Corrigé PSI

1| def est_egal (enregistrementl ,enregistrement2)
2 if len(enregistrementl) != len(enregistrement2)
3 return False
4
DI for ind in range(len(enregistrementl))
6 if enregistrementl[ind] != enregistrement2[ind]
7 return False
8 return True
1|def Egalite_indice(enregistrement, indice, constante)
3) ., return enregistrement[indice] == constante
1| def ConditionConstante(table,indice,constante)
2 rep = []
3 for v in table
4) ., if Egalite_indice(v,indice,constante)
5 rep.append (v)
6 return rep
1| def ConditionEgalite(table, indicel, indice2)
2 rep = []
3 for v in table
5) . if Egalite_indice(v,indice2,v[indicel])
5 rep.append (v)
6 return rep

6) Lacomplexité en en O(len(table)

2 rep = []

7)3 for i in in listelIndices
4 rep.append (enregistrement [i])
5 return rep

1|def SelectionEnregistrement (enregistrement ,listeIndices)

1| def Selection(table,listelIndices):

2 rep = []

8) 3 for v in table
4 rep.append (SelectionEnregistrement (v,listeIndices)
5 return rep

2)
La complexité est
O(len(enregistrement1)).

9) Lacomplexité de 'opération11 + 12 esten O(len(l1) + len(12)). Cette opération est appelée concaténation.

1| def ProduitCartesien(tablel,table2)
2 rep = []
3 for vl in tablel
10), for v2 in table2
5 rep.append (vl + v2)
6 return rep

11) Lacomplexité est en O(len(tablel)*len(table2)*(al + a2)), avec al et a2 'arité de chacune des tables.
Les deux boucles sont imbriquées I'une dans I'autre. La complexité est donc le nombre d’itération de chaque boucles multipliée entre

elles avec la complexité de vi + v2, qui dépend de la taille de v1 et v2.

en

12)

13)

14)

15)

3 if len(tablel) == 0

4 return []

5 indice2p = indice2 + len(tablel[0])

6 return ConditionEgalite(rep,indicel,indice2p)

1| def Jointure(tablel, table2, indicel, indice?2)
produit = ProduitCartesien(tablel,table2)

Les deux appels de fonctions sont ici fait de maniere séquentielles, donc la complexité est la somme des deux. La complexité est
donc en O(len(rep) + len(tablel)*len(table2)*(al + a2)). Comme la longueur de rep est len(tablel)*len(table2), la complexité est la méme
que le produit cartésien.

rep = []

for v in table
present = False
for vmis in rep

present =
if not present
rep.append (v)
return rep

def SupprimerDoublons (table)

if est_egal(v,vmis)
True

La complexité de est_egal est en O(a), avec a I'arité de la table. La complexité totale est donc en O(len(table)? a), car il y a deux
boucles imbriqués.

16)

Les tuples peuvent étre utilisés comme clefs de dictionnaire, car c’est un type de données non mutables.

On peut alors utiliser un dictionnaire de présences, pour savoir si on a déja croisé un enregistrement ou non. La recherche de présence
d’une clef étant en O(1), la complexité serait alors en O(len(table)).

Laboucle for vmis in rep : pourrait étre remanié.

17)

19)

22)

24) !

25) !

26) !

27)

28)

SELECT *
FROM Ticket 18)
WHERE Date = "2025-10-17"

SELECT Prix, Type

FROM Vehicule

JOIN Trajet ON Vehicule.IdVehicule = Trajet.IdVehicule
JOIN Ticket ON Ticket.IdTrajet = Trajet.IdTrajet

WHERE VilleD = "Lille" AND VilleA = "Strasbourg"
SELECT IdVehicule FROM Vehicule

SELECT IdHotel, AVG(Prix)

EXCEPT
SELECT COUNT(*) FROM Chambre .
FROM Vehicule 20)" GROUP BY IdHotel 21) if{giﬂrlg‘gfh“le
HAVING AVG(Prix) < 50 WHERE VilleD = "Zurich" or VilleA = "Zurich"
SELECT Hotel.IdHotel . .
FROM Hotel JOIN Chambre SELECT DISTINCT (H1.idHotel, H2.idHotel)

ON Hotel.idHotel = Chambre.idHotel
WHERE Ville = "Bordeaux" AND
Prix =
(SELECT min(Prix) FROM
Hotel JOIN Chambre
ON Hotel.idHotel = Chambre.idHotel
WHERE Ville = "Bordeaux")

FROM Hotel as H1, Hotel as H2

JOIN Chambre AS CH1 ON CH1.idHotel = H1.idHotel
JOIN Chambre AS CH2 ON CH2.idHotel = H2.idHotel
WHERE H1.Classe <> H2.Classe

AND CH1.Date <> CH2.Date

AND H1.Ville = H2.Ville

AND H1.Ville = "Paris"

23)

resultatO

ConditionConstante (Trajet ,1,"Rennes")

resultatl = ProduitCartesien(Trajet,Vehicule)

resultat2 = ConditionEgalite (resultatl,3,4)

resultat3
resultat4

Jointure (Hotel ,Chambre ,0,1)
Selection(resultat3,[1,2,5,6])

resultatb = ProduitCartesien (Hotel,Trajet)
resultat6 = ProduitCartesien(resultat5,Ticket)
resultat?
resultat8
resultat9 = ConditionConstante (resultat8,12,50)
resultatl10 = Selection(resutltat9,[0])

ConditionEgalite(resultat6,2,5)
ConditonEgalite (resultat7,3,8)

1| resultatll = ConditionConstante (Chambre ,3,100)

:| resultatl2 = ProduitCartesien(resultatll ,resultati0)
29) ;| resultat13 = ConditionEgalite(resultatl12,1,4)

s/ resultatld4 = Selection(resultati13,[0,1,2,3])

1|def CreerDictionnaire(table,indice)
2 d = {}
3 for i in range(len(table))
4 v = tablel[i]
30) if not v[indice] in d
6 d[v[indicel]l = []
7 dlv[indicel]. append (i)
8 return d
1| def ConditionConstanteDictionnaire(table,indice,constante ,dico)
2 rep = []
3 if not constante in dico
31) ¢ return rep
5 for i in dico[constante]
6 rep.append (table[i])
7 return d

32) Lacomplexité est en O(len(dico[constante])).
Si la taille du dico est proche de la la longueur de la table, on a une complexité en O(len(table)). Dans ce cas, ¢a ne serait pas meilleur.

