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Produit scalaire, norme associée, orthogonalité

1. Soit E un espace préhilbertien réel. Soient f et g deux applications de E vers E telles que

∀(x, y) ∈ E2
(
x|f(y)

)
=
(
g(x)|y

)
.

Montrer que f et g sont des endomorphismes de E.

2. Soit E = C1
(
[0, 1], IR

)
. Pour f ∈ E et g ∈ E, on pose

< f, g >=

∫ 1

0

f ′(t) g′(t) dt+ f(1) g(0) + f(0) g(1) .

Montrer que l’on définit ainsi un produit scalaire sur E.

3. Soient a et b deux vecteurs unitaires dans un espace préhilbertien réel E. Pour tout vecteur x

non nul de E, on pose ϕ(x) =
(x|a)(x|b)
‖x‖2

. Exprimer ϕ(x) à l’aide des vecteurs u = a+ b et

v = a− b. Déterminer les réels

m = min
x∈E\{0}

ϕ(x) et M = max
x∈E\{0}

ϕ(x) .

4. Soit A ∈ Mp,q(IR). Comparer les rangs des matrices A et A>A. On pourra s’intéresser aux
noyaux des applications linéaires canoniquement associées à ces matrices.

5. Soit E le IR-espace vectoriel constitué des suites réelles bornées. Si u et v sont deux suites

appartenant à E, on pose (u|v) =

+∞∑
n=0

unvn
2n

.

a. Montrer que l’on définit bien ainsi un produit scalaire sur E.

b. On note F le sous-espace vectoriel de E constitué des suites “presque nulles”, c’est-à-dire
dont les termes sont nuls à partir d’un certain rang. Déterminer l’orthogonal de F . Le
sous-espace F admet-il un supplémentaire orthogonal ? Déterminer (F⊥)⊥.

c. Montrer que F est dense dans E.

6*. Soit E un espace préhilbertien réel, soient x1, · · ·, xn des vecteurs de E. On suppose qu’il
existe un réel positif M tel que

∀(ε1, · · · , εn) ∈ {−1, 1}n
∥∥∥ n∑
k=1

εkxk

∥∥∥ ≤M .

Montrer que

n∑
k=1

‖xk‖2 ≤M2.

Familles orthogonales ou orthonormales

7. Soit E = IR[X]. Pour (P,Q) ∈ E2, on pose (P |Q) =

∫ +∞

0

P (t)Q(t) e−t dt.

a. Montrer que l’on définit bien ainsi un produit scalaire sur l’espace vectoriel E.

b. Calculer (Xp|Xq) pour p et q entiers naturels.

c. Orthonormaliser la famille (1, X,X2) pour ce produit scalaire.



8. Soit (e1, · · · , en) une famille de vecteurs unitaires d’un espace préhilbertien réel E, telle que

∀x ∈ E ‖x‖2 =

n∑
i=1

(x|ei)2. Montrer que cette famille est orthogonale, puis que c’est une

base orthonormale de E.

9.a. Montrer que, pour tout n ∈ IN, il existe un unique polynôme Tn ∈ IR[X] tel que

∀θ ∈ IR Tn(cos θ) = cosnθ .

On pourra procéder par récurrence, après avoir transformé en produit l’expression

cos(n+ 2)x+ cosnx .

b. Pour (P,Q) ∈
(
IR[X]

)2
, on pose

(P |Q) =

∫ 1

−1

P (x)Q(x)√
1− x2

dx .

Montrer que l’on définit ainsi un produit scalaire sur IR[X]. Montrer que la famille (Tn)n∈IN
est une famille orthogonale dans cet espace préhilbertien.

10*. Soit E un espace euclidien, soit u un endomorphisme de E, de trace nulle.

a. Montrer qu’il existe un vecteur x non nul de E tel que
(
u(x)|x

)
= 0.

b. Montrer qu’il existe une base orthonormale de E dans laquelle la matrice de u a tous ses
coefficients diagonaux nuls. On pourra raisonner par récurrence sur la dimension de E.

Projecteurs orthogonaux

11. Pour tout (a, b) ∈ IR2, on pose I(a, b) =

∫ π

0

(a sinx+b cosx−x)2dx. Déterminer le minimum

de I(a, b) lorsque (a, b) décrit IR2.

12. L’espace vectoriel E = Mn(IR) est muni du produit scalaire (A|B) = tr(A>B). Soit J la
matrice de Mn(IR) dont tous les coefficients sont égaux à 1, soit H l’hyperplan constitué
des matrices de trace nulle. Déterminer la distance d(J,H).

13. Soit p un projecteur dans un espace euclidien E. Montrer que p est un projecteur orthogonal
si et seulement si ∀x ∈ E ‖p(x)‖ ≤ ‖x‖.

14. L’espace vectoriel IR4 est muni de sa structure euclidienne canonique. Écrire la matrice A
(relativement à la base canonique) du projecteur orthogonal sur le sous-espace vectoriel F
défini par les équations {

x + y+ z +t = 0

x − y+ z −t = 0
.

15. L’espace E = Mn(IR) est muni du produit scalaire canonique défini par la relation

(A|B) = tr(A> B) =
∑
i,j

ai,jbi,j . Soit M = (mi,j) ∈ E. Calculer la distance de la

matrice M au sous-espace vectoriel Sn(IR) des matrices symétriques.



16. Soit E un espace euclidien de dimension n, soit B = (e1, · · · , en) une base orthonormale de E,
soit p ∈ L(E) un projecteur orthogonal de rang r.

a. Montrer que ∀x ∈ E ‖p(x)‖2 =
(
p(x)|x

)
.

b. Calculer la somme S =

n∑
i=1

‖p(ei)‖2.

17. Soient p et q deux projecteurs orthogonaux dans un espace euclidien E. Prouver l’équivalence

Im(p) ⊂ Im(q) ⇐⇒ ∀x ∈ E
∥∥p(x)

∥∥ ≤ ∥∥q(x)
∥∥ .

Isométries. Matrices orthogonales.

18. Soit A = (aij) ∈ Mn(IR) une matrice que l’on suppose à la fois orthogonale et triangulaire
supérieure. Montrer que A est diagonale et que ses coefficients diagonaux valent 1 ou −1.

19.a. Soit E un espace euclidien. Soit B une base de E, soit E son orthonormalisée. Montrer que
la matrice de passage de E vers B est triangulaire supérieure avec des coefficients diagonaux
strictement positifs.

b. En déduire que, si A est une matrice de GLn(IR), alors il existe une matrice orthogonale Q
et une matrice triangulaire supérieure R à coefficients diagonaux strictement positifs telles
que A = QR. En utilisant éventuellement l’exercice 18. ci-dessus, montrer l’unicité de cette
“décomposition QR”.

20. Soit A = (aij) ∈ O(n). Montrer que
∑
i,j

|aij | ≤ n
√
n et

∣∣∣∑
i,j

aij

∣∣∣ ≤ n. On pourra utiliser le

vecteur U = (1, 1, · · · , 1) de IRn.

21. Soit u ∈ O(E), où E est un espace euclidien.

a. Montrer que
(

Ker(u− idE)
)⊥

= Im(u− idE).

b. Pour tout k ∈ IN∗, on considère l’endomorphisme rk =
1

k

k−1∑
j=0

uj . Soit x un vecteur de E.

Déterminer lim
k→+∞

rk(x).

22. Soit n un entier naturel avec n ≥ 2. Soit A ∈ An(IR) une matrice antisymétrique.

a. Montrer que la seule valeur propre réelle possible de A est 0. En déduire que la matrice
In −A est inversible.

b. Montrer que les matrices In +A et (In −A)−1 commutent.

c. Soit la matrice R = (In +A)(In −A)−1.

i. Montrer que det(R) = 1.

ii. Montrer que R ∈ SOn(IR).

iii. Montrer que le réel −1 n’est pas valeur propre de R.

iv. Prouver la relation A = (R+ In)−1(R− In).

d. L’application ϕ :

{
An(IR) → SOn(IR)

A 7→ (In +A)(In −A)−1
est-elle injective ? Est-elle surjective ?



Matrices et endomorphismes symétriques. Théorème spectral.

23. Trouver toutes les matrices M ∈Mn(IR) telles que M (M>M)2 = In.

24. Soit A ∈M2(IR) telle que A 6= 0 et A2 = A>.

a. Donner un polynôme annulateur de A.

b. On suppose que 0 ∈ Sp(A). Déterminer alors Sp(A). Montrer que A est semblable à

D =

(
1 0
0 0

)
, avec une matrice de passage orthogonale.

25. Soit E un espace euclidien, soit u un endomorphisme symétrique de E, de valeurs propres
(distinctes) λ1, . . ., λm, rangées dans l’ordre croissant (λ1 < λ2 < . . . < λm). Pour tout
i ∈ [[1,m]], notons Ei le sous-espace propre associé à la valeur propre λi.

a. Montrer que ∀x ∈ E λ1‖x‖2 ≤
(
u(x)|x

)
≤ λm‖x‖2.

b. Pour quels vecteurs x l’une des deux inégalités ci-dessus est-elle une égalité ?

c. Soit M une matrice quelconque deMn(IR), on pose S =
1

2
(M +M>). On note α (resp. β)

la plus petite (resp. la plus grande) valeur propre de S. Montrer que toutes les valeurs
propres réelles de M appartiennent à l’intervalle [α, β]. Qu’en déduit-on lorsque M est
antisymétrique ?

26. Soit A ∈Mn(IR). Montrer qu’il existe une matrice-colonne X ∈Mn,1(IR) telle que

X>X = n et X>AX = tr(A) .

Indication. Considérer l’endomorphisme u de IRn canoniquement associé à la matrice

M =
1

2
(A+A>).

27. Soit A une matrice symétrique réelle. Montrer que(
tr(A)

)2 ≤ tr(A2) · rg(A) .

28. Soit A ∈Mn(IR) une matrice antisymétrique.

a. Montrer que, pour tout vecteur X ∈Mn,1(IR), on a X>AX = 0.

b. Soit B ∈Mn(IR) une matrice symétrique dont les valeurs propres sont strictement positives.
Montrer que la matrice M = A+B est inversible.

29. Soit A ∈Mn(IR). Montrer que A est diagonale si et seulement si A est symétrique et a pour
coefficients diagonaux ses valeurs propres. On pourra utiliser la norme ‖ · ‖ sur Mn(IR)

définie par ‖A‖ =
√

tr(A>A).

30.a. Soit D ∈ Mn(IR) une matrice diagonale dont les coefficients diagonaux sont positifs ou
nuls. Montrer que

∀V ∈ On(IR) tr(DV ) ≤ tr(D) .

b. Soit A ∈ Sn(IR) une matrice symétrique dont les valeurs propres sont positives ou nulles.
Montrer que

∀U ∈ On(IR) tr(AU) ≤ tr(A) .



31. Soit E un espace euclidien. Un endomorphisme autoadjoint u de E est dit positif si on a
∀x ∈ E

(
u(x)|x

)
≥ 0.

a. Si u ∈ L(E) est autoadjoint, démontrer que u est positif si et seulement si Sp(u) ⊂ IR+.

b. Soit u ∈ L(E) autoadjoint positif. Montrer qu’il existe un endomorphisme autoadjoint
positif v tel que v2 = u.

c*. Montrer l’unicité de v dans la question précédente.

32. SoitA ∈Mn(IR), soit S ∈ Sn(IR) dont les valeurs propres sont positives. Montrer l’équivalence

AS = SA ⇐⇒ ∃k ∈ IN∗ ASk = SkA .

33. Soit A = (ai,j) ∈ Sn(IR) une matrice symétrique, soient λ1, · · ·, λn ses valeurs propres

(comptées avec leur multiplicité). Montrer que
∑
i,j

a2i,j =

n∑
i=1

λ2i .

34. Soit E un espace euclidien, soit u ∈ L(E) un endomorphisme autoadjoint défini positif.
Montrer l’inégalité

∀(x, y) ∈ E2 (x|y)2 ≤
(
u(x)|x

) (
u−1(y)|y

)
.

35. Soit A ∈ An(IR) une matrice antisymétrique réelle.

a. Montrer que A2 est symétrique réelle et que Sp(A2) ⊂ IR−.

b. On suppose A inversible. Montrer que A est diagonalisable sur C, à valeurs propres imagi-
naires pures.

c. Montrer que Ker(A2) = Ker(A).

d.* En utilisant c., montrer que le résultat du b. est vrai même si A n’est pas inversible.

36. Soient A ∈Mn(IR) et B ∈Mn(IR) deux matrices carrées d’ordre n.

a. Montrer que les matrices A>A et B>B sont symétriques positives.

On note α la plus grande valeur propre de A>A, et β la plus grande valeur propre de B>B.

b. Prouver, pour tout X ∈Mn,1(IR), l’inégalité X>A>AX ≤ α X>X.

c. Que peut-on en déduire sur les valeurs propres réelles de la matrice A ?

d. Soit λ une valeur propre réelle de la matrice M = A>B. Montrer que |λ| ≤
√
αβ.

37*. Soient A ∈ S++
n (IR) et B ∈ S++

n (IR) qui commutent (AB = BA).

Montrer que AB ∈ S++
n (IR).

38. Soit A ∈ S+n (IR), soit X ∈Mn,1(IR). Montrer l’équivalence

X>AX = 0 ⇐⇒ AX = 0 .

39. Soit A = (ai,j) ∈ Sn(IR) avec ai,j = min{i, j}. Pour tout k ∈ [[1, n]], on considère la matrice

Jk ∈ Mk(IR) dont tous les coefficients valent 1, et on pose Ak =

(
0 0
0 Jk

)
∈ Mn(IR). En

utilisant les matrices Ak, montrer que A ∈ S++
n (IR).



40.a. Soit f : I → IR convexe, où I est un intervalle de IR. Soient x1, · · ·, xn des points de I.
Prouver l’inégalité

f

(
1

n

n∑
i=1

xi

)
≤ 1

n

n∑
i=1

f(xi) .

b. Soit B ∈ S++
n (IR). Prouver l’inégalité n

√
det(B) ≤ 1

n
tr(B).

c. Soit A ∈ S++
n (IR). Montrer que det(A) ≤

n∏
i=1

ai,i. On pourra poser bi,j =
ai,j√
ai,i aj,j

.

Étude du plan et de l’espace euclidiens

41. Reconnâıtre les endomorphismes de l’espace euclidien E = IR3 représentés par les matrices
suivantes:

A =
1

4

 −2 −
√

6
√

6√
6 1 3

−
√

6 3 1

 ; B =
1

7

−2 6 −3
6 3 2
−3 2 6

 ; C =
1

9

−7 −4 4
4 −8 −1
−4 −1 −8

 .

42. Écrire la matrice, dans IR3, de la rotation d’axe D dirigé et orienté par le vecteur
−→
u = (1, 1, 1)

et d’angle
π

3
.

43. Un endomorphisme f de IR3 est représenté par la matrice M =
1

7

−2 6 −3
6 3 2
−3 2 6

 dans une

base orthonormale. Éléments caractéristiques de f ?

44. Soit la matrice M =

 a2 ab+ c ac− b
ab− c b2 bc+ a
ac+ b bc− a c2

 avec a, b, c réels tels que a2 + b2 + c2 = 1.

a. Décomposer M en M = S + A avec S symétrique et A antisymétrique. Interpréter géo-
métriquement les matrices S et A.

b. Interpréter géométriquement l’endomorphisme de IR3 canoniquement associé à la matrice A.

45. Soit E un espace euclidien orienté de dimension trois, soit a un vecteur non nul de E.

a. Montrer que l’application f : x 7→ a∧ x est un endomorphisme de E. Préciser son noyau et
son image.

b. Soit b ∈ E. Calculer a ∧ (a ∧ b). Préciser à quelles conditions sur b l’équation a ∧ x = b
admet des solutions, et résoudre alors complètement cette équation.

46. Soit t un réel, soit la matrice antisymétrique A =

(
0 −t
t 0

)
, soit R = (I2 + A)(I2 − A)−1.

Montrer que R est la matrice d’une rotation dont on précisera l’angle en fonction du réel t.


