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1. On écrit Sk(n) = nk+1 × 1

n

n∑
i=1

(
i

n

)k
, on reconnâıt ainsi une somme de Riemann puisque

1

n

n∑
i=1

(
i

n

)k
−→

n→+∞

∫ 1

0

tk dt =
1

k + 1
.

On en déduit l’équivalent proposé.

2. On calcule E(X1) =

n∑
i=1

1

n
× i =

1

n
× n(n+ 1)

2
=
n+ 1

2
puis, par la formule de transfert,

E(X2
1 ) =

n∑
i=1

1

n
× i2 =

1

n
× n(n+ 1)(2n+ 1)

6
=

(n+ 1)(2n+ 1)

6

et enfin, par la formule de Koenig-Huygens, V(X1) = E(X2
1 )−

(
E(X1)

)2
=
n2 − 1

12
.

3. Pour tout j ∈ [[1, k]], on a P (Xj ≥ i) =
nombre de cas favorables

nombre de cas possibles
=

n− i+ 1

n
. Ensuite,

par indépendance des variables Xj avec 1 ≤ j ≤ k,

P (Uk ≥ i) = P

( k⋂
j=1

{Xj ≥ i}
)

=

k∏
j=1

P (Xj ≥ i) =

(
n− i+ 1

n

)k
.

4. Comme {Uk = i} = {Uk ≥ i} \ {Uk ≥ i+ 1} (complémentaire), on a

E(Uk) =

n∑
i=1

i P (Uk = i) =

n∑
i=1

i
(
P (Uk ≥ i)− P (Uk ≥ i+ 1)

)
=

n∑
i=1

i P (Uk ≥ i)−
n+1∑
i=2

(i− 1) P (Uk ≥ i)

=
n∑
i=1

(
i− (i− 1)

)
P (Uk ≥ i) =

n∑
i=1

P (Uk ≥ i) .

Par un calcul analogue, avec la formule de transfert,

E(U2
k ) =

n∑
i=1

i2 P (Uk = i) =

n∑
i=1

i2
(
P (Uk ≥ i)− P (Uk ≥ i+ 1)

)
=

n∑
i=1

i2 P (Uk ≥ i)−
n+1∑
i=2

(i− 1)2 P (Uk ≥ i)

=

n∑
i=1

(
i2 − (i− 1)2

)
P (Uk ≥ i) =

n∑
i=1

(2i− 1) P (Uk ≥ i) .

5. Donc, par le changement d’indice i′ = n− i+ 1,

E(Uk) =

n∑
i=1

(
n− i+ 1

n

)k
=

1

nk

n∑
i′=1

(i′)k =
Sk(n)

nk
∼

n→+∞

n

k + 1
.



PROBLÈME

librement inspiré d’un sujet Centrale-Supélec, filière PC, 2015

PARTIE A. Fonctions C∞ à support borné.

1.a. On a ψ−1(IR∗) = IR∗+ =]0,+∞[ donc supp(ψ) = IR+ = [0,+∞[. Sur IR+, la fonction ψ est
continue, croissante avec ψ(0) = 0 et lim

x→+∞
ψ(x) = 1.

b. La fonction ψ est de classe C∞ sur IR∗+ comme composée de fonctions C∞. On montre par
récurrence sur n que sa dérivée n-ième s’écrit sous la forme demandée:

- c’est vrai pour n = 0 avec P0 = 1 (polynôme constant) ;

- si c’est vrai pour un n donné, de ψ(n)(x) = Pn

(
1

x

)
e
− 1
x sur IR∗+, on déduit

∀x ∈ IR∗+ ψ(n+1)(x) = − 1

x2
P ′n

(
1

x

)
e
− 1
x +

1

x2
Pn

(
1

x

)
e
− 1
x = Pn+1

(
1

x

)
e
− 1
x

en posant Pn+1 = X2(Pn − P ′n) ∈ IR[X], ce qui valide la récurrence.

c. Le changement de variable t =
1

x
montre que

lim
x→0+

ψ(n)(x) = lim
t→+∞

Pn(t) e−t = 0

par croissances comparées des fonctions exponentielles et polynomiales.

d. On applique de façon répétée le théorème de la limite de la dérivée. La continuité de ψ sur IR

est immédiate puisque ψ(0) = 0 = lim
x→0−

ψ(x) = lim
x→0+

e
− 1
x . Ensuite, ψ est dérivable sur IR∗

et lim
x→0

ψ′(x) = 0 donc ψ est dérivable en 0 avec ψ′(0) = lim
x→0

ψ′(x) = 0. Comme ψ′ est par

ailleurs continue sur IR∗, on déduit que ψ est de classe C1 sur IR.

Pour un entier naturel n donné, supposons ψ de classe Cn sur IR. La fonction g = ψ(n) est
alors définie et continue sur IR, elle est dérivable avec une dérivée continue sur IR \ {0}, et
cette dérivée g′ = ψ(n+1) admet pour limite 0 en 0, on déduit alors du théorème de la limite
de la dérivée que g est dérivable en 0 avec g′(0) = 0 = lim

x→0
g′(x) donc g est de classe C1 sur IR,

ce qui signifie que ψ est finalement de classe Cn+1 sur IR.

On a ainsi prouvé par récurrence que ψ est de classe Cn sur IR pour tout n, elle est donc
de classe C∞ sur IR.

2. Pour x réel, posons ϕ(x) = ψ(1− x2) =

 e
− 1

1−x2

si x ∈ ]− 1, 1[

0 sinon
. Alors ϕ est de classe C∞

sur IR comme composée de fonctions C∞, et ϕ−1(IR∗) =] − 1, 1[ donc supp(ϕ) = [−1, 1].
La fonction ϕ est par ailleurs à valeurs positives ou nulles.

3. L’ensemble D contient la fonction nulle et est clairement stable par combinaisons linéaires.
Par ailleurs la question 2. montre qu’il ne contient pas que la fonction nulle.

4.a. Comme ϕ est continue, positive, intégrable sur IR (car à support borné) et non identiquement

nulle, le théorème de stricte positivité indique que I =

∫
IR

ϕ > 0.



b. La fonction ρn est de classe C∞ sur IR comme composée. En posant A = ϕ−1(IR∗), on sait
que A = [−1, 1] = supp(ϕ), puis

∀x ∈ IR ρn(x) 6= 0 ⇐⇒ ϕ(nx) 6= 0 ⇐⇒ nx ∈ A ⇐⇒ x ∈ 1

n
A

en posant kA = {ka ; a ∈ A} pour k ∈ IR∗+. Donc

supp(ρn) =
1

n
A =

1

n
A =

[
− 1

n
,

1

n

]
.

En effet, on montre facilement, en utilisant la caractérisation séquentielle des points adhérents,
que kA = k A. Enfin,∫

IR

ρn =
n

I

∫ +∞

−∞
ϕ(nx) dx =

1

I

∫ +∞

−∞
ϕ(t) dt = 1

en posant le changement de variable t = nx.

c.i. Pour n ∈ IN∗ fixé, considérons hn : (x, t) 7→ f(t) ρn(x− t) définie sur IR2.

Notons tout d’abord que, comme ρn(x−t) est nul si |x−t| > 1

n
, pour tout x réel, l’application

partielle t 7→ hn(x, t) est continue par morceaux sur IR et elle est intégrable sur IR car elle

est nulle en dehors du segment

[
x− 1

n
, x+

1

n

]
.

Pour tout t réel, l’application partielle x 7→ hn(x, t) est de classe C∞ sur IR avec

∀k ∈ IN ∀(x, t) ∈ IR2 ∂khn
∂xk

(x, t) = f(t) ρ(k)n (x− t) .

Si S = [a, b] est un segment de IR, alors pour (x, t) ∈ S × IR, l’expression hn(x, t) est

nulle si t n’appartient pas au segment S′ =

[
a − 1

n
, b +

1

n

]
, posons alors M = sup

t∈S′

∣∣f(t)
∣∣.

L’application ρ(k)n est continue et nulle en dehors d’un segment, elle est donc bornée sur IR,

posons Ck = ‖ρ(k)n ‖∞. On a alors la domination

∀(x, t) ∈ S × IR

∣∣∣∣∂khn∂xk
(x, t)

∣∣∣∣ ≤M Ck l1S′(t) ,

cette fonction majorante étant intégrable sur IR car elle est continue par morceaux et à
support borné.

Tout ceci permet d’appliquer l’extension aux fonctions C∞ du théorème de dérivation des
intégrales dépendant d’un paramètre: la fonction gn est de classe C∞ sur IR et

∀k ∈ IN ∀x ∈ IR g(k)n (x) =

∫ +∞

−∞

∂khn
∂xk

(x, t) dt .

ii. Si f est K-lipschitzienne sur IR, alors en exploitant le fait que

∫ +∞

−∞
ρn(x − t) dt = 1,

on a, pour tout x réel,



∣∣f(x)− gn(x)
∣∣ =

∣∣∣∣f(x)−
∫ +∞

−∞
f(t) ρn(x− t) dt

∣∣∣∣ =

∣∣∣∣ ∫ +∞

−∞

(
f(x)− f(t)

)
ρn(x− t) dt

∣∣∣∣
≤ K

∫ +∞

−∞
|x− t| ρn(x− t) dt = K

∫ +∞

−∞
|u| ϕ(nu)

n

I
du

≤ K

nI

∫ +∞

−∞
|v| ϕ(v) dv .

avec les changements de variable u = x − t, puis v = nu. Le majorant ne dépend pas
de x (“majoration uniforme”) et tend vers 0 lorsque n → +∞, on a donc prouvé que
‖gn − f‖∞ −→

n→+∞
0, ce qui traduit la convergence uniforme sur IR de la suite de

fonctions (gn) vers la fonction f .

La fonction v 7→ |v| ϕ(v) est bien intégrable sur IR car elle est continue et à support borné.

PARTIE B. Quelques calculs auxiliaires.

5. Soit ϕ ∈ D, alors∫ +∞

−∞
αn(x) ϕ(x) dx =

∫ +∞

−∞

ϕ(x)

1 + n2x2
n dx =

∫ +∞

−∞

ϕ

(
t

n

)
1 + t2

dt .

Posons fn(t) =

ϕ

(
t

n

)
1 + t2

, alors (par la continuité de ϕ en 0) la suite de fonctions (fn)

converge simplement vers la fonction f : t 7→ ϕ(0)

1 + t2
, toutes ces fonctions étant continues

par morceaux sur IR, et comme ϕ est bornée sur IR on a la domination

∀n ∈ IN ∀t ∈ IR
∣∣fn(t)

∣∣ ≤ ‖ϕ‖∞
1 + t2

,

cette fonction majorante étant intégrable sur IR. Du théorème de convergence dominée, on
déduit alors que

lim
n→+∞

∫ +∞

−∞
αn(x) ϕ(x) dx = lim

n→+∞

∫
IR

fn =

∫
IR

f = π ϕ(0) .

6. Comme βn est à support dans [0, 1], en posant ensuite u = xn, on calcule∫ +∞

−∞
βn(x) ϕ(x) dx =

∫ 1

0

nxn ϕ(x) dx =

∫ 1

0

x ϕ(x) nxn−1 dx =

∫ 1

0

u
1
n ϕ

(
u

1
n
)

du .

Comme ϕ est continue au point 1, la suite de fonctions (gn), avec gn(u) = u
1
n ϕ

(
u

1
n
)

,

converge simplement sur ]0, 1] vers la fonction constante de valeur ϕ(1), et on a la domination

∀n ∈ IN∗ ∀u ∈ ]0, 1]
∣∣gn(u)

∣∣ ≤ ‖ϕ‖∞
(fonction constante intégrable sur ]0, 1]). Encore par convergence dominée, on obtient



lim
n→+∞

∫ +∞

−∞
βn(x) ϕ(x) dx = lim

n→+∞

∫ 1

0

gn(u) du =

∫ 1

0

ϕ(1) du = ϕ(1) .

7. Pour faire apparâıtre la dérivée ϕ′, intégrons par parties: si ϕ ∈ D,∫ +∞

−∞
γn(x) ϕ(x) dx =

∫ π
n

−πn
n2 sin(nx) ϕ(x) dx

=
[
− n cos(nx) ϕ(x)

]π
n

−πn
+

∫ π
n

−πn
n cos(nx) ϕ′(x) dx

= n ϕ

(
π

n

)
− n ϕ

(
− π

n

)
+

∫ π

−π
cos(t) ϕ′

(
t

n

)
dt

=

ϕ

(
π

n

)
− ϕ(0)

π

n

× π +

ϕ

(
− π

n

)
− ϕ(0)

−π
n

× π + Jn .

On reconnâıt deux taux d’accroissement qui tendent tous deux vers ϕ′(0) lorsque n→ +∞.

Par convergence dominée, l’intégrale Jn =

∫ π

−π
cos(t) ϕ′

(
t

n

)
dt tend, lorsque n → +∞,

vers

∫ π

−π
cos(t) ϕ′(0) dt = 0 car on a la domination

∣∣∣∣ cos(t) ϕ′
(
t

n

)∣∣∣∣ ≤ ‖ϕ′‖∞ (fonction

constante intégrable sur [−π, π]).

Finalement, lim
n→+∞

∫ +∞

−∞
γn(x) ϕ(x) dx = 2π ϕ′(0).

PARTIE C. Les distributions.

8. Par hypothèse, il existe un segment S contenant les supports de toutes les fonctions ϕn.
Si x ∈ IR \ S, alors ϕn(x) = 0 pour tout n, donc ϕ(x) = lim

n→+∞
ϕn(x) = 0. La fonction ϕ

est donc aussi à support dans S.

Par ailleurs, chaque fonction ϕn étant de classe C∞ sur IR, et la suite de fonctions
(
ϕ(k)
n

)
n∈IN

étant uniformément convergente sur IR pour tout entier k, il résulte du théorème de dérivation
(extension aux fonctions C∞) de la limite d’une suite de fonctions que ϕ est de classe C∞
sur IR. Donc ϕ ∈ D.

9. D’abord Tf (ϕ) existe bien pour tout ϕ ∈ D car la fonction fϕ est continue par morceaux et
à support borné, donc intégrable sur IR. Ensuite, Tf est bien une forme linéaire sur D par
linéarité de l’intégrale.

Ensuite, soit (ϕn) une suite de fonctions de D convergeant fortement vers ϕ ∈ D, on a alors
en particulier lim

n→+∞
‖ϕn−ϕ‖∞ = 0. Si S = [a, b] est un segment contenant les supports de

toutes les fonctions ϕn, et donc aussi de la fonction ϕ, on a

∣∣Tf (ϕn)− Tf (ϕ)
∣∣ =

∣∣∣∣ ∫ b

a

f(x)
(
ϕn(x)− ϕ(x)

)
dx

∣∣∣∣



≤
∫ b

a

∣∣f(x)
∣∣ ∣∣ϕn(x)− ϕ(x)

∣∣ dx

≤ ‖ϕn − ϕ‖∞
∫
S

|f | ,

et ce majorant tend vers 0 lorsque n tend vers +∞. Donc lim
n→+∞

Tf (ϕn) = Tf (ϕ).

On a ainsi prouvé que Tf est une distribution.

10.a. La convergence forte d’une suite de fonctions (ϕn) de D vers ϕ entrâıne évidemment sa
convergence simple, donc lim

n→+∞
ϕn(a) = ϕ(a), soit encore lim

n→+∞
δa(ϕn) = δa(ϕ).

La linéarité de δa est par ailleurs immédiate, il s’agit donc d’une distribution.

b. Par l’absurde, supposons qu’il existe f ∈ Cm(IR, IR) telle que δ0 = Tf . En considérant des
fonctions ϕ et ϕn telles que l’énoncé le suggère, posons α = ϕ(0), on a alors α > 0 et
ϕn(0) = α pour tout n, puis

∀n ∈ IN∗ α = ϕn(0) = δ0(ϕn) = Tf (ϕn) =

∫ +∞

−∞
f(x) ϕn(x) dx =

∫ 1
n

− 1
n

f(x) ϕ(nx) dx ,

cette dernière égalité car supp(ϕn) =

[
− 1

n
,

1

n

]
. Mais la fonction f est bornée sur le segment

[−1, 1] qui contient tous les segments

[
− 1

n
,

1

n

]
, posons M = ‖f‖∞,[−1,1], on a alors

∀n ∈ IN∗ |α| =
∣∣∣∣ ∫ 1

n

− 1
n

f(x) ϕ(nx) dx

∣∣∣∣ ≤ 2

n
M ‖ϕ‖∞ ,

ce qui est contradictoire puisque le majorant tend vers 0 lorsque n tend vers +∞, alors que
|α| est strictement positif et indépendant de n.

Cette contradiction montre que δ0 n’est pas une distribution régulière.

11.a. Déjà cela a bien un sens puisque, si ϕ ∈ D, alors ϕ est dérivable et ϕ′ ∈ D. Par linéarité
de la dérivation et linéarité de T , on déduit que T ′ est bien une forme linéaire sur D. Enfin,
si (ϕn) est une suite de fonctions de D qui converge fortement vers ϕ ∈ D, il est immédiat
que la suite (ϕ′n) converge fortement vers ϕ′ donc

T ′(ϕn) = −T (ϕ′n) −→
n→+∞

−T (ϕ′) = T ′(ϕ) ,

donc T ′ est une distribution.

b. Pour tout ϕ ∈ D, on a (δa)′(ϕ) = −δa(ϕ′) = −ϕ′(a).

c. Si f est de classe C1 sur IR et si ϕ ∈ D, alors par une intégration par parties,

(Tf )′(ϕ) = −Tf (ϕ′) = −
∫ +∞

−∞
f(x) ϕ′(x) dx = −

[
f(x) ϕ(x)

]+∞
−∞ +

∫ +∞

−∞
f ′(x) ϕ(x) dx

=

∫ +∞

−∞
f ′(x) ϕ(x) dx = Tf ′(ϕ)

puisque le terme entre crochets est nul, ϕ étant à support borné. Donc (Tf )′ = Tf ′ .



d. Si ϕ ∈ D, on calcule

(TH)′(ϕ) = −TH(ϕ′) = −
∫ +∞

−∞
H(x)ϕ′(x)dx = −

∫ +∞

0

ϕ′(x)dx = −
[
ϕ(x)

]+∞
0

= ϕ(0) = δ0(ϕ) .

Donc (TH)′ = δ0.

e. Soit ϕ ∈ D. On calcule, en posant abusivement ϕ(a0) = ϕ(an+1) = 0 puisque ϕ, de support
borné, a des limites nulles en −∞ et +∞:

(Tf )′(ϕ) = −Tf (ϕ′) = −
n∑
i=0

ci

∫ ai+1

ai

ϕ′(x) dx = −
n∑
i=0

ci
(
ϕ(ai+1)− ϕ(ai)

)
= −

n∑
i=1

ci−1 ϕ(ai) +

n∑
i=1

ci ϕ(ai) =

n∑
i=1

(ci − ci−1) ϕ(ai) .

Donc (Tf )′ =

n∑
i=1

(ci − ci−1) δai .

PARTIE D. Convergence d’une suite de distributions.

12. Si lim
n→+∞

Tn = T et si ϕ ∈ D, alors ϕ′ ∈ D et

T ′n(ϕ) = −Tn(ϕ′) −→
n→+∞

−T (ϕ′) = T ′(ϕ) ,

donc lim
n→+∞

T ′n = T ′.

13. Le questions 5., 6. et 7. montrent respectivement que lim
n→+∞

Tαn = π δ0, lim
n→+∞

Tβn = δ1

et lim
n→+∞

Tγn = −2π (δ0)′.

14.a. Soit ϕ ∈ D. On a alors, pour n ∈ IN∗,

TVn(ϕ) =

∫ +∞

−∞
n V (nx) ϕ(x) dx =

∫ +∞

−∞
V (t) ϕ

(
t

n

)
dt .

La fonction ϕ est continue et à support borné donc elle est bornée sur IR, on a donc la
domination

∀n ∈ IN∗ ∀t ∈ IR

∣∣∣∣∣V (t) ϕ

(
t

n

)∣∣∣∣∣ ≤ ‖ϕ‖∞ V (t) ,

cette fonction majorante étant intégrable sur IR, et on a la convergence simple

∀t ∈ IR lim
n→+∞

V (t) ϕ

(
t

n

)
= V (t) ϕ(0) .

Le théorème de convergence dominée s’applique donc et donne

lim
n→+∞

TVn(ϕ) =

∫ +∞

−∞
V (t) ϕ(0) dt = ϕ(0) = δ0(ϕ) ,

on a ainsi prouvé que lim
n→+∞

TVn = δ0.



b. La fonction V est nulle en dehors de [−1, 1], on a V (t) = 1 + t sur [−1, 0] et V (t) = 1− t sur
[0, 1]. Lorsque n augmente, le graphe de Vn fait un pic de plus en plus haut et de plus en
plus étroit. L’aire sous la courbe est constante de valeur 1, mais cette aire “se concentre”

au voisinage de l’origine lorsque n augmente.

15. Soit ϕ ∈ D, montrons que lim
n→+∞

TUn(ϕ) = δ0(ϕ) = ϕ(0). Majorons la valeur absolue de la

différence. Posons M = ‖ϕ‖∞, la fonction ϕ étant bornée sur IR. Comme

∫
IR

Un = 1, pour

tout α > 0, on peut écrire∣∣TUn(ϕ)− ϕ(0)
∣∣ =

∣∣∣∣ ∫ +∞

−∞
Un(t)

(
ϕ(t)− ϕ(0)

)
dt

∣∣∣∣
≤

∫ −α
−∞

Un(t)
∣∣ϕ(t)− ϕ(0)

∣∣ dt+

∫ α

−α
Un(t)

∣∣ϕ(t)− ϕ(0)
∣∣ dt+

∫ +∞

α

Un(t)
∣∣ϕ(t)− ϕ(0)

∣∣ dt

≤ 2M

(∫ −α
−∞

Un(t) dt+

∫ +∞

α

Un(t) dt

)
+ sup
t∈[−α,α]

∣∣ϕ(t)− ϕ(0)
∣∣ .

Donnons-nous ε > 0. De la continuité de ϕ en 0, on déduit qu’il existe α > 0 tel que

sup
t∈[−α,α]

∣∣ϕ(t)− ϕ(0)
∣∣ ≤ ε

2
. Cet α étant fixé, par la propriété (2), il existe N entier tel que

n ≥ N =⇒
∫ −α
−∞

Un(t) dt+

∫ +∞

α

Un(t) dt ≤ ε

4M
.

Pour n ≥ N , on a alors ∣∣TUn(ϕ)− ϕ(0)
∣∣ ≤ 2M

ε

4M
+
ε

2
= ε .

On a ainsi prouvé que lim
n→+∞

∣∣TUn(ϕ)− ϕ(0)
∣∣ = 0, soit lim

n→+∞
TUn(ϕ) = ϕ(0).

Et ceci pour tout ϕ ∈ D, donc lim
n→+∞

TUn = δ0.


