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EXERCICE

1. Pour k et n entiers naturels non nuls, on pose Sk(n) =

n∑
i=1

ik. En considérant par exemple

une somme de Riemann, montrer que, pour tout k ∈ IN∗ fixé, on a Sk(n) ∼
n→+∞

nk+1

k + 1
.

On rappelle que S1(n) =
n(n+ 1)

2
et S2(n) =

n(n+ 1)(2n+ 1)

6
.

On considère maintenant une urne contenant n jetons numérotés de 1 à n, et on effectue k tirages

avec remise dans cette urne. Pour tout j ∈ [[1, k]], on note Xj le numéro obtenu lors du j-ième

tirage. On suppose que la loi de chaque Xj est uniforme sur [[1, n]], et que les variables X1, · · ·, Xk

sont indépendantes. On définit enfin une variable aléatoire Uk par

Uk = min(X1, · · · , Xk) .

2. Exprimer E(X1), E(X2
1 ), puis V(X1) en fonction de n.

3. Montrer que P (Uk ≥ i) =

(
n− i+ 1

n

)k
pour tout i ∈ [[1, n]].

4. Prouver les relations

E(Uk) =

n∑
i=1

P (Uk ≥ i) et E(U2
k ) =

n∑
i=1

(2i− 1) P (Uk ≥ i) .

5. Exprimer E(Uk) en fonction de n à l’aide de l’expression Sk(n) introduite dans la question 1.,
puis donner un équivalent de E(Uk) lorsque n tend vers l’infini, l’entier k étant fixé.



PROBLÈME

On note F(IR, IR) l’espace vectoriel des fonctions de IR vers IR.

Si f ∈ F(IR, IR), on appelle support de f , et on note supp(f) l’adhérence dans IR de l’ensemble

des réels x vérifiant f(x) 6= 0, i.e. supp(f) = A avec A = f−1(IR∗) =
{
x ∈ IR | f(x) 6= 0

}
.

On note Cm(IR, IR) l’espace vectoriel des fonctions continues par morceaux de IR vers IR.

On rappelle que toute fonction continue par morceaux sur un segment est bornée.

On note D l’ensemble des fonctions de classe C∞ de IR vers IR dont le support est borné.

A. Fonctions C∞ à support borné.

1. Soit la fonction ψ : IR→ IR définie par

∀x ∈ IR ψ(x) =

{
e
− 1
x si x > 0

0 si x ≤ 0
.

a. Déterminer le support de ψ et donner l’allure de sa courbe représentative.

b. Montrer que ψ est de classe C∞ sur IR∗+ et que, pour tout n entier naturel, il existe un

polynôme Pn ∈ IR[X] tel que

∀x ∈ IR∗+ ψ(n)(x) = Pn

(
1

x

)
e
− 1
x .

c. En déduire que, pour tout n entier naturel, on a lim
x→0+

ψ(n)(x) = 0.

d. Montrer que la fonction ψ est de classe C∞ sur IR.

2. En utilisant la fonction ψ ci-dessus, construire (simplement!) une fonction ϕ : IR→ IR positive,
de classe C∞, ayant pour support exactement le segment [−1, 1].

3. Montrer que l’ensemble D est un sous-espace vectoriel de F(IR, IR) non réduit à {0}, et que
D est stable par la dérivation des fonctions.

4. Dans toute cette question 4., on note ϕ une fonction appartenant à D, positive, et ayant pour
support [−1, 1].

a. Montrer que I =

∫
IR

ϕ est un réel strictement positif.

b. Pour tout n ∈ IN∗, on définit ρn : IR→ IR par ∀x ∈ IR ρn(x) =
n

I
ϕ(nx).

Montrer que ρn ∈ D, préciser son support et calculer

∫
IR

ρn.

c. Soit f ∈ Cm(IR, IR), soit n ∈ IN∗.

i*. Montrer que la fonction gn : x 7→
∫ +∞

−∞
f(t) ρn(x− t) dt est de classe C∞ sur IR.

ii. Dans cette question, on suppose que f est lipschitzienne sur IR. Montrer que la suite

de fonctions (gn) converge uniformément sur IR vers la fonction f .



B. Quelques calculs auxiliaires.

Pour tout n entier naturel non nul, on considère les fonctions suivantes de IR vers IR (on admettra

qu’elles sont continues par morceaux sur IR):

αn : x 7→ n

1 + n2x2
; βn : x 7→

{
nxn si x ∈ [0, 1]

0 sinon
; γn : x 7→

n2 sin(nx) si x ∈
[
− π

n
,
π

n

]
0 sinon

.

5. Soit ϕ ∈ D. Calculer lim
n→+∞

∫ +∞

−∞
αn(x) ϕ(x) dx. On pourra poser t = nx dans l’intégrale.

6. Soit ϕ ∈ D. À l’aide d’un changement de variable, calculer lim
n→+∞

∫ +∞

−∞
βn(x) ϕ(x) dx.

7. Montrer qu’il existe un réel C que l’on déterminera tel que, pour toute fonction ϕ ∈ D, on ait

lim
n→+∞

∫ +∞

−∞
γn(x) ϕ(x) dx = C ϕ′(0) .

C. Les distributions.

On dira qu’une suite (ϕn) de fonctions de D converge fortement s’il existe un segment S de IR

tel que, pour tout n entier naturel on ait supp(ϕn) ⊂ S et si, pour tout k entier naturel, la suite

de fonctions
(
ϕ(k)
n

)
n∈IN converge uniformément sur IR.

8. Soit (ϕn) une suite de fonctions de D qui converge fortement. On pose ϕ(x) = lim
n→+∞

ϕn(x)

pour tout x réel. Montrer que ϕ ∈ D.

On appelle distribution toute forme linéaire T sur le IR-espace vectoriel D telle que, pour toute

suite (ϕn) de fonctions de D convergeant fortement, on ait lim
n→+∞

T (ϕn) = T (ϕ) dans IR,

en posant ϕ(x) = lim
n→+∞

ϕn(x) pour tout x réel.

On admettra que l’ensemble des distributions est muni d’une structure de IR-espace vectoriel.

9. Soit f ∈ Cm(IR, IR). Pour toute fonction ϕ ∈ D, on pose

Tf (ϕ) =

∫ +∞

−∞
f(x) ϕ(x) dx .

Montrer que l’application Tf : D → IR est une distribution.

Une distribution T telle qu’il existe f : IR→ IR continue par morceaux pour laquelle T = Tf est

appelée distribution régulière.

10. Soit a un nombre réel, soit l’application δa : D → IR telle que ∀ϕ ∈ D δa(ϕ) = ϕ(a).

a. Montrer que δa est une distribution, on l’appellera distribution de Dirac au point a.

b. Soit ϕ ∈ D, positive, telle que supp(ϕ) = [−1, 1]. En considérant la suite de fonctions

(ϕn) définie par

∀n ∈ IN ∀x ∈ IR ϕn(x) = ϕ(nx) ,

montrer que δ0 n’est pas une distribution régulière.



11. Dérivée d’une distribution.

Si T est une distribution, on définit sa dérivée T ′ par

∀ϕ ∈ D T ′(ϕ) = −T (ϕ′) .

a. Justifier que T ′ est une distribution.

b. Soit a réel, soit ϕ ∈ D. Expliciter (δa)′(ϕ).

c. Soit f : IR→ IR de classe C1. Montrer que (Tf )′ = Tf ′ .

d. On définit la fonction de Heaviside H : IR → IR par ∀x ∈ IR H(x) =

{
1 si x ≥ 0

0 sinon
.

Reconnâıtre la distribution (TH)′.

e. Soient a1, · · ·, an des réels tels que a1 < a2 < · · · < an. Par commodité, on posera

a0 = −∞ et an+1 = +∞. Soient c0, c1, · · ·, cn des réels. Soit f : IR → IR une fonction

“en escalier” (donc continue par morceaux) telle que ∀i ∈ [[0, n]] ∀x ∈]ai, ai+1[ f(x) = ci.

Exprimer la dérivée de la distribution régulière Tf comme une combinaison linéaire de

distributions de Dirac.

D. Convergence d’une suite de distributions.

On dit qu’une suite de distributions (Tn)n∈IN converge vers une distribution T si on a

∀ϕ ∈ D lim
n→+∞

Tn(ϕ) = T (ϕ) .

On note alors T = lim
n→+∞

Tn.

12. Montrer que, si une suite de distributions (Tn)n∈IN converge vers une distribution T , alors
la suite des dérivées (T ′n) converge vers la distribution T ′.

13. En reprenant les notations de la partie B., montrer que les suites de distributions régulières
(Tαn), (Tβn) et (Tγn) convergent respectivement vers des distributions A, B et C que l’on
exprimera à l’aide de distributions de Dirac δa, avec a réel, ou de leurs dérivées (δa)′.

14. Soit une fonction V ∈ Cm(IR, IR), positive, intégrable sur IR, et telle que

∫
IR

V = 1. Pour

tout n ∈ IN, on considère la fonction Vn : x 7→ n V (nx).

a. Montrer que la suite de distributions régulières (TVn
) converge vers la distribution

de Dirac δ0.

b. Représenter graphiquement la fonction Vn lorsque V est la fonction t 7→
(
1 − |t|

)
l1S(t),

avec S = [−1, 1]. La fonction “indicatrice” l1S vaut 1 sur S et vaut 0 en dehors de S.

15*. Plus généralement, soit (Un) une suite de fonctions continues par morceaux, positives et
intégrables sur IR, telles que

(1): ∀n ∈ IN

∫
IR

Un = 1 ;

(2): ∀α > 0 lim
n→+∞

(∫ −α
−∞

Un(t) dt+

∫ +∞

α

Un(t) dt

)
= 0.

Montrer que la suite de distributions régulières (TUn
) converge vers la distribution

de Dirac δ0.


