CORRIGE du D.S. de MATHEMATIQUES numéro 5b
PSI2 2025-2026

EXERCICE 1
d’aprés CCINP, 2019, filiere PC
PARTIE A.

1. On sait que toute fonction somme d’une série entiere est de classe C* sur lintervalle de
convergence | — r,r[, et que l'on obtient ses dérivées successives par dérivation terme &
terme. Donc, pour x €| —r,7[, on a

+00 g
= Z nan, 2"t et f'(x) = Z n(n —1a, "2 .
n=1 n=2
2. Pour z €] —r,7[, posons A(z) = 2*(1 — z) f"’(x) —z(1 + ) f'(x) + f(x). Alors
+oo +oo
Alx) = Z n(n — apz™ — Z n(n —1ap,z™ ! Z Nap T Z na,z"tt + Z anz”
n=2 n=2 n=0
+oo —+oo —+oo —+oo
= Z n(n — Dapz™ — Z (n—=1(n-2)ay,—12" Z na,x" — Z (n—Dap—12™ + Z apx”™
n=2 n=3 (ou 2) n=2 n=0

= ap+ (a1 —a1)x+ f ((n —1D?%a, — (n—1)>2 an_l) x

n=2
+oo
= ag+ E b, (an — ap_1) "
n=2

en posant b, = (n — 1) pour tout n > 2, et b, est bien non nul.

3. Par unicité du développement en série entiére, la fonction f est donc solution de (H) sur

+o00
. . ag = 0 )
| =7, r[ si et seulement si .On aalors f(z) =a; Z x"™, le coefficient
Yn>2 a,=a,-1 1

aj restant arbitraire.
En dehors du cas trivial a3 = 0 ou f est la fonction nulle, qui est bien une solution de
(H) développable en série entiere sur IR (dans ce cas r = 400), on reconnait une série

x
géométrique de rayon de convergence r = 1, et de somme f(z) = ay .
Les solutions de (H) développables en série entiere sur | — 1, 1 sont donc les fonctions
x
T— , avec a€lR.
1—=

PARTIE B.

4. La fonction z est de classe C2 comme produit de deux fonctions du méme métal. On obtient

Ya) =~y + (1) @),

puis



5. Partons de I’équation (F'):

(F) < z'(z)+7(z)=22

= @) - 2y @+ -0y @) - @+ (2 1)y (@) =
= 2020 4 -0 -yl 1)) =
= P0-0)y@) -+ n) Y @) +ye) = 2P = (B).

Remarquons que ce calcul revient & résoudre (E) sur I en posant le changement de fonction
est une solution de

x
inconnue y(z) = 1 z(x). Comme, d’apres la question 3., yo = 7
I _

Péquation homogene (H) ne s’annulant pas sur I, ce n’est rien d’autre que la méthode de
variation de la constante (ou méthode de Lagrange) vue en cours.

6. Ne nous interdisons pas d’étre astucieux puisqu’un ceil exercé aura reconnu dans le premier
membre de I"équation (F) la dérivée d’un produit! En effet,

(F) ddx (z7'(x)) =2

v (x)=2>+C

C
() —
z(:r)—x—i—x

2

z(x) = % +C In(z)+ D

23 CxzIn(z) Dz
+ + :
21 —x) 1—2z 1—x

IIIHIII

= yz)=

ou C et D sont deux constantes arbitraires.
PARTIE C.

7. Allons-y!

(L+t)3+2XM1+1t) B +3t2+3t+ 1+ 2Xt +2) 2 3t 22+3 2A+1

14+1) = - _ 3t 2A+3
g(1+1) ot "ot 2 2 2 2

8. La fonction gy admet une limite finie au point 1 si et seulement si gx(1 + ¢) admet une limite
finie lorsque ¢ tend vers 0, donc si et seulement si 2\ + 1 = 0, donc ssi A = —5 Il est clair

que, dans ce cas, la fonction gy (prolongée par continuité au point 1) est de classe C* sur IR
puisqu’elle est alors polynomiale.

In(1+1¢t) |
9. Pour ¢ €] — 1,400, posons H(t) = h(1+1t). Alors H(t) =<{ ¢ st 0.
-1 si t=0
Pour ¢t €] — 1,1[, on a H(t f Hren fﬂ La fonction H est
’ — ~ n+l
développable en série entiere sur | — 1 1[ elle est donc de classe C* sur cet intervalle. Elle

est par ailleurs clairement de classe COO sur ]0, +o00[ (comme quotient dont le dénominateur



ne s’annule pas). Elle est donc C* sur | — 1, +oo[. Par translation de la variable, h est C*
sur ]0, +oo.
10. Si y est une solution de (E) sur IRY =]0, +-00[, alors elle est solution de (E) sur |0, 1] et aussi
sur |1, +o00[. D’apres la question 6., il existe donc quatre constantes A1, Ao, i1, po telles que
gn (@) +pa h(z) st €0,1]
y(z) = . :
I () + po h(x) si x €]1,+00]

1 1
Si A # —3 (ou si Ay # —5)7 alors une telle fonction y aura une limite & gauche (ou &

1
droite) infinie au point 1, d’apres la question 8.. Il est donc nécessaire que A\ = Ay = —5
On a alors
y(z) = g-1/2(x) +py h(z) si x€]0,1]
g-1/2(x) + p2 h(x) si x €1, o0
Ensuite, pour que y soit continue au point 1, il est nécessaire que g = pqo. En effet, la
fonction y explicitée ci-dessus admet g_y/o(1) —p1 et g_1/2(1) —p2 pour limites a gauche
et a droite au point 1, ces deux valeurs doivent étre égales. On a finalement nécessairement
z(1+ x) x In(x)
- + H )
2 1—-2
ol i est une constante arbitraire (la fonction étant prolongée par continuité en lui donnant
la valeur —p — 1 au point 1).

y(x) = g_1/2(x) + ph(x) =

Réciproquement, ces fonctions conviennent puisqu’elles sont alors de classe C* (donc C2)
sur IR’ d’apres la question 9. et qu’elles sont solutions de (E) sur chacun des intervalles

10, 1] et ]1, +o0].
EXERCICE 2
d’aprés e3a, 2018, filiere PC
1 & 7 k
1. On écrit Si(n) = nFt % -~ Z (n) , on reconnait ainsi une somme de Riemann puisque

i=1
n .\ Kk 1

1 1

S o [

n o= \n n—+o00 0 k+1

On en déduit I’équivalent proposé.
n

1 1 1 1
2. On calcule E(X;) = E —Xi==x n(n;— ) = n;— puis, par la formule de transfert,
n n
i=1
1, 1 am+D)@2n+1) (n+1)(2n+1)
E(X?) = Exﬂ:ﬁx 5 = G

2
-1
et enfin, par la formule de Koenig-Huygens, V(X;) = E(X?) — (E(Xl))2 _— TR




bre d f bl —i+1
3. Pour tout j € [1,k], on a P(X; > i) = nombre de cas avorfa S . Ensuite,
nombre de cas possibles n

par indépendance des variables X; avec 1 < j <k,

4. Comme {Uy =i} = {Uy > i} \ {Uk > i+ 1} (complémentaire), on a

n

E(Uy) = > iP(Ux=i) = > i (PUx>1i)— PUs >i+1))
n n+1
= Y iPU>i)= Y (i—1) P(Ux > i)
i=1 =2

Par un calcul analogue, avec la formule de transfert,

E(UR) = Y i* P(Us Zz P(Uy, > i) — P(Uy > i +1))
i=1
n n+1
= i2P(Uk2i)fz(i—1)2P(Uk2i)
1=1 =2

(i* = (- 1)) P(Uy 2 i) = Y (20— 1) P(Uy > ).

I

&
Il
_
«.
Il
_

‘indice i’ =n — i+ 1,

d
n—i+1\" 1 “~ ok Sk(n) n
( > nk ;(Z) T onF ot k1

5. Donc, par le changement

PROBLEME
d’aprés EPITA, 2025, filiere PT

A. Calcul d’une intégrale dépendant d’un parametre.

1 1
Y est continue sur ]0,+oo[, avec ¢(t) o €@ qui entraine son

intégrabilité en 0 puisque a < 1, et <p(t)

1. La fonction ¢ : t —

oo At T ce qui entraine son intégrabilité en +oco

puisque a + 1 > 1. Elle est donc intégrable sur IR”, , d’oli 'existence de 'intégrale K (a).



1
2. Le changement de variable u = n donne

du
0o —— 1 u
J(a):/1 1(1111):/0 %:I(l—a).

3. On reconnait une série géométrique de raison —¢ (différente de 1) dont on sait exprimer la
somme partielle d’ordre N:

iv:( g _ l N iy = l 1— (_t)NJrl B 1 l (_1)N+1 N+
~ ot St 1—(—t)  te(l4+t) te 1+t ’

ce qui est la relation demandée (en réordonnant un peu).

1 tN+1_a 1
4. Par simple majoration, on a 0 < / dt < / tNFHl=edt = —— et comme ce
0 1 + t 0 N -+ 2 —a
1 ;N+1l—a
majorant tend vers 0, il résulte du théoreme d’encadrement que lim dt = 0.
N —+o00 0 1 + t
5. On integre sur U'intervalle ]0, 1] la relation obtenue en Q3.:
1 dt N 1 Nt L ¢N+l-a
VN € N I(a) = — = =" [ t"Trdt 4 (-1 dt
(@) /ota(1+t) Z( )/0 =D /0 1+t
n=0
et en faisant tendre N vers l'infini, grace a Q4., on obtient
400 N N 1
-1)" —1)"
> D" g > D" (—1)"/ t"=dt = I(a) .
n—a+1 N-o+co n—a+1 N+ o
n=0 n=0 n=0

Ce calcul montre la convergence de la série numérique dans le membre de gauche, mais
cette convergence peut se déduire aussi du théoréme des séries alternées.

6. En utilisant Q2. puis un décalage d’indice,

+oo _1)» +oo _1)» too —1)71
J(a)I(la)Zn_((l_)a)+1 Z_%EH)G z_:lrg—i—&—a

n=0

7. Par la relation de Chasles, K(a) = I(a) 4+ J(a), donc

+oo +oo — 400
_ _E=nr -y ' _ 1 o 1
K(a) = Zn—a—&—lJrX:ln—l—&—a N 1—a+;( 2 (n—i—(l—a) n—(l—a)>

n= n=

1 ++§ (—1)" x 2(a — 1)

_ 2_(1_72

l—a = n*—(l1-a)

8. En utilisant le “développement eulérien” admis par I’énoncé, on reconnait, en choisissant
r =1 — a, qui n’est pas entier relatif,

7T i T

K(a) = sin (7T(1 - a)) N sin(r — ma) B sin(ma) -




B. La fonction Gamma d’Euler.
9. Posons u(z,t) = t*" ' e~! pour (z,¢) € R x RY. Alors ¢+ u(x,t) est continue et positive
sur IR .
On au(z,t) ~ t*7 ' =
t—0

soit ssi z > 0.

prEy donc t — u(x,t) est intégrable en 0 si et seulement si 1 —z < 1,

Et, pour tout réel z, on a , 1i§1 tQu(a:, t) = 0 par croissances comparées, donc t — u(x,t) est
—+00

toujours intégrable en +o0.

En conclusion, l'intégrale généralisée I'(z) est convergente si et seulement si 2 > 0.
e—wt
te (1+41¢)
opérations) sur IRy x IR’ , ce qui entraine la continuité des applications partielles, puis on

a la domination

10. Posons wv(zx,t) = pour (z,t) € Ry x RY. L’application v est continue (par

. 1
Vo t) € Ry xR [ol@ )] = v t) < gy

1
Papplication ¢ : t = ——————— étant intégrable sur IR’; d’apres Q1.
pp @ ) g + d’apres Q
Ceci permet d’appliquer le théoréeme de continuité des intégrales a parametre: la fonction
+oo
T
faix / v(x,t) dt est définie et continue sur IR. De plus, f,(0) = K(a) = — .
0 sin(ma)

11. Pour tout ¢ > 0, lapplication partielle z +— wv(z,t) est de classe C' sur R, avec

a —xt
a—i(m,t) = _t“*f(il—l—t)' Si S = [a, ] est un segment inclus dans IR}, i.e. 0 < a < 3, on
a la domination
V(z,t) € S x R} @(:c )| < ¥(t) -
’ * o Toterl(L4t)

1
et cette fonction 1 est intégrable sur IR, : en effet, on a v (¢) o a1 aveca—1 < 1,etona
—

. lim t2¢(t) = 0 par croissances comparées, ce qui assure l'intégrabilité en 0 et en +oo.
—+o00

Du théoréme de dérivation des intégrales & parametre, on déduit que f, est de classe C! sur
IR’ avec

, +o00o v +oo e—zt
Vz e R = —(x,t)dt = — —dt.
v + fa(®) /O ox (@,7) /0 ta=1 (1 +1)
Il est alors clair que f.(z) est négatif, on I'utilisera en Q13.

12. On calcule, pour z > 0,

+o0 t et et +oo
fo(@) = falz) = —/O (ta(1+t) + % (1+t)>dt = —/O e~ T dt
I a) °



I'l—a) I'(1—a)
l1—a :

mlfa

— fa(x) = —fl(x) >0, donc f,(z) <

Par ailleurs, 'inégalité 0 < f,(z) est immédiate.

Orl—a>0,donc lim M

z+oo gl—a

13. Pour = > 0, on a donc

= 0, 'encadrement obtenu montre que lim f,(z) = 0.
r——+0o0

—t

e
14. Cette fonction & : ¢ = —— est continue sur |0, +oo[ avec £(t) ~

e o fia oul—a<1et

, 1i1l1 t2 £(t) = 0, elle est donc intégrable sur |0, +o0].
— 400

Foo  —t T -t
e e
15. En posant I = / mdt, par la relation de Chasles, on peut écrire g,(x) = I—/ T dt.
1 1

Comme £ est continue sur IR’ , le théoréme fondamental de I’analyse permet d’affirmer que
ga est de classe C! sur IR’ , donc continue sur IRY. Sa continuité en 0 résulte juste de

+oo
la définition de l'intégrale généralisée g,(0) = / &(t) dt comme limite des “intégrales
0

+oo
partielles” g,(x) = / &(t) dt lorsque la borne inférieure x tend vers 0.

x
T

- Yoo
Par le méme argument, lim () dt = / &(t)dt =1, donc
1

r—+00

1
ga(x):I—/wf(t)dt — I—-1=0.
1

Tr—+00

16. On a vu que g, était de classe C! sur IR’ , le théoreme fondamental donne aussi sa dérivée
e*ZIJ
Vo € RY gh(x) = —€&(z) = e
C. La formule des compléments.
17. Ce sont les fonctions x — C' e*, avec C réel.

18. On vérifie, pour z > 0, que hj(z) =T(1 — a) ¢* (g,(x) + ga(®)), puis

I'l—a)
xl—a

ho(z) = ha(x) =T(1 —a) e” go(x) = —
d’apres Q16., donc h, est solution de (E) sur IR .

19. Les fonctions f, et h, sont toutes deux solutions sur IR’ de 'équation différentielle (E), la
différence h, — f, est donc solution sur IR’ de I’équation homogene (EOQ) associée a (E).
Il existe donc un réel C' tel que

Vo e RY ho(z) — fo(z) =Ce” .
On a donc aussi, en multipliant par e™%,
Vo e RY I'(1—a)gs(z) = falx)e *=C.
Comme lim g,(xz) = lim f,(z) =0 d’apres Q13. et Q15., on déduit C = 0.
T—+00 T— 00
On a donc hq = f, sur RY,.



20. Les fonctions h, et f, sont continues en 0 d’apres Q10. et Q15. et elles coincident sur R7,
elles coincident donc aussi en 0 puisque hq(0) = lim+ ha(z) = lim falz) = fa(0),
z—0 z—0

on a donc
+oo
I'l—a) / t"ltetdt = K(a),
0

soit encore




