EXERCICES sur les ESPACES PREHILBERTIENS et EUCLIDIENS
PSI2 2025-2026

Produit scalaire, norme associée, orthogonalité
1. Soit F un espace préhilbertien réel. Soient f et g deux applications de F vers E telles que
V(z,y) € B2 (2lf(y) = (9(2)ly) -
Montrer que f et g sont des endomorphismes de E.

2. Soit F = Cl([O, 1],IR). Pour f € E et g € E, on pose
1
<fa>= [ 1050 d £0) 900+ £0)9(1).

Montrer que I'on définit ainsi un produit scalaire sur F.

3. Soient a et b deux vecteurs unitaires dans un espace préhilbertien réel E. Pour tout vecteur x
(w]a)(x[b)

e Exprimer ¢(z) a l’aide des vecteurs u = a + b et
x

non nul de E, on pose ¢(z) =
v = a — b. Déterminer les réels

= i t M = .
m= min el e e @ (@)

4. Soit A € M, ,(IR). Comparer les rangs des matrices A et AT A. On pourra s’intéresser aux
noyaux des applications linéaires canoniquement associées a ces matrices.

5. Soit E le IR-espace vectoriel constitué des suites réelles bornées. Si u et v sont deux suites

+oo
appartenant & E, on pose (ulv) = Z u;:n
n=0

a. Montrer que ’on définit bien ainsi un produit scalaire sur E.

b. On note F' le sous-espace vectoriel de E constitué des suites “presque nulles”, c’est-a-dire
dont les termes sont nuls a partir d'un certain rang. Déterminer 'orthogonal de F'. Le
sous-espace F admet-il un supplémentaire orthogonal ? Déterminer (F1)*.

c. Montrer que F' est dense dans E.

6%. Soit E un espace préhilbertien réel, soient 1, -- -, x, des vecteurs de E. On suppose qu’il
existe un réel positif M tel que

Wer e € (L1 | Y e <0
k=1

n
Montrer que Z [|ok]> < M2
k=1

Familles orthogonales ou orthonormales

7. Soit E = R[X]. Pour (P,Q) € E?, on pose (P|Q) = /+OO P(t) Q(t) e " dt.
0

a. Montrer que I'on définit bien ainsi un produit scalaire sur ’espace vectoriel E.
b. Calculer (X?|X %) pour p et ¢ entiers naturels.

c. Orthonormaliser la famille (1, X, X 2) pour ce produit scalaire.



8. Soit (e, -, e,) une famille de vecteurs unitaires d’un espace préhilbertien réel E, telle que
n

10%*.

. Montrer qu’il existe un vecteur z non nul de E tel que (u(x)|z) = 0.

Ve e E |z|* = Z(m|ei)2. Montrer que cette famille est orthogonale, puis que c’est une
i=1
base orthonormale de E.

. Montrer que, pour tout n € IN, il existe un unique polynéme T,, € IR[X] tel que

Vo € IR T, (cosf) = cosnb .

On pourra procéder par récurrence, apres avoir transformé en produit [’expression
cos(n + 2)x + cosnx .

. Pour (P,Q) € (IR[X])27 on pose

1
P(x)Q(x)
PlQ) = ———dz.
(Plo) = [ S
Montrer que on définit ainsi un produit scalaire sur IR[X]. Montrer que la famille (T,),cn

est une famille orthogonale dans cet espace préhilbertien.

Soit E un espace euclidien, soit © un endomorphisme de F, de trace nulle.

. Montrer qu’il existe une base orthonormale de F dans laquelle la matrice de u a tous ses

coefficients diagonaux nuls. On pourra raisonner par récurrence sur la dimension de E.

Projecteurs orthogonaux

11. Pour tout (a,b) € IR?, on pose I(a,b) = / (asinz+bcos z—x)?dz. Déterminer le minimum
0

12.

13.

14.

15.

de I(a,b) lorsque (a,b) décrit IR?.

L’espace vectoriel E = M,,(IR) est muni du produit scalaire (A|B) = tr(A' B). Soit J la
matrice de M, (IR) dont tous les coefficients sont égaux a 1, soit H I'hyperplan constitué
des matrices de trace nulle. Déterminer la distance d(J, H).

Soit p un projecteur dans un espace euclidien £. Montrer que p est un projecteur orthogonal
si et seulement si Vo € £ ||p(x)] < ||z

L’espace vectoriel IR* est muni de sa structure euclidienne canonique. Ecrire la matrice A
(relativement & la base canonique) du projecteur orthogonal sur le sous-espace vectoriel F
défini par les équations

T+ y+ z+t =0
r —y+rz —t=0"

L’espace E = M, (IR) est muni du produit scalaire canonique défini par la relation
(A|B) = tr(A" B) = Z%‘,j@‘,y Soit M = (m;;) € E. Calculer la distance de la
(2%

matrice M au sous-espace vectoriel S, (IR) des matrices symétriques.



16. Soit F un espace euclidien de dimension n, soit B = (e, - -, €,) une base orthonormale de F,
soit p € L(FE) un projecteur orthogonal de rang r.

a. Montrer que Vz € E |[p(z)|* = (p(z)|z).

b. Calculer la somme S = Z lp(ed)|)?.
i=1

17. Soient p et ¢ deux projecteurs orthogonaux dans un espace euclidien E. Prouver ’équivalence

Im(p) CIm(q) < Ve € E ||p(x)| < ||q(=)| -

Isométries. Matrices orthogonales.

18. Soit A = (a;j) € M, (IR) une matrice que I'on suppose a la fois orthogonale et triangulaire
supérieure. Montrer que A est diagonale et que ses coefficients diagonaux valent 1 ou —1.

19.a. Soit E un espace euclidien. Soit B une base de F, soit £ son orthonormalisée. Montrer que
la matrice de passage de € vers B est triangulaire supérieure avec des coefficients diagonaux
strictement positifs.

b. En déduire que, si A est une matrice de GL,,(IR), alors il existe une matrice orthogonale @
et une matrice triangulaire supérieure R a coefficients diagonaux strictement positifs telles
que A = QR. En utilisant éventuellement 1’exercice 18. ci-dessus, montrer 'unicité de cette
“décomposition QR”.

20. Soit A = (a;;) € O(n). Montrer que Z laij| < nyn et ’ Zaii

4,J 4,J

< n. On pourra utiliser le

vecteur U = (1,1,---,1) de R".
21. Soit u € O(E), ou E est un espace euclidien.
a. Montrer que (Ker(u — idE))J‘ =Im(u — idg).

S

-1

b. Pour tout & € IN*, on considere ’endomorphisme 7 = w?. Soit z un vecteur de E.

T =
<.

I

[e=]

Déterminer lim 7rg(z).
k—+oo

22. Soit n un entier naturel avec n > 2. Soit A € A, (IR) une matrice antisymétrique.

a. Montrer que la seule valeur propre réelle possible de A est 0. En déduire que la matrice
I,, — A est inversible.

b. Montrer que les matrices I,, + A et (I, — A)~' commutent.
c. Soit la matrice R = (I,, + A)(I,, — A)~*.
i. Montrer que det(R) = 1.
ii. Montrer que R € SO, (IR).
iii. Montrer que le réel —1 n’est pas valeur propre de R.
iv. Prouver la relation A = (R+I,) (R - I,,).
A,(R) — SO, (R)

, est-elle injective 7 Est-elle surjective ?
A = (In+A)I,—A)~

d. L’application ¢ : {



Matrices et endomorphismes symétriques. Théoréme spectral.

23. Trouver toutes les matrices M € M,,(IR) telles que M (M M)? = I,,.
24. Soit A € My(R) telle que A # 0 et A2 = AT,

a. Donner un polynéme annulateur de A.

b. On suppose que 0 € Sp(A). Déterminer alors Sp(A4). Montrer que A est semblable &

D= <(1) 8), avec une matrice de passage orthogonale.

25. Soit E un espace euclidien, soit v un endomorphisme symétrique de F, de valeurs propres
(distinctes) A1, ..., Am, rangées dans l'ordre croissant (A} < Ay < ... < \,,). Pour tout
i € [1,m], notons E; le sous-espace propre associé & la valeur propre ;.

a. Montrer que Vo € E A([|z|]* < (u(z)|z) < Apllz]*

b. Pour quels vecteurs x I'une des deux inégalités ci-dessus est-elle une égalité ?

1
c. Soit M une matrice quelconque de M, (IR), on pose S = 3 (M +M7"). On note a (resp. )

la plus petite (resp. la plus grande) valeur propre de S. Montrer que toutes les valeurs
propres réelles de M appartiennent & lintervalle [, 5]. Qu’en déduit-on lorsque M est
antisymétrique ?

26. Soit A € M,,(IR). Montrer qu’il existe une matrice-colonne X € M,, 1(IR) telle que
X'X=n e XTAX =tr(A).
Indication. Considérer I'endomorphisme u de IR™ canoniquement associé & la matrice
M = %(A +AT).

27. Soit A une matrice symétrique réelle. Montrer que

(tr(A))* < tr(A42) - 1g(A) .

28. Soit A € M,,(IR) une matrice antisymétrique.
a. Montrer que, pour tout vecteur X € M,, 1(IR), on a XTAX =0.

b. Soit B € M,,(IR) une matrice symétrique dont les valeurs propres sont strictement positives.
Montrer que la matrice M = A 4+ B est inversible.

29. Soit A € M,,(IR). Montrer que A est diagonale si et seulement si A est symétrique et a pour
coefficients diagonaux ses valeurs propres. On pourra utiliser la norme || - || sur M, (IR)

définie par ||Al = \/tr(ATA).

30.a. Soit D € M, (IR) une matrice diagonale dont les coefficients diagonaux sont positifs ou
nuls. Montrer que
YV € 0,(IR) tr(DV) < tr(D) .

b. Soit A € §,(IR) une matrice symétrique dont les valeurs propres sont positives ou nulles.
Montrer que
YU € 0,(R) tr(AU) < tr(A) .



31. Soit E un espace euclidien. Un endomorphisme autoadjoint u de E est dit positif si on a
Ve e E (u(z)|z) > 0.
a. Siu € L(F) est autoadjoint, démontrer que u est positif si et seulement si Sp(u) C IR

b. Soit w € L(E) autoadjoint positif. Montrer qu’il existe un endomorphisme autoadjoint
positif v tel que v? = u.
c*. Montrer I'unicité de v dans la question précédente.

32. Soit A € M,,(IR), soit S € S,,(IR) dont les valeurs propres sont positives. Montrer I’équivalence
AS=SA < FkelN* A" =54,
33. Soit A = (a;,;) € S,(IR) une matrice symétrique, soient Aq, ---, A, ses valeurs propres
n
(comptées avec leur multiplicité). Montrer que Z a?’ = Z M2
ij i=1
34. Soit E un espace euclidien, soit © € L(F) un endomorphisme autoadjoint défini positif.
Montrer I'inégalité

V(z,y) € B> (z[y)? < (u(@)]z) (v (y)]y) -

35. Soit A € A, (IR) une matrice antisymétrique réelle.
a. Montrer que A% est symétrique réelle et que Sp(A?) Cc R_.

b. On suppose A inversible. Montrer que A est diagonalisable sur C, a valeurs propres imagi-
naires pures.

c. Montrer que Ker(A?) = Ker(A).

d.* En utilisant c., montrer que le résultat du b. est vrai méme si A n’est pas inversible.

36. Soient A € M,,(R) et B € M,,(IR) deux matrices carrées d’ordre n.
a. Montrer que les matrices AT A et BT B sont symétriques positives.
On note « la plus grande valeur propre de AT A, et § la plus grande valeur propre de B' B.
b. Prouver, pour tout X € M, ;(IR), I'inégalité X ATAX <a X'X.
c. Que peut-on en déduire sur les valeurs propres réelles de la matrice A 7
d. Soit A\ une valeur propre réelle de la matrice M = A" B. Montrer que Al < \/cTﬂ.

37*. Soient A € ST (IR) et B € S (IR) qui commutent (AB = BA).
Montrer que AB € ST (R).

38. Soit 4 € S} (R), soit X € M,, 1(IR). Montrer 1’équivalence
XTAX =0 < AX=0.

39. Soit A = (a;,;) € S,(IR) avec a; ; = min{i, j}. Pour tout k& € [1,n], on consideére la matrice

00 ) € M,(R). En

Jr € My (IR) dont tous les coefficients valent 1, et on pose Aj = (O J
k

utilisant les matrices Ay, montrer que A € ;7T (IR).



40.a. Soit f : I — IR convexe, ou I est un intervalle de IR. Soient x, - --, x, des points de I.

S 1eis
Prouver 'inégalité n n

f(i in> g% > fla)

i=1 i=1

1
b. Soit B € ST (IR). Prouver l'inégalité {/det(B) < — tr(B).
n
c. Soit A € S (IR). Montrer que det(A) < | | ai;. On pourra poser b; ; = L

Etude du plan et de 1’espace euclidiens

41. Reconnaitre les endomorphismes de D’espace euclidien E = IR? représentés par les matrices

suivantes:
1 2 -6 V6 (2 6 -3 LT 44
A:Z V6 1 3 . B:? 6 3 2 : ng 4 -8 -1
-6 3 1 -3 2 6 -4 -1 -8

42. Ecrire la matrice, dans IR?, de la rotation d’axe D dirigé et orienté par le vecteur U= (1,1,1)
s
et d’angle 3

-2 6 -3
43. Un endomorphisme f de IR? est représenté par la matrice M = 6 3 2 dans une
base orthonormale. Eléments caractéristiques de f ? -3 2 6
a? ab+c ac—1>
44. Soit la matrice M = [ ab—c b? be+a | avec a, b, ¢ réels tels que a® + b2 + ¢* = 1.

ac+b bc—a 2

a. Décomposer M en M = S 4+ A avec S symétrique et A antisymétrique. Interpréter géo-
métriquement les matrices S et A.

b. Interpréter géométriquement ’endomorphisme de IR canoniquement associé & la matrice A.

45. Soit E un espace euclidien orienté de dimension trois, soit a un vecteur non nul de F.

a. Montrer que I'application f : x + a A x est un endomorphisme de E. Préciser son noyau et
son image.

b. Soit b € E. Calculer a A (a A b). Préciser a quelles conditions sur b 'équation a Az = b
admet des solutions, et résoudre alors complétement cette équation.

t 0
Montrer que R est la matrice d’une rotation dont on précisera ’angle en fonction du réel t.

46. Soit t un réel, soit la matrice antisymétrique A = ( _t>, soit R = (Iy + A)(I, — A)~*.



