TP n=°4 : K plus proches voisins

Informatique tronc commun 2ere année

1) Le premiere étape est de sauvegarder le dossier du TP n=°"4 dans votre espace personnel. Ensuite, il faut ouvrir le fichier
Python qui est sauvegardé dans votre espace.

2) Compléter la fonction separer(donnee,ratio) qui prend en entrée une liste Python donnee contenant les données, un entier
représentant un pourcentage, et sépare la liste donnee en deux listes apprentissage et test, tel que apprentissage contient
len(donnee) * ratio/100 éléments et test le reste des éléments de la liste donnee.

3) Ecrire une fonction distance_euclidienne(donneel,donnee2) qui prend en entrée deux listes Pythons donneel,donnee2
représentant des vecteurs. Les listes sont de méme taille n et contiennent des flottants aux positions 0 jusqu'a n-2, leurs
coordonnées. Le dernier élément de la liste est la catégorie a laquelle I'élément représenté par la liste appartient.

La fonction renvoie la distance euclidienne entre les deux vecteurs.

4) Ecrire une fonction Python Lprime(x,apprentissage,distance) qui prend en entrée une liste x représentant une donnée, une
liste apprentissage contenant plusieurs données, et la fonction distance utilisée pour calculer la distance.

La fonction renvoie une liste 1p contenant des couples (distance,categorie) décrite dans la premiere étape des K plus
proches voisins.

5) Ecrire la fonction plus_petit(Lp,k) qui prend entrée une liste Lp dont la forme est la réponse de la question précédente. La
fonction renvoie les k éléments de Lp dont la distance est la plus faible. On pourra s’aider de la fonction insertion(rep,elem).

6) Ecrire la fonction dico_classe(Lpk) qui prend en entrée une liste Lpk dans la forme est celle renvoyée par la fonction
précédente, et renvoie un dictionnaire dont les clefs sont les classes apparaissant dans Lpk et leurs valeurs le nombre d’occurrences
dans Lpk.

dico_classe([(0.2, 'Iris-versicolor’), (0.5, 'Iris-versicolor’), (0.6, 'Iris-versicolor’), (0.7, 'Iris-virginica’)]) renvoie

{'Iris-versicolor’ : 3, ’Iris-virginica’ : 1}

7) Ecrire une fonction max_occurences(dico) qui renvoie la clef du dictionnaire dico qui a la plus grande valeur.

8) En réutilisant les fonctions de la questions 4 a 7, écrire une fonction k_plus_proches_voisins(apprentissage,x,k,distance)
qui prend en plus des entrées normales, la fonction distance qui sera appliquée pour calculer la distance entre deux données.

9) Ecrire une fonction test(donnee,ratio,k,distance) qui prend en entrée une liste donnee, des entiers ratio, k et une fonction
distance.

La fonction crée une base d’apprentissage et de test, effectue les k plus proches voisins sur tous les données de la base de test et
renvoie le taux de réussite.

10) Expliquer ce que fait la fonction écrite a la question 10.

Tester pour différentes valeurs de c et observer le changement du taux de réussite. Quelles parameétres de notre base de données
sont les plus importants pour distinguer les différentes espéces d’iris.

La fonction Question 10 teste le taux de réussite lorsqu’on augmente ou diminue I'importance d'une colonne. On se rend
compte qu'augmenter trop I'importance de la premiére colonne réduit le taux de réussite de notre classificateur.

11) Ecrire une fonction k_plus_proches_voisins2(apprentissage,x,k,distance) qui utilise le tri fusion.
12) Changer dans I'importation des données "iris.csv" et indiquer le fichier "voitures.csv". Premiérement, tester en utilisant
la fonction question 9 le taux de réussite si k = 5.

13) Le fichier contient 850 instances de voitures différentes. Est-ce que cela veut dire que la base est mieux maillée que la base
d’iris?

Pas forcément, car le fichier prend aussi plus de parameétres en compte. La quantité de données nécessaire pour avoir un bon
maillage augmente avec le nombre de parameétre mesuré.

14) Avec l'aide de la fonction tracer2, écrire une fonction taux_k(donnee,ratio,distance) et qui trace un graphique de taux
de réussite en fonction de k. On fera varier k de 1 a 51 par pas de 2 et on n'utilisera pas la fonction test, pour garder des bases



d’apprentissage et de test constantes.

15) Tester différentes dilatations des parameétres de la base de voitures, et essayer de trouver les parametres qui influent le plus
sur le taux de réussite.

16) Comparer le temps de calcul de la méthode avec tri et de la méthode sans tri en fonction du k donnée en entrée.

Quand est-il avantageux de trier?

Il devient avantageux de trier sur le graphique a partir de k = 50. En pratique, on ne trie presque jamais la liste au préalable pour
trouver les k-voisins les plus proches.



