1
dt .

c. On a
e−t

x+ t
∼

x→+∞

e−t

x
. On peut conjecturer que f(x) ∼

x→+∞

∫ +∞

0

e−t

x
dt =

1

x
, il reste à le

prouver! Remarquons pour cela que

0 ≤ 1

x
− f(x) =

∫ +∞

0

e−t
( 1

x
− 1

x+ t

)
dt =

∫ +∞

0

t e−t

x(x+ t)
dt ≤ 1

x2

∫ +∞

0

te−t dt .

L’intégrale (convergente!) J =

∫ +∞

0

te−t dt est une constante, on a donc prouvé que

f(x)− 1

x
= O

( 1

x2

)
en +∞, ce qui entrâıne f(x)− 1

x
= o
( 1

x

)
, soit f(x) ∼

x→+∞

1

x
.

d. Posons le changement de variable u = x+ t, on a alors

f(x) =

∫ +∞

x

ex−u

u
du = ex

∫ +∞

x

e−u

u
du ∼

x→0

∫ +∞

x

e−u

u
du .

Or,

∫ +∞

x

e−u

u
du =

∫ 1

x

du

u
+

∫ 1

x

e−u − 1

u
du+

∫ +∞

1

e−u

u
du. Le premier terme vaut − ln(x)

et tend vers +∞ lorsque x tend vers 0, le deuxième a une limite finie qui est l’intégrale

convergente

∫ 1

0

e−u − 1

u
du, le troisième est constant. En conclusion, f(x) ∼

x→0
− ln(x).

22. Soient u, v : I → IR continues, telles que ∀x ∈ I u(x) < v(x). Soit f : I× IR→ IR continue.

Montrer que l’application g : x 7→
∫ v(x)

u(x)

f(x, t) dt est continue sur I. On pourra poser

t = u(x) + s
(
v(x)− u(x)

)
, où s désigne une nouvelle variable.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Le changement de variable proposé donne

∀x ∈ I g(x) =
(
v(x)− u(x)

) ∫ 1

0

f
(
x , (1− s)u(x) + s v(x)

)
ds .

La fonction ϕ : (x, s) 7→ f
(
x , (1 − s)u(x) + s v(x)

)
est continue sur I × [0, 1] et, si S est

un segment inclus dans I, sa continuité sur la partie fermée bornée S× [0, 1] de IR2 permet
de la majorer en valeur absolue par une constante MS sur cette partie. Comme la fonction
constante s 7→ MS est intégrable sur le segment [0, 1], ceci nous fournit une domination
valide pour appliquer le théorème de continuité des intégrales à paramètre: l’application

x 7→
∫ 1

0

f
(
x , (1− s)u(x) + s v(x)

)
ds



est donc continue sur I. Comme il en est de même de v − u, on déduit, par produit, que g
est continue sur I.

Transformées de Laplace et de Fourier. Intégrales eulériennes

Si f : IR→ C est une fonction continue par morceaux et intégrable sur IR, on note Tf ou
encore f̂ la fonction définie par

∀x ∈ IR Tf(x) = f̂(x) =

∫ +∞

−∞
f(t) e−ixt dt .

La fonction f̂ = Tf est la transformée de Fourier de f . L’application T : f 7→ Tf est
la transformation de Fourier.

23. On admet

∫ +∞

−∞
e−x

2

dx =
√
π. Montrer que l’application f : α 7→ f(α) =

∫ +∞

−∞
e−x

2

e−iαxdx

est définie et dérivable sur IR. Trouver une équation différentielle vérifiée par f , en déduire
son expression.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Pour (α, x) ∈ IR2, posons g(α, x) = e−x
2

e−iαx. Alors g est de classe C1 (et même C∞)
sur IR2, et pour tout α ∈ IR fixé, l’application partielle x 7→ g(α, x) est intégrable sur IR

puisque |g(α, x)| = e−x
2

(remarquons que cela nous fournit une domination par une fonction
intégrable ne dépendant que de x, ce qui garantit non seulement la définition de f , mais
aussi sa continuité sur IR).

On a
∂g

∂α
(α, x) = −ixg(α, x), d’où

∣∣∣∣ ∂g∂α (α, x)

∣∣∣∣ = |x|e−x
2

, la fonction ψ : x 7→ |x|e−x
2

étant

intégrable sur IR puisqu’elle est o
( 1

x2

)
au voisinage des deux infinis. On a ainsi obtenu une

condition de domination qui permet d’affirmer que f est de classe C1 sur IR, avec (formule
de Leibniz)

f ′(α) = −i
∫ +∞

−∞
x e−x

2

e−iαx dx .

Une intégration par parties (en choisissant u′ = −x e−x
2

) conduit à l’équation différentielle

du premier ordre f ′(α) = −α
2
f(α) (détail du calcul laissé au lecteur). On en déduit

que f(α) = C e
−α

2

4 . Comme f(0) =
√
π (intégrale de Gauss, donnée par l’énoncé), on a

finalement f(α) =
√
π e
−α

2

4 .

24.a. Si f : IR→ C est continue par morceaux et intégrable sur IR, montrer que sa transformée
de Fourier f̂ est définie sur IR, et que c’est une fonction continue et bornée sur IR.

b. Soit la fonction “créneau” ϕ définie par ϕ(t) = 1 si t ∈ [−1, 1] et ϕ(t) = 0 sinon. Calculer
sa transformée de Fourier x 7→ ϕ̂(x).

c. Soit a un réel strictement positif, soit la fonction f définie par ∀t ∈ IR f(t) = e−a|t|.

Montrer que f est intégrable sur IR et expliciter sa transformée de Fourier f̂ .



d. On suppose dans cette question que f : IR→ C est de classe C1 et intégrable sur IR, et que
sa dérivée f ′ est intégrable sur IR. Montrer que lim

t→−∞
f(t) = lim

t→+∞
f(t) = 0, puis prouver

la relation ∀x ∈ IR f̂ ′(x) = ix f̂(x)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. On a |f(t) e−ixt| = |f(t)|, et f est supposée intégrable sur IR donc, pour tout réel x, la

fonction t 7→ f(t) e−ixt est intégrable sur IR, et l’intégrale impropre définissant f̂(x) est
convergente pour tout réel x.

Pour (x, t) ∈ IR2, posons h(x, t) = f(t) e−ixt. La fonction h est continue par rapport à
la variable x, continue par morceaux par rapport à la variable t, et on a la domination
|h(x, t)| ≤ |f(t)| (qui est en fait une égalité) avec f intégrable sur IR. Le théorème de

continuité sous le signe intégrale s’applique alors et garantit la continuité de la fonction f̂
sur IR.

La fonction f étant intégrable sur IR, on peut écrire

∀x ∈ IR |f̂(x)| =
∣∣∣ ∫ +∞

−∞
f(t) e−ixt dt

∣∣∣ ≤ ∫ +∞

−∞
|f(t) e−ixt| dt =

∫
IR

|f | = ‖f‖1 ,

ce qui montre que f est bornée sur IR.

b. La fonction ϕ est continue par morceaux sur IR et intégrable (car elle est nulle en dehors

du segment [−1, 1]), et ∀x ∈ IR ϕ̂(x) =

∫ 1

−1
e−ixt dt. Pour x = 0, on obtient ϕ̂(0) = 2.

Pour x 6= 0, on a

ϕ̂(x) =
i

x
(e−ix − eix) = 2

sinx

x
.

La transformée de Fourier ϕ̂ de la fonction ϕ est donc ϕ̂ = 2 sinc, où sinc est la fonction

sinus cardinal, à savoir x 7→ sinx

x
prolongée par continuité en zéro.

c. La fonction f est intégrable sur [0,+∞[ car, sur cet intervalle, on a f(t) = e−at et c’est du
cours! Comme f est paire, elle est aussi intégrable sur ]−∞, 0], donc elle est intégrable sur
IR. Bon, on calcule

∀x ∈ IR f̂(x) =

∫ +∞

−∞
e−a|t| e−ixt dt =

∫ 0

−∞
e(a−ix)t dt+

∫ +∞

0

e−(a+ix)t dt

=
[ 1

a− ix
e(a−ix)t

]t=0

t→−∞
−
[ 1

a+ ix
e−(a+ix)t

]t→+∞

t=0

=
1

a− ix
+

1

a+ ix
=

2a

a2 + x2
.

Rappel : on a par exemple lim
t→+∞

e−(a+ix)t = 0 car
∣∣e−(a+ix)t| = e−at −→

t→+∞
0.

d. Pour tout t ∈ IR∗+, on a f(t) = f(0)+

∫ t

0

f ′(u)du et l’intégrabilité de f ′ sur IR montre que

l’intégrale du second membre a une limite finie lorsque t tend vers +∞. Ainsi, la fonction



f admet une limite finie l en +∞, précisément l = lim
t→+∞

f(t) = f(0) +

∫ +∞

0

f ′(u) du. Si

cette limite l n’était pas nulle, alors au voisinage de +∞, on pourrait écrire f(t) ∼ l et, la
fonction constante l n’étant évidemment pas intégrable sur [0,+∞[, la fonction f ne serait
pas non plus intégrable sur cet intervalle. En conclusion, l = lim

+∞
f = 0. On prouve de même

que lim
−∞

f = 0.

Soit a > 0. Intégrons par parties :∫ +∞

−∞
f ′(t) e−ixt dt =

[
f(t) e−ixt

]t→+∞

t→−∞
+ i x

∫ +∞

−∞
f(t) e−ixt dt .

Cette i.p.p. est justifiée par l’étude précédente (le terme entre crochets admet des limites
finies, ici nulles, aux bornes de l’intervalle d’intégration), il reste alors la relation

∀x ∈ IR f̂ ′ (x) = ix f̂(x) .

Si f : IR+ → C est une fonction continue par morceaux, la transformée de Laplace de
f est la fonction L[f ] définie par

L[f ](p) =

∫ +∞

0

e−pt f(t) dt

pour tout réel p tel que cette intégrale est convergente.

25. Soit f : IR+ → C une fonction continue. On suppose qu’il existe un réel p0 tel que la fonction
t 7→ e−p0t f(t) soit intégrable sur IR+.

a. Montrer que la transformée de Laplace L[f ] est définie et continue sur l’intervalle [p0,+∞[.

b. Montrer que la fonction L[f ] est de classe C∞ sur l’intervalle ouvert ]p0,+∞[ et que, sur

cet intervalle, on a, pour tout n entier naturel, la relation
(
L[f ]

)(n)
= (−1)n L[gn], où gn

est la fonction définie par gn(t) = tn f(t).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Soit h : [p0,+∞[×IR+ → C, (p, t) 7→ e−pt f(t). Alors h est continue et on a la domination

∀(p, t) ∈ [p0,+∞[×IR+ |h(p, t)| ≤ e−p0t |f(t)| ,

cette fonction majorante étant intégrable sur IR+. Le théorème de continuité des intégrales
dépendant d’un paramètre permet alors d’affirmer que la fonction L[f ] est définie et continue
sur [p0,+∞[.

b. Pour tout n ∈ IN, on a
∂nh

∂pn
(p, t) = (−1)n tn e−pt f(t) = (−1)n e−pt gn(t). Fixons p1 > p0.

On a alors la domination

∀(p, t) ∈ [p1,+∞[×IR+

∣∣∣∣∂nh∂pn
(p, t)

∣∣∣∣ = e−pt |gn(t)| ≤ e−p1t |gn(t)| ,

et la fonction t 7→ e−p1t |gn(t)| est intégrable sur IR+ : en effet, par croissances comparées,
on a lim

t→+∞
tn e−(p1−p0)t = 0, donc e−p1t |gn(t)| = tn e−p1t |f(t)| est négligeable devant

e−p0t |f(t)| lorsque t tend vers +∞. On peut donc appliquer le théorème de dérivation



des intégrales à paramètre, et en déduire que la fonction L[f ] est de classe Cn pour tout n,
donc de classe C∞ sur tout intervalle de la forme [p1,+∞[ avec p1 > p0, donc finalement
sur ]p0,+∞[. La formule de Leibniz donne alors(
L[f ]

)(n)
(p) =

∫ +∞

0

∂nh

∂pn
(p, t) dt = (−1)n

∫ +∞

0

e−pt gn(t) dt = (−1)n L[gn](p) .

26. Théorème de la valeur finale
Soit f : IR+ → C, continue par morceaux, admettant une limite finie en +∞ : lim

t→+∞
f(t) = l.

Montrer que la transformée L[f ] est définie (au moins) sur IR∗+ et que

lim
p→0+

p · L[f ](p) = l = lim
t→+∞

f(t) .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Pour p > 0, le changement de variable linéaire x = pt donne

p L[f ](p) =

∫ +∞

0

f
(x
p

)
e−x dx .

On veut montrer que cette intégrale tend vers l lorsque p tend vers 0. Utilisons pour
cela le théorème de convergence dominée à paramètre continu. Pour tout x ∈ IR∗+, on a

lim
p→0

f
(x
p

)
e−x = l e−x. Les fonctions x 7→ f

(x
p

)
e−x et x 7→ l e−x sont continues par

morceaux sur IR∗+. Enfin, la fonction f est bornée sur IR+ (elle est bornée au voisinage de
+∞, i.e. sur un certain intervalle de la forme [A,+∞[ avec A > 0 car elle admet une limite
finie en +∞, et elle est bornée aussi sur [0, A] car elle est continue sur ce segment), on a
donc la domination

∀(p, x) ∈ IR∗+ × IR∗+

∣∣∣∣f(xp) e−x
∣∣∣∣ ≤ ϕ(x) = ‖f‖∞ e−x ,

cette fonction ϕ étant intégrable sur IR∗+. Le théorème s’applique donc et donne

lim
p→0

p L[f ](p) =

∫ +∞

0

l e−x dx = l ,

ce qu’il fallait démontrer.

Exercices avec Python

27. Soit g :]0, 1]→ IR définie par g(x) = xx.

a. Prolonger g par continuité en 0.

b. Représenter graphiquement g. Justifier l’allure de g au voisinage de 0. Déterminer les coor-
données du minimum.

c. Donner une valeur approchée de I =

∫ 1

0

g(x) dx.



d. On admettra que

∫ 1

0

(
x lnx)n dx =

(−1)n n!

(n+ 1)n+1
pour tout n entier naturel. Montrer que

I =

+∞∑
n=1

(−1)n−1

nn
.

e. Écrire une fonction calcul(e) retournant la valeur de l’intégrale I avec une précision e

passée en argument.


