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d’aprés CCINP, 2019, filière PC

PARTIE A.

1. On sait que toute fonction somme d’une série entière est de classe C∞ sur l’intervalle de
convergence ] − r, r[, et que l’on obtient ses dérivées successives par dérivation terme à
terme. Donc, pour x ∈ ]− r, r[, on a

f ′(x) =

+∞∑
n=1

nan x
n−1 et f ′′(x) =

+∞∑
n=2

n(n− 1)an x
n−2 .

2. Pour x ∈ ]− r, r[, posons A(x) = x2(1− x) f ′′(x)− x(1 + x) f ′(x) + f(x). Alors

A(x) =

+∞∑
n=2

n(n− 1)anx
n −

+∞∑
n=2

n(n− 1)anx
n+1 −

+∞∑
n=1

nanx
n −

+∞∑
n=1

nanx
n+1 +

+∞∑
n=0

anx
n

=

+∞∑
n=2

n(n− 1)anx
n −

+∞∑
n=3 (ou 2)

(n− 1)(n− 2)an−1x
n −

+∞∑
n=1

nanx
n −

+∞∑
n=2

(n− 1)an−1x
n +

+∞∑
n=0

anx
n

= a0 + (a1 − a1)x+

+∞∑
n=2

(
(n− 1)2 an − (n− 1)2 an−1

)
xn

= a0 +

+∞∑
n=2

bn (an − an−1) xn

en posant bn = (n− 1)2 pour tout n ≥ 2, et bn est bien non nul.

3. Par unicité du développement en série entière, la fonction f est donc solution de (H) sur

]− r, r[ si et seulement si

{
a0 = 0

∀n ≥ 2 an = an−1
. On a alors f(x) = a1

+∞∑
n=1

xn, le coefficient

a1 restant arbitraire.
En dehors du cas trivial a1 = 0 où f est la fonction nulle, qui est bien une solution de
(H) développable en série entière sur IR (dans ce cas r = +∞), on reconnâıt une série

géométrique de rayon de convergence r = 1, et de somme f(x) = a1
x

1− x
.

Les solutions de (H) développables en série entière sur ]− 1, 1[ sont donc les fonctions

x 7→ α
x

1− x
, avec α ∈ IR .

PARTIE B.

4. La fonction z est de classe C2 comme produit de deux fonctions du même métal. On obtient

z′(x) = − 1

x2
y(x) +

( 1

x
− 1
)
y′(x) ,

puis

z′′(x) =
2

x3
y(x)− 2

x2
y′(x) +

( 1

x
− 1
)
y′′(x) .



5. Partons de l’équation (F):

(F) ⇐⇒ x z′′(x) + z′(x) = 2x

⇐⇒ 2

x2
y(x)− 2

x
y′(x) + (1− x) y′′(x)− 1

x2
y(x) +

( 1

x
− 1
)
y′(x) = 2x

⇐⇒ 2 y(x)− 2x y′(x) + x2(1− x) y′′(x)− y(x) + x(1− x) y′(x) = 2x3

⇐⇒ x2(1− x) y′′(x)− x(1 + x) y′(x) + y(x) = 2x3 ⇐⇒ (E) .

Remarquons que ce calcul revient à résoudre (E) sur I en posant le changement de fonction

inconnue y(x) =
x

1− x
z(x). Comme, d’après la question 3., y0 =

x

1− x
est une solution de

l’équation homogène (H) ne s’annulant pas sur I, ce n’est rien d’autre que la méthode de
variation de la constante (ou méthode de Lagrange) vue en cours.

6. Ne nous interdisons pas d’être astucieux puisqu’un œil exercé aura reconnu dans le premier
membre de l’équation (F) la dérivée d’un produit! En effet,

(F) ⇐⇒ d

dx

(
x z′(x)

)
= 2x

⇐⇒ x z′(x) = x2 + C

⇐⇒ z′(x) = x+
C

x

⇐⇒ z(x) =
x2

2
+ C ln(x) +D

⇐⇒ y(x) =
x3

2(1− x)
+
C x ln(x)

1− x
+

D x

1− x
,

où C et D sont deux constantes arbitraires.

PARTIE C.

7. Allons-y!

gλ(1 + t) =
(1 + t)3 + 2λ(1 + t)

−2t
=
t3 + 3t2 + 3t+ 1 + 2λt+ 2λ

−2t
= − t

2

2
− 3t

2
− 2λ+ 3

2
− 2λ+ 1

2t
.

8. La fonction gλ admet une limite finie au point 1 si et seulement si gλ(1 + t) admet une limite

finie lorsque t tend vers 0, donc si et seulement si 2λ+ 1 = 0, donc ssi λ = −1

2
. Il est clair

que, dans ce cas, la fonction gλ (prolongée par continuité au point 1) est de classe C∞ sur IR
puisqu’elle est alors polynomiale.

9. Pour t ∈]− 1,+∞[, posons H(t) = h(1 + t). Alors H(t) =

−
ln(1 + t)

t
si t 6= 0

−1 si t = 0
.

Pour t ∈] − 1, 1[, on a H(t) =

+∞∑
n=1

(−1)ntn−1

n
=

+∞∑
n=0

(−1)n+1tn

n+ 1
. La fonction H est

développable en série entière sur ]− 1, 1[, elle est donc de classe C∞ sur cet intervalle. Elle
est par ailleurs clairement de classe C∞ sur ]0,+∞[ (comme quotient dont le dénominateur



ne s’annule pas). Elle est donc C∞ sur ]− 1,+∞[. Par translation de la variable, h est C∞
sur ]0,+∞[.

10. Si y est une solution de (E) sur IR∗+ =]0,+∞[, alors elle est solution de (E) sur ]0, 1[ et aussi
sur ]1,+∞[. D’après la question 6., il existe donc quatre constantes λ1, λ2, µ1, µ2 telles que

y(x) =

{
gλ1

(x) + µ1 h(x) si x ∈]0, 1[

gλ2
(x) + µ2 h(x) si x ∈]1,+∞[

.

Si λ1 6= −
1

2
(ou si λ2 6= −

1

2
), alors une telle fonction y aura une limite à gauche (ou à

droite) infinie au point 1, d’après la question 8.. Il est donc nécessaire que λ1 = λ2 = −1

2
.

On a alors

y(x) =

{
g−1/2(x) + µ1 h(x) si x ∈]0, 1[

g−1/2(x) + µ2 h(x) si x ∈]1,+∞[
.

Ensuite, pour que y soit continue au point 1, il est nécessaire que µ1 = µ2. En effet, la
fonction y explicitée ci-dessus admet g−1/2(1)−µ1 et g−1/2(1)−µ2 pour limites à gauche
et à droite au point 1, ces deux valeurs doivent être égales. On a finalement nécessairement

y(x) = g−1/2(x) + µ h(x) = −x(1 + x)

2
+ µ

x ln(x)

1− x
,

où µ est une constante arbitraire (la fonction étant prolongée par continuité en lui donnant
la valeur −µ− 1 au point 1).

Réciproquement, ces fonctions conviennent puisqu’elles sont alors de classe C∞ (donc C2)
sur IR∗+ d’après la question 9. et qu’elles sont solutions de (E) sur chacun des intervalles
]0, 1[ et ]1,+∞[.

EXERCICE 2
d’aprés e3a, 2018, filière PC

1. On écrit Sk(n) = nk+1 × 1

n

n∑
i=1

(
i

n

)k
, on reconnâıt ainsi une somme de Riemann puisque

1

n

n∑
i=1

(
i

n

)k
−→

n→+∞

∫ 1

0

tk dt =
1

k + 1
.

On en déduit l’équivalent proposé.

2. On calcule E(X1) =

n∑
i=1

1

n
× i =

1

n
× n(n+ 1)

2
=
n+ 1

2
puis, par la formule de transfert,

E(X2
1 ) =

n∑
i=1

1

n
× i2 =

1

n
× n(n+ 1)(2n+ 1)

6
=

(n+ 1)(2n+ 1)

6

et enfin, par la formule de Koenig-Huygens, V(X1) = E(X2
1 )−

(
E(X1)

)2
=
n2 − 1

12
.



3. Pour tout j ∈ [[1, k]], on a P (Xj ≥ i) =
nombre de cas favorables

nombre de cas possibles
=

n− i+ 1

n
. Ensuite,

par indépendance des variables Xj avec 1 ≤ j ≤ k,

P (Uk ≥ i) = P

( k⋂
j=1

{Xj ≥ i}
)

=

k∏
j=1

P (Xj ≥ i) =

(
n− i+ 1

n

)k
.

4. Comme {Uk = i} = {Uk ≥ i} \ {Uk ≥ i+ 1} (complémentaire), on a

E(Uk) =

n∑
i=1

i P (Uk = i) =

n∑
i=1

i
(
P (Uk ≥ i)− P (Uk ≥ i+ 1)

)
=

n∑
i=1

i P (Uk ≥ i)−
n+1∑
i=2

(i− 1) P (Uk ≥ i)

=

n∑
i=1

(
i− (i− 1)

)
P (Uk ≥ i) =

n∑
i=1

P (Uk ≥ i) .

Par un calcul analogue, avec la formule de transfert,

E(U2
k ) =

n∑
i=1

i2 P (Uk = i) =

n∑
i=1

i2
(
P (Uk ≥ i)− P (Uk ≥ i+ 1)

)
=

n∑
i=1

i2 P (Uk ≥ i)−
n+1∑
i=2

(i− 1)2 P (Uk ≥ i)

=

n∑
i=1

(
i2 − (i− 1)2

)
P (Uk ≥ i) =

n∑
i=1

(2i− 1) P (Uk ≥ i) .

5. Donc, par le changement d’indice i′ = n− i+ 1,

E(Uk) =

n∑
i=1

(
n− i+ 1

n

)k
=

1

nk

n∑
i′=1

(i′)k =
Sk(n)

nk
∼

n→+∞

n

k + 1
.

PROBLÈME

d’aprés EPITA, 2025, filière PT

A. Calcul d’une intégrale dépendant d’un paramètre.

1. La fonction ϕ : t 7→ 1

ta (1 + t)
est continue sur ]0,+∞[, avec ϕ(t) ∼

t→0

1

ta
ce qui entrâıne son

intégrabilité en 0 puisque a < 1, et ϕ(t) ∼
t→+∞

1

ta+1
ce qui entrâıne son intégrabilité en +∞

puisque a+ 1 > 1. Elle est donc intégrable sur IR∗+, d’où l’existence de l’intégrale K(a).



2. Le changement de variable u =
1

t
donne

J(a) =

∫ 0

1

−du

u2
1

ua

(
1 +

1

u

) =

∫ 1

0

du

u1−a (u+ 1)
= I(1− a) .

3. On reconnâıt une série géométrique de raison −t (différente de 1) dont on sait exprimer la
somme partielle d’ordre N :

N∑
n=0

(−1)ntn−a =
1

ta

N∑
n=0

(−t)n =
1

ta
1− (−t)N+1

1− (−t)
=

1

ta(1 + t)
− 1

ta
(−1)N+1 tN+1

1 + t
,

ce qui est la relation demandée (en réordonnant un peu).

4. Par simple majoration, on a 0 ≤
∫ 1

0

tN+1−a

1 + t
dt ≤

∫ 1

0

tN+1−a dt =
1

N + 2− a
et, comme ce

majorant tend vers 0, il résulte du théorème d’encadrement que lim
N→+∞

∫ 1

0

tN+1−a

1 + t
dt = 0.

5. On intègre sur l’intervalle ]0, 1] la relation obtenue en Q3.:

∀N ∈ IN I(a) =

∫ 1

0

dt

ta (1 + t)
=

N∑
n=0

(−1)n
∫ 1

0

tn−a dt+ (−1)N+1

∫ 1

0

tN+1−a

1 + t
dt ,

et en faisant tendre N vers l’infini, grâce à Q4., on obtient

+∞∑
n=0

(−1)n

n− a+ 1
= lim
N→+∞

N∑
n=0

(−1)n

n− a+ 1
= lim
N→+∞

N∑
n=0

(−1)n
∫ 1

0

tn−a dt = I(a) .

Ce calcul montre la convergence de la série numérique dans le membre de gauche, mais
cette convergence peut se déduire aussi du théorème des séries alternées.

6. En utilisant Q2. puis un décalage d’indice,

J(a) = I(1− a) =

+∞∑
n=0

(−1)n

n− (1− a) + 1
=

+∞∑
n=0

(−1)n

n+ a
=

+∞∑
n=1

(−1)n−1

n− 1 + a
.

7. Par la relation de Chasles, K(a) = I(a) + J(a), donc

K(a) =

+∞∑
n=0

(−1)n

n− a+ 1
+

+∞∑
n=1

(−1)n−1

n− 1 + a
=

1

1− a
+

+∞∑
n=1

(−1)n
(

1

n+ (1− a)
− 1

n− (1− a)

)

=
1

1− a
+

+∞∑
n=1

(−1)n × 2(a− 1)

n2 − (1− a)2
.

8. En utilisant le “développement eulérien” admis par l’énoncé, on reconnâıt, en choisissant
x = 1− a, qui n’est pas entier relatif,

K(a) =
π

sin
(
π(1− a)

) =
π

sin(π − πa)
=

π

sin(πa)
.



B. La fonction Gamma d’Euler.
9. Posons u(x, t) = tx−1 e−t pour (x, t) ∈ IR × IR∗+. Alors t 7→ u(x, t) est continue et positive

sur IR∗+.

On a u(x, t) ∼
t→0

tx−1 =
1

t1−x
, donc t 7→ u(x, t) est intégrable en 0 si et seulement si 1− x < 1,

soit ssi x > 0.

Et, pour tout réel x, on a lim
t→+∞

t2u(x, t) = 0 par croissances comparées, donc t 7→ u(x, t) est

toujours intégrable en +∞.

En conclusion, l’intégrale généralisée Γ(x) est convergente si et seulement si x > 0.

10. Posons v(x, t) =
e−xt

ta (1 + t)
pour (x, t) ∈ IR+ × IR∗+. L’application v est continue (par

opérations) sur IR+ × IR∗+, ce qui entrâıne la continuité des applications partielles, puis on
a la domination

∀(x, t) ∈ IR+ × IR∗+
∣∣v(x, t)

∣∣ = v(x, t) ≤ 1

ta(t+ 1)
,

l’application ϕ : t 7→ 1

ta(t+ 1)
étant intégrable sur IR∗+ d’après Q1.

Ceci permet d’appliquer le théorème de continuité des intégrales à paramètre: la fonction

fa : x 7→
∫ +∞

0

v(x, t) dt est définie et continue sur IR+. De plus, fa(0) = K(a) =
π

sin(πa)
.

11. Pour tout t > 0, l’application partielle x 7→ v(x, t) est de classe C1 sur IR∗+ avec
∂v

∂x
(x, t) = − e−xt

ta−1 (1 + t)
. Si S = [α, β] est un segment inclus dans IR∗+, i.e. 0 < α < β, on

a la domination

∀(x, t) ∈ S × IR∗+

∣∣∣∣∂v∂x (x, t)

∣∣∣∣ ≤ ψ(t) :=
e−αt

ta−1 (1 + t)
,

et cette fonction ψ est intégrable sur IR∗+: en effet, on a ψ(t) ∼
t→0

1

ta−1
avec a−1 < 1, et on a

lim
t→+∞

t2ψ(t) = 0 par croissances comparées, ce qui assure l’intégrabilité en 0 et en +∞.

Du théorème de dérivation des intégrales à paramètre, on déduit que fa est de classe C1 sur
IR∗+ avec

∀x ∈ IR∗+ f ′a(x) =

∫ +∞

0

∂v

∂x
(x, t) dt = −

∫ +∞

0

e−xt

ta−1 (1 + t)
dt .

Il est alors clair que f ′a(x) est négatif, on l’utilisera en Q13.

12. On calcule, pour x > 0,

f ′a(x)− fa(x) = −
∫ +∞

0

(
t e−xt

ta (1 + t)
+

e−xt

ta (1 + t)

)
dt = −

∫ +∞

0

e−xt t−a dt

= −
∫ +∞

0

e−u
(
u

x

)−a
du

x
= − 1

x1−a

∫ +∞

0

e−u u(1−a)−1 du

= −Γ(1− a)

x1−a
.



13. Pour x > 0, on a donc
Γ(1− a)

x1−a
− fa(x) = −f ′a(x) ≥ 0, donc fa(x) ≤ Γ(1− a)

x1−a
.

Par ailleurs, l’inégalité 0 ≤ fa(x) est immédiate.

Or 1−a > 0, donc lim
x→+∞

Γ(1− a)

x1−a
= 0, l’encadrement obtenu montre que lim

x→+∞
fa(x) = 0.

14. Cette fonction ξ : t 7→ e−t

t1−a
est continue sur ]0,+∞[ avec ξ(t) ∼

t→0

1

t1−a
où 1 − a < 1 et

lim
t→+∞

t2 ξ(t) = 0, elle est donc intégrable sur ]0,+∞[.

15. En posant I =

∫ +∞

1

e−t

t1−a
dt, par la relation de Chasles, on peut écrire ga(x) = I−

∫ x

1

e−t

t1−a
dt.

Comme ξ est continue sur IR∗+, le théorème fondamental de l’analyse permet d’affirmer que
ga est de classe C1 sur IR∗+, donc continue sur IR∗+. Sa continuité en 0 résulte juste de

la définition de l’intégrale généralisée ga(0) =

∫ +∞

0

ξ(t) dt comme limite des “intégrales

partielles” ga(x) =

∫ +∞

x

ξ(t) dt lorsque la borne inférieure x tend vers 0.

Par le même argument, lim
x→+∞

∫ x

1

ξ(t) dt =

∫ +∞

1

ξ(t) dt = I, donc

ga(x) = I −
∫ x

1

ξ(t) dt −→
x→+∞

I − I = 0 .

16. On a vu que ga était de classe C1 sur IR∗+, le théorème fondamental donne aussi sa dérivée

∀x ∈ IR∗+ g′a(x) = −ξ(x) = − e−x

x1−a
.

C. La formule des compléments.
17. Ce sont les fonctions x 7→ C ex, avec C réel.

18. On vérifie, pour x > 0, que h′a(x) = Γ(1− a) ex
(
g′a(x) + ga(x)

)
, puis

h′a(x)− ha(x) = Γ(1− a) ex g′a(x) = −Γ(1− a)

x1−a

d’après Q16., donc ha est solution de (E) sur IR∗+.

19. Les fonctions fa et ha sont toutes deux solutions sur IR∗+ de l’équation différentielle (E), la
différence ha − fa est donc solution sur IR∗+ de l’équation homogène (E0) associée à (E).
Il existe donc un réel C tel que

∀x ∈ IR∗+ ha(x)− fa(x) = C ex .

On a donc aussi, en multipliant par e−x,

∀x ∈ IR∗+ Γ(1− a) ga(x)− fa(x) e−x = C .

Comme lim
x→+∞

ga(x) = lim
x→+∞

fa(x) = 0 d’après Q13. et Q15., on déduit C = 0.

On a donc ha = fa sur IR∗+.



20. Les fonctions ha et fa sont continues en 0 d’après Q10. et Q15. et elles cöıncident sur IR∗+,
elles cöıncident donc aussi en 0 puisque ha(0) = lim

x→0+
ha(x) = lim

x→0+
fa(x) = fa(0),

on a donc

Γ(1− a)

∫ +∞

0

ta−1 e−t dt = K(a) ,

soit encore

Γ(a) Γ(1− a) =
π

sin(aπ)
.


