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EXERCICE
d’aprés e3a, 2018, filiere PC

1. On écrit Si(n) = nF L = E — | , on reconnait ainsi une somme de Riemann puisque

n -
i=1
n .\ k 1
1 1
Z<z> — /t’fdt:—.
n = \n n—+00 0 kE+1
On en déduit ’équivalent proposé.
1 1 1 1
2. On calcule E(X;) = Z —Xi=—X n(n+1) e puis, par la formule de transfert,
—n n 2 2
"1 1 D(2n+1 D(2n+1
Bt =Ly L nmE@0+D) | (n)En+)
—n n 6 6
2
-1
et enfin, par la formule de Koenig-Huygens, V(X;) = E(X?) — (E(Xl))2 = 5
bre d f bl —i+1
3. Pour tout j € [1,k], on a P(X; > 1) = HOTIDIC co cas avorapes _ 1 i . Ensuite,
nombre de cas possibles n

par indépendance des variables X; avec 1 < j < k,

P(U} > i) (ﬂ{X ) :ﬁP(Xj =1 = (Tl_nﬁy

4. Comme {U =i} = {Uy > i} \ {Ux > ¢ + 1} (complémentaire), on a

n

E(Uy) = > iP(Uy=i) = Y i (PUx>1i)— P(Uy >i+1))

n n+1
= ZzPUk>z (i — 1) P(Uy, > i)
=2
= Zz— (i—1)) (Uk>z):ZP(Uk>z)
i=1 i=1

Par un calcul analogue, avec la formule de transfert,

E(UR) = Y i* P(Uk Zz P(Uy, > i) — P(Uy > i +1))
1=1
n n+1
= ZiQP(Uk Zi)*Z(ifl)QP(Uk > i)
1=1 =2

= Y (= (-1 PU,>i) = Y (2i—1) P(Uy > ).

i=1 i=1
5. Donc, par le changement d’indice i’ =n — i + 1,

N~ (n—i+1 ki 1~ Sk(n) n
E(Uk)Z( n ) 7@;(1) onk ’n*;\jkook’-i-l.

i=1




PROBLEME
librement inspiré d’un sujet Centrale-Supélec, filiere PC, 2015

PARTIE A. Fonctions C* a support borné.
l.a. Ona ¢ '(R*) = R} =]0,+oo[ donc supp(¢) = Ry = [0, +oo[. Sur IRy, la fonction 1) est
continue, croissante avec ¥(0) =0 et lim (x)=1.
r—+00
b. La fonction 1 est de classe C*° sur IR, comme composée de fonctions C>°. On montre par
récurrence sur n que sa dérivée n-ieme s’écrit sous la forme demandée:

- ¢’est vrai pour n = 0 avec Py = 1 (polynéme constant) ;

1 _1
- i c’est vrai pour un n donné, de w(")(a:) =P, () e © sur RY, on déduit
x

1
vee Ry, V(@)= P

1\ -1 1 1\ -1 1\ -1
"[=)e "+ Pil=-)e " =Pl —)e ”
x2 T x2 x x

en posant P, 1 = X*(P, — P,

') € R[X], ce qui valide la récurrence.

1
c. Le changement de variable t = — montre que
x
. (n) — . —t —
Jiy o) =l B0 =0

par croissances comparées des fonctions exponentielles et polynomiales.

d. On applique de facon répétée le théoreme de la limite de la dérivée. La continuité de ) sur IR,
1

est immédiate puisque ¥(0) =0 = lim ¥(z) = lim+ e *. Ensuite, ¢ est dérivable sur IR*
z—0~ x—0
et lim ¢’ (x) = 0 donc 1 est dérivable en 0 avec 1'(0) = lim ¢’ (z) = 0. Comme ¢’ est par
T T—

ailleurs continue sur IR*, on déduit que 1 est de classe C! sur R.

Pour un entier naturel n donné, supposons ¢ de classe C" sur IR. La fonction g = (™) est
alors définie et continue sur IR, elle est dérivable avec une dérivée continue sur R \ {0}, et
cette dérivée ¢’ = ™) admet pour limite 0 en 0, on déduit alors du théoréme de la limite
de la dérivée que g est dérivable en 0 avec ¢'(0) = 0 = lir% g () donc g est de classe C! sur IR,

r—
ce qui signifie que 1 est finalement de classe C" ™! sur R.

On a ainsi prouvé par récurrence que @ est de classe C" sur IR pour tout n, elle est donc

de classe C*° sur IR.

1
2

11—z .
2. Pour z réel, posons o(z) = (1 —2%) =< € siz €] =1, 1[ | Alors v est de classe C*°
0 sinon
sur IR comme composée de fonctions C*, et ¢~ '(IR*) =] — 1, 1] donc supp(p) = [~1,1].

La fonction ¢ est par ailleurs a valeurs positives ou nulles.

3. L’ensemble D contient la fonction nulle et est clairement stable par combinaisons linéaires.
Par ailleurs la question 2. montre qu’il ne contient pas que la fonction nulle.

4.a. Comme ¢ est continue, positive, intégrable sur IR (car & support borné) et non identiquement

nulle, le théoreme de stricte positivité indique que I = > 0.
R



b. La fonction p, est de classe C* sur IR comme composée. En posant A = ¢ 1 (IR*), on sait
que A = [—1,1] = supp(y), puis

1
Ve e R () 0 <= pne)#0 < nr€eAd < ze - A
n

en posant kA = {ka ; a € A} pour k € R,. Donc
1 1— 11
supp(pn) = ~ A=~ A= {—}

En effet, on montre facilement, en utilisant la caractérisation séquentielle des points adhérents,
que kA =k A. Enfin,

n [T 1 [tee
/ Pn = = / p(nz)de = = / pt)dt=1
R i I

—0o0 —0o0

en posant le changement de variable ¢ = nx.
c.i. Pour n € IN* fixé, considérons h,, : (z,t) — f(t) pu(x —t) définie sur R?.

1
Notons tout d’abord que, comme p,, (x—t) est nul si |x—t| > —, pour tout z réel, 'application
n
partielle ¢ — h,,(z,t) est continue par morceaux sur IR et elle est intégrable sur IR car elle
1 1
est nulle en dehors du segment [m - —, x4+ } .
n n

Pour tout ¢ réel, I'application partielle z — h,,(z,t) est de classe C* sur IR avec

k
VkeIN V(x,t) € R? 88;; (z,t) = f(t) pP (2 — 1) .

Si S = [a,b] est un segment de IR, alors pour (z,t) € S x IR, lexpression hy,(z,t) est
1 1

nulle si ¢t n’appartient pas au segment S’ = [a - —,b+ ], posons alors M = sup f(t)|.
n n tes’

L’application p%k) est continue et nulle en dehors d’un segment, elle est donc bornée sur IR,

posons Ci = ||p{¥|se. On a alors la domination
O hy,
V(z,t) e S xR Sk (x,t)‘ <M Cy 1g(2) ,

cette fonction majorante étant intégrable sur IR car elle est continue par morceaux et a
support borné.

Tout ceci permet d’appliquer I'extension aux fonctions C*° du théoréeme de dérivation des
intégrales dépendant d’un parameétre: la fonction g, est de classe C* sur IR et

+oe okhy,
Oxk

VieIN VzeR gff)(x):/

— 00

(z,t)dt .

—+o0
ii. Si f est K-lipschitzienne sur IR, alors en exploitant le fait que / pn(z —1t)dt =1,
on a, pour tout x réel, T



@) -m@)| = |1~ [ 50 pute— ) al -/ ) - 10) pale -t at

—00

+o00 +oo n
< K/ |z —t] pn(z—t)dt = K/ || o(nu) = du
—o0 —o0 I
K [T
< 5[ wlewa.

avec les changements de variable v = = — ¢, puis v = nu. Le majorant ne dépend pas
de = (“majoration uniforme”) et tend vers 0 lorsque n — 400, on a donc prouvé que

lgn — flloo - 0, ce qui traduit la convergence uniforme sur IR de la suite de
n—-+0oo
fonctions (g,,) vers la fonction f.

La fonction v — |v| p(v) est bien intégrable sur IR, car elle est continue et a support borné.

PARTIE B. Quelques calculs auxiliaires.
5. Soit ¢ € D, alors

+o0 +o0 - +o0 ‘PC;)
/ ap(x) p(z) dx:/ L)xndx:/ dt .

1+t

t
o= 7o)

P N/
osons T

alors (par la continuité de ¢ en 0) la suite de fonctions (fy)

¢(0)
1+¢t2
par morceaux sur IR, et comme ¢ est bornée sur IR on a la domination

converge simplement vers la fonction f : ¢t — toutes ces fonctions étant continues

[lloc
vnelN VieR  |fu(t)| < i

cette fonction majorante étant intégrable sur IR. Du théoreme de convergence dominée, on
déduit alors que

lim o an(z) p(z) de = lim /an = /]Rf =7 (0) .

n—-+oo s n—-+o0o

6. Comme f,, est & support dans [0, 1], en posant ensuite u = x™, on calcule
+o0 1

o Br(z) o(x) dz = /01 nz" ¢(x) dr = /01 z p(x) na"" " dz = /01 u” @(U%) du .

1 1
Comme ¢ est continue au point 1, la suite de fonctions (g,), avec gn(u) = u" @(u”),

converge simplement sur |0, 1] vers la fonction constante de valeur (1), et on a la domination
Yn € N* Vu €]0,1] ‘gn(u)‘ < llloo

(fonction constante intégrable sur |0, 1]). Encore par convergence dominée, on obtient



—+o00 1 1
lim Bn(x) p(x)dr = lim gn(u) du = /0 (1) du = ¢(1) .

n—-+oo — o n—-+oo 0

7. Pour faire apparaitre la dérivée ¢, intégrons par parties: si ¢ € D,

/+OO Yn(x) p(z)de = [ n? sin(nz) o(x) dz

— 00

33

_ [_ n cos(nz) go(x)] Zz + /_ i cos(nz) ¢ (z) d
- wfg)e{ -
w(Z) - ¢(0) @

On reconnait deux taux d’accroissement qui tendent tous deux vers ¢’(0) lorsque n — +oc.

s

Par convergence dominée, l'intégrale J, = /

—T

t
cos(t) go’() dt tend, lorsque n — +o0,
n

vers / cos(t) ¢'(0) dt = 0 car on a la domination

t
cos(t) <’0/<n)‘ < ||¢']|oo (fonction

constante intégrable sur [—, 7]).
+oo
Finalement, lim Y (z) o(z) do = 27 ¢'(0).

n—-+oo s

PARTIE C. Les distributions.

8. Par hypothese, il existe un segment S contenant les supports de toutes les fonctions ¢,,.
Siz e R\ S, alors ¢,(z) = 0 pour tout n, donc p(x) = lilf ©n(z) = 0. La fonction ¢
—
est donc aussi a support dans S. e

Par ailleurs, chaque fonction ¢,, étant de classe C* sur IR, et la suite de fonctions (goglk))n N
étant uniformément convergente sur IR pour tout entier k, il résulte du théoreme de dérivation
(extension aux fonctions C*°) de la limite d’une suite de fonctions que ¢ est de classe C™

sur IR. Donc ¢ € D.

9. D’abord T () existe bien pour tout ¢ € D car la fonction fy est continue par morceaux et
a support borné, donc intégrable sur IR. Ensuite, T est bien une forme linéaire sur D par
linéarité de l'intégrale.

Ensuite, soit (¢,) une suite de fonctions de D convergeant fortement vers ¢ € D, on a alors
en particulier lir_~r_1 llon — ©lloo = 0. S1.S = [a, b] est un segment contenant les supports de
n—+00

toutes les fonctions ¢,,, et donc aussi de la fonction ¢, on a

b
1T (o) — Ty(0)| = \ [ 7@ (en@) ot o



IN

b
[ 1@ lont@) - o) az

lom — @lloc /m,
S

et ce majorant tend vers 0 lorsque n tend vers +o0o0. Donc liIJ1r1 Tt (pn) = Tr(e).
n—-+0o0

IN

On a ainsi prouvé que Ty est une distribution.

10.a. La convergence forte d’une suite de fonctions (¢,,) de D vers ¢ entraine évidemment sa
convergence simple, donc lim ¢,(a) = ¢(a), soit encore lim &o(¢n) = da().
n—-+4oo n—+oo

La linéarité de J, est par ailleurs immédiate, il s’agit donc d’une distribution.

b. Par I’absurde, supposons qu'’il existe f € C,,(IR,IR) telle que o = Ty. En considérant des
fonctions ¢ et ¢, telles que 1'énoncé le suggere, posons @ = ¢(0), on a alors a > 0 et
©n(0) = a pour tout n, puis

+o00 -y

VneIN"  a=pn(0) = do(pn) = Tr(pn) = / f@)on(z)de = [ f(z)p(nz)dze,

— 00 —

3=

1
cette derniere égalité car supp(p,) = [— -, } . Mais la fonction f est bornée sur le segment
n'n

11
—1, 1| qui contient tous les segments | — —, — |, posons = 0. [—1.1], On a alors
1,1 i i 1 2 M J=1,1] 1
nn

. . 2
e o= | [ ) etn)ds] < 2 01 ol

1
n

ce qui est contradictoire puisque le majorant tend vers 0 lorsque n tend vers 400, alors que
|| est strictement positif et indépendant de n.

Cette contradiction montre que dg n’est pas une distribution réguliere.
11.a. Déja cela a bien un sens puisque, si ¢ € D, alors ¢ est dérivable et ¢’ € D. Par linéarité
de la dérivation et linéarité de 7', on déduit que 7" est bien une forme linéaire sur D. Enfin,

si () est une suite de fonctions de D qui converge fortement vers ¢ € D, il est immédiat
que la suite (¢/,) converge fortement vers ¢’ donc

T'(pn) =-T(¢,) —  -T)=T'(p),

n—-4o0o
donc T" est une distribution.
b. Pour tout ¢ € D, on a (4,) (¢) = —da(¢’) = —¢'(a).
c. Si f est de classe C! sur R et si ¢ € D, alors par une intégration par parties,

+00 Foo
@) = T = - [ @@ = ~[f@e@] T+ [ 1@ o)

—c0 —00

“+ o0
- / (@) p(x) dz = Ty ()

— 00

puisque le terme entre crochets est nul, ¢ étant a support borné. Donc (Tf)" = Ty.



d. Si ¢ € D, on calcule
“+oo “+o0 too
(Th)'(¢) = =Tu(¢) = - H(x)¢' (x)de = */O ¢'()dz = —[p(2)]; = ¢(0) = do(e) -

Donc (Tx)" = do.
e. Soit ¢ € D. On calcule, en posant abusivement ¢(ag) = ¢(an,+1) = 0 puisque ¢, de support
borné, a des limites nulles en —co et +oo:

(T)'(p) = ~Tyle ZQ/MI Zq o(aie) — ola)

7201 1 QO az ch 90 az = Z(Cz - Ci—l) W(ai) .
1=1

i=1 i=1

n

Donc (Ty) = Z(c, —¢i—1) 04,
i=1
PARTIE D. Convergence d’une suite de distributions.
12. Si hm T,=TetsipeD,alors ¢ €D et

T(0) =-Tu(¢') — —T) =T,

n—-+oo

donc lim T =T'.

n—+00
13. Le questions 5., 6. et 7. montrent respectivement que lim T, = mdy, lim Ts, = 6y
n—-+00 n—-+00
et hm T, = —2m (&)’
n—+

14.a. Soit ¢ € D. On a alors, pour n € IN*,

Ty, (¢) :/JroonV(nx) o(z) da = /m V(t)<p<;> dt .

— 00 — 00

La fonction ¢ est continue et & support borné donc elle est bornée sur IR, on a donc la

domination
t
t —
vioe(L)

cette fonction majorante étant intégrable sur IR, et on a la convergence simple

vieR  lm V(D) (i) —V(#) (0) .

— 400

VYneIN* VieR < ¢l V(1) ,

Le théoreme de convergence dominée s’applique donc et donne

+oo
mnﬂwwzj V(1) (0) dt = (0) = So()

n—-+oo oo

on a ainsi prouvé que lim Ty, = do.
n—r+oo



b. La fonction V est nulle en dehors de [—1,1], on a V() = 1+t sur [-1,0] et V(¢) =1 —1¢ sur
[0,1]. Lorsque n augmente, le graphe de V,, fait un pic de plus en plus haut et de plus en
plus étroit. L’aire sous la courbe est constante de valeur 1, mais cette aire “se concentre”

-2 -1 0 1 2
au voisinage de 'origine lorsque n augmente. '

15. Soit ¢ € D, montrons que lir_P Ty, (¢) = do(¢) = ¢(0). Majorons la valeur absolue de la
n—-—+0o0o

différence. Posons M = ||¢|/~, la fonction ¢ étant bornée sur IR. Comme / U, =1, pour
R
tout a > 0, on peut écrire

—+oo
Ty, () — p(0)] = \ G (go(t)—ga(O))dt\

—+o0

[ Un(t) |(t) — 0(0)] dt + / " U (0) |olt) — p(0)] dt + / U (1) |o(t) — 0(0)] dt

IN

< oM (/_aUn(t) dt+/+oo U (1) dt) +osup fo(t) — 9(0)]

—00 @ te[—a,ql
Donnons-nous £ > 0. De la continuité de ¢ en 0, on déduit qu’il existe a > 0 tel que
5
sup ‘gp(t) — @(O)} < 7 Cet « étant fixé, par la propriété (2), il existe N entier tel que

te[—a,al

—a +oo
€
>N U,(t)dt Up(t)dt < — .
nzN— [ v [ v
Pour n > N, on a alors

19 9]
T, _ <oMm -S4 S,
T, (@) — ¢(0)] < mita=¢

On a ainsi prouvé que hIJIrl Ty, (¢) — ¢(0)] =0, soit lim Ty, (¢) = ¢(0).
n—-+0o0o

n—-+o0o

Et ceci pour tout ¢ € D, donc lim Ty, = do.

n—-+oo



