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PROBLÈME 1

On considère l’application ϕ de IR[X] dans lui-même, définie par

∀P ∈ IR[X] ϕ(P ) = (X2 − 1) P ′′ + 2X P ′ .

Pour tout n ∈ IN, on considère le polynôme Un = (X2 − 1)n, et on pose Ln =
1

2n n!
U (n)
n ,

où U (n)
n représente le polynôme dérivé n-ième du polynôme Un. On notera an le coefficient

dominant du polynôme Ln.

PARTIE A.

1. Déterminer L0 et L1. Vérifier que L2 =
1

2
(3X2 − 1).

2. Pour tout n ∈ IN, déterminer le degré du polynôme Ln et son coefficient dominant an.

3. Montrer que la famille (L0, · · · , Ln) est une base de l’espace vectoriel IRn[X].

4. Prouver que ϕ est un endomorphisme de l’espace vectoriel IR[X].

5. Montrer que, pour tout n ∈ IN, le sous-espace IRn[X] est stable par ϕ.

Pour tout n entier naturel, on note ϕn l’endomorphisme de IRn[X] induit par ϕ, et on note
Mn ∈ Mn+1(IR) la matrice de ϕn relativement à la base canonique Bn = (1, X, · · · , Xn)
de IRn[X].

6. Construire la matrice Mn.

7. Montrer que l’endomorphisme ϕn est diagonalisable.

8. Pour tout k ∈ [[0, n]], vérifier la relation

(X2 − 1) U ′k − 2k X Uk = 0 .

9. En dérivant k + 1 fois la relation ci-dessus, prouver que

∀n ∈ IN ∀k ∈ [[0, n]] (X2 − 1) U
(k+2)
k + 2X U

(k+1)
k − k(k + 1) U

(k)
k = 0 .

10. Pour tout k ∈ [[0, n]], montrer que le polynôme Lk est vecteur propre de l’endomorphisme ϕn.

11. Pour n ∈ IN∗ donné, préciser les éléments propres de l’endomorphisme ϕn de IRn[X].

12. Préciser les éléments propres de l’endomorphisme ϕ de l’espace vectoriel IR[X].

PARTIE B.

On note E = C
(
[−1, 1], IR

)
le IR-espace vectoriel des fonctions continues de [−1, 1] vers IR.

Si P ∈ IR[X] est un polynôme, on identifiera P avec la fonction polynomiale associée sur
[−1, 1], et on pourra ainsi considérer P comme un élément de E.

Pour f ∈ E et g ∈ E, on pose (f |g) =

∫ 1

−1
f(t) g(t) dt, on rappelle que l’on définit ainsi un

produit scalaire sur E, et on notera ‖ · ‖2 la norme associée.

Pour f ∈ E, on posera ‖f‖∞ = max
x∈[−1,1]

∣∣f(x)
∣∣.

13. Soient P ∈ IR[X] et Q ∈ IR[X] deux polynômes. En intégrant par parties, montrer que(
ϕ(P )|Q

)
=
(
P |ϕ(Q)

)
.

14. En déduire que la famille (Ln)n∈IN est une famille orthogonale dans l’espace préhilbertien E.

Pour tout n entier naturel, on pose Qn =
Ln
‖Ln‖2

.

Pour f ∈ E et k ∈ IN, on pose ck(f) = (Qk|f) =

∫ 1

−1
Qk(t) f(t) dt.



Si f ∈ E et n ∈ IN, on note d2
(
f, IRn[X]

)
= inf

Q∈IRn[X]
‖f − Q‖2 la distance de f au sous-

espace vectoriel IRn[X], pour la norme ‖ · ‖2.

15. Montrer qu’il existe un unique polynôme Tn ∈ IRn[X] tel que d2
(
f, IRn[X]

)
= ‖f − Tn‖2.

Interpréter géométriquement ce résultat.

16. Justifier l’égalité, pour f ∈ E et n ∈ IN:

d2
(
f, IRn[X]

)2
= ‖f‖22 −

n∑
k=0

ck(f)2 .

17. En déduire la convergence de la série
∑
k≥0

ck(f)2 et l’inégalité

+∞∑
k=0

ck(f)2 ≤ ‖f‖22.

On admet maintenant le théorème de Weierstrass: toute fonction continue sur un
segment est limite uniforme d’une suite de fonctions polynomiales.

18. Soit f ∈ E, soit ε un réel strictement positif. Montrer qu’il existe un entier naturel N tel
que d2

(
f, IRN [X]

)
≤ ε.

19. En déduire la “relation de Parseval”:

∀f ∈ E
+∞∑
k=0

ck(f)2 = ‖f‖22 .

20. À l’aide d’une identité de polarisation, montrer que

∀(f, g) ∈ E2
+∞∑
k=0

ck(f) ck(g) = (f |g) .

PROBLÈME 2

1.a. Montrer la convergence de l’intégrale J =

∫ +∞

0

1− cos(t)

t2
dt.

b. En utilisant une intégration par parties, en déduire la convergence de l’intégrale

K =

∫ +∞

0

sin(t)

t
dt, et prouver l’égalité J = K.

2. Montrer que les fonctions ϕ : t 7→ 1− cos(t)

t
et ψ : t 7→ 1− cos(t)

t2
sont bornées sur IR∗+.

3. Pour tout réel positif x, on pose g(x) =

∫ +∞

0

1− cos(t)

t2
e−xt dt.

a. Montrer que la fonction g est bien définie et continue sur IR+.

b. Montrer que la fonction g est de classe C2 sur IR∗+, et exprimer g′(x) et g′′(x), pour x > 0,
sous forme d’intégrales.

c. Donner une expression explicite de g′′(x) pour x > 0.



d. En utilisant par exemple la question 2., déterminer lim
x→+∞

g(x) et lim
x→+∞

g′(x).

e. En déduire une expression explicite de g′(x) pour x ∈ IR∗+.

f. En utilisant une intégration par parties, expliciter une primitive de la fonction x 7→ ln(x2+1).

g. Expliciter g(x) pour x > 0.

h. En déduire que J = K =
π

2
.

4. Pour α réel tel que 0 < α < 2, on pose Jα =

∫ +∞

0

1− cos(t)

tα+1
dt et Kα =

∫ +∞

0

sin(t)

tα
dt.

a. Montrer la convergence de l’intégrale Jα.

b. En déduire la convergence de l’intégrale Kα et donner une relation simple entre Jα et Kα.

5. Pour n entier naturel avec n ≥ 2, on pose In =

∫ +∞

0

sin(tn) dt.

a. À l’aide d’un changement de variable, montrer que l’intégrale In converge, et trouver une
relation simple entre In et une intégrale Jα pour une certaine valeur de α que l’on précisera
en fonction de n.

b. Montrer la continuité de l’application α 7→ Jα sur l’intervalle ]0, 2 [.

c. En déduire un équivalent simple de In lorsque n tend vers +∞.


