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Produit scalaire, norme associée, orthogonalité

1. Soit E un espace préhilbertien réel. Soient f et g deux applications de E vers E telles que

∀(x, y) ∈ E2
(
x|f(y)

)
=
(
g(x)|y

)
.

Montrer que f et g sont des endomorphismes de E.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Soient x1, x2, y des vecteurs de E, soient a et b des réels ; alors(
g(ax1 + bx2)|y

)
=

(
ax1 + bx2|f(y)

)
= a

(
x1|f(y)

)
+ b

(
x2|f(y)

)
= a

(
g(x1)|y

)
+ b

(
g(x2)|y

)
=

(
a g(x1) + b g(x2)|y

)
.

Ceci étant vrai pour tout vecteur y de E, on déduit g(ax1 + bx2) = a g(x1) + b g(x2), donc
g est linéaire. On procède de même pour montrer la linéarité de f .

2. Soit E = C1
(
[0, 1], IR

)
. Pour f ∈ E et g ∈ E, on pose

< f, g >=

∫ 1

0

f ′(t) g′(t) dt+ f(1) g(0) + f(0) g(1) .

Montrer que l’on définit ainsi un produit scalaire sur E.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

La bilinéarité et la symétrie sont évidentes. Pour le caractère défini positif, il faut penser à

Mrs. Cauchy & Schwarz, qui nous disent notamment que

(∫ 1

0

f ′(t) dt

)2

≤
∫ 1

0

f ′(t)2 dt.

Ainsi,

< f, f > =

∫ 1

0

f ′(t)2 dt+ 2 f(0) f(1)

≥
(∫ 1

0

f ′(t) dt

)2

+ 2 f(0) f(1) =
(
f(1)− f(0)

)2
+ 2 f(0) f(1)

= f(0)2 + f(1)2 ≥ 0 .

La forme est donc positive et, si < f, f >= 0, alors f(0)2+f(1)2 = 0, donc f(0) = f(1) = 0,

mais on a aussi dans ce cas

∫ 1

0

f ′(t)2dt = 0, d’où f ′ = 0 par le théorème de stricte positivité,

puis f = 0 d’où le caractère défini.

3. Soient a et b deux vecteurs unitaires dans un espace préhilbertien réel E. Pour tout vecteur x

non nul de E, on pose ϕ(x) =
(x|a)(x|b)
‖x‖2

. Exprimer ϕ(x) à l’aide des vecteurs u = a+ b et

v = a− b. Déterminer les réels

m = min
x∈E\{0}

ϕ(x) et M = max
x∈E\{0}

ϕ(x) .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Notons que (u|v) = ‖a‖2−‖b‖2 = 0 : les vecteurs u et v sont orthogonaux. Avec a =
u+ v

2

et b =
u− v

2
, on obtient



∀x ∈ E \ {0E} ϕ(x) =
1

4

(x|u+ v) (x|u− v)

‖x‖2
=

1

4

(x|u)2 − (x|v)2

‖x‖2
.

Donc ϕ(x) ≤ (x|u)2

4 ‖x‖2
≤ 1

4
‖u‖2 (cette dernière inégalité par Cauchy-Schwarz). Comme u et

v sont orthogonaux, on a ϕ(u) =
(u|u)2

4 ‖u‖2
=
‖u‖2

4
, donc

M = max
x∈E\{0}

ϕ(x) =
‖u‖2

4
=

1

4

(
‖a‖2 + ‖b‖2 + 2 (a|b)

)
=

1 + (a|b)
2

.

De même, ϕ(x) ≥ − (x|v)2

4 ‖x‖2
≥ −‖v‖

2

4
, et ϕ(v) = −‖v‖

2

4
, donc

m = min
x∈E\{0}

ϕ(x) = −‖v‖
2

4
= −1

4

(
‖a‖2 + ‖b‖2 − 2 (a|b)

)
=

(a|b)− 1

2
.

4. Soit A ∈ Mp,q(IR). Comparer les rangs des matrices A et A>A. On pourra s’intéresser aux
noyaux des applications linéaires canoniquement associées à ces matrices.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Les matrices A et A>A ont le même noyau. En effet, A représente canoniquement une
application linéaire de IRq vers IRp, alors que A>A représente un endomorphisme de IRq.
Et, si X ∈ Mq,1(IR) ' IRq appartient au noyau de A, alors AX = 0 donc A>AX = 0,
ainsi Ker(A) ⊂ Ker(A>A). Réciproquement, si X ∈ Ker(A>A), alors A>AX = 0, puis
X>A>AX = 0, soit (AX)>(AX) = 0, ou encore ‖AX‖2 = 0, le symbole ‖ · ‖ représentant
la norme euclidienne canonique de IRp, donc AX = 0 et X ∈ Ker(A).

On a ainsi prouvé que Ker(A>A) = Ker(A).

Enfin, les applications linéaires canoniquement associées aux matrices A et A>A ayant
toutes deux pour espace de départ IRq, le théorème du rang donne

rg(A>A) = q − dim
(

Ker(A>A)
)

= q − dim
(

Ker(A)
)

= rg(A) .

5. Soit E le IR-espace vectoriel constitué des suites réelles bornées. Si u et v sont deux suites

appartenant à E, on pose (u|v) =

+∞∑
n=0

unvn
2n

.

a. Montrer que l’on définit bien ainsi un produit scalaire sur E.

b. On note F le sous-espace vectoriel de E constitué des suites “presque nulles”, c’est-à-dire
dont les termes sont nuls à partir d’un certain rang. Déterminer l’orthogonal de F . Le
sous-espace F admet-il un supplémentaire orthogonal ? Déterminer (F⊥)⊥.

c. Montrer que F est dense dans E.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



a. D’abord, pour (u, v) ∈ E2, la série de terme général
unvn
2n

converge : en effet, les suites u

et v sont bornées, donc |un| ≤ M et |vn| ≤ M ′ pour tout n, puis
∣∣∣unvn

2n

∣∣∣ ≤ MM ′

2n
, d’où la

convergence absolue de la série définissant (u|v). Les vérifications des caractères bilinéaire,
symétrique et défini positif, sont laissées à l’éventuel (et bienvenu) lecteur.

b. Pour tout k ∈ IN, notons e(k) = (e(k)n )n∈IN la suite définie par e(k)n = δk,n, autrement dit la

suite dont le terme d’indice k vaut 1, et les autres valent 0. On a bien e(k) ∈ F pour tout k.
En fait, on a plus précisément F = Vect

{
e(k) ; k ∈ IN

}
. Si u ∈ F⊥, alors, pour tout

entier naturel k, on a (u|e(k)) =
uk
2k

= 0, donc u = 0. On a ainsi prouvé que F⊥ = {0}.
Comme F 6= E, on a F ⊕F⊥ = F ⊕{0} = F 6= E, donc l’orthogonal F⊥ de F n’est pas un
supplémentaire de F .
Enfin, (F⊥)⊥ = {0}⊥ = E, et en particulier (F⊥)⊥ 6= F .

c. Soit u = (uk)k∈IN ∈ E. Il existe donc M ∈ IR+ tel que |uk| ≤ M pour tout k. Pour tout n
entier naturel, notons s(n) la suite u tronquée à l’ordre n, soit encore

s(n) = (u0, u1, · · · , un, 0, 0, · · ·) =

n∑
k=0

uke
(k) .

On a alors s(n) ∈ F pour tout n, et on a lim
n→+∞

s(n) = u dans l’espace vectoriel normé(
E, ‖ · ‖

)
, si ‖ · ‖ est la norme associée au produit scalaire (·|·) de E. En effet, pour tout n,

on a u− s(n) = r(n) = (0, 0, · · · , 0, un+1, un+2, · · ·) et

∀n ∈ IN ‖r(n)‖2 =

+∞∑
k=n+1

u2k
2k
≤M2

+∞∑
k=n+1

(
1

2

)k
=
M2

2n
,

donc lim
n→+∞

‖u − s(n)‖ = lim
n→+∞

‖r(n)‖ = 0, ce qu’il fallait démontrer. Le sous-espace

vectoriel F est donc dense dans E.

6*. Soit E un espace préhilbertien réel, soient x1, · · ·, xn des vecteurs de E. On suppose qu’il
existe un réel positif M tel que

∀(ε1, · · · , εn) ∈ {−1, 1}n
∥∥∥ n∑
k=1

εkxk

∥∥∥ ≤M .

Montrer que

n∑
k=1

‖xk‖2 ≤M2.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

On va faire une récurrence sur n. On va prouver pour tout n ∈ IN∗ la propriété Pn :

<<Pour tout réel positif M , pour tout n-uplet (x1, · · · , xn) de vecteurs de E tels que

∀(ε1, · · · , εn) ∈ {−1, 1}n
∥∥∥ n∑
k=1

εkxk

∥∥∥ ≤M , on a

n∑
k=1

‖xk‖2 ≤M2 . >>

• Pour n = 1, l’assertion P1 est évidente!

• Pour n = 2, elle résulte de l’identité du parallélogramme



‖x1 + x2‖2 + ‖x1 − x2‖2 = 2
(
‖x1‖2 + ‖x2‖2

)
.

• Soit n ≥ 3, supposons Pn−1 vraie, soit alors M ≥ 0, soient x1, · · ·, xn des vecteurs de E

tels que ∀(ε1, · · · , εn) ∈ {−1, 1}n
∥∥∥ n∑
k=1

εkxk

∥∥∥ ≤ M . Fixons (ε1, · · · , εn−1) ∈ {−1, 1}n−1

et posons y1 =

n−1∑
k=1

εkxk et y2 = xn, on a alors ∀(α1, α2) ∈ {−1, 1}2
∥∥α1y1+α2y2

∥∥ ≤M ;

la propriété P2 étant vraie, on en déduit que ‖α1‖2 + ‖α2‖2 ≤M2. On a donc prouvé que

∀(ε1, · · · , εn−1) ∈ {−1, 1}n−1
∥∥∥ n−1∑
k=1

εkxk

∥∥∥ ≤ √M2 − ‖xn‖2 et, la propriété (Pn−1) étant

supposée vraie, on en déduit que

n−1∑
k=1

‖xk‖2 ≤M2 − ‖xn‖2, ce qui achève la récurrence.

Familles orthogonales ou orthonormales

7. Soit E = IR[X]. Pour (P,Q) ∈ E2, on pose (P |Q) =

∫ +∞

0

P (t)Q(t) e−t dt.

a. Montrer que l’on définit bien ainsi un produit scalaire sur l’espace vectoriel E.

b. Calculer (Xp|Xq) pour p et q entiers naturels.

c. Orthonormaliser la famille (1, X,X2) pour ce produit scalaire.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Tout d’abord, l’intégrale ci-dessus converge: en effet, si le polynôme PQ est non nul, soit
adX

d son terme dominant avec d ∈ IN et ad ∈ IR∗, on a alors

t2 P (t)Q(t) e−t ∼
t→+∞

ad t
d+2 e−t −→

t→+∞
0

par croissances comparées, donc P (t) Q(t) e−t = o
( 1

t2

)
lorsque t → +∞, ce qui garantit

l’intégrabilité de cette fonction continue sur [0,+∞[.

Ensuite, on a bien un produit scalaire: La bilinéarité et la symétrie sont évidentes, et on a

(P |P ) =

∫ +∞

0

P (t)2 e−t dt ≥ 0. Comme la fonction t 7→ P (t)2 e−t est continue et positive

sur IR+, on déduit du théorème de stricte positivité que (P |P ) est nul si et seulement si
∀t ∈ IR+ P (t)2 e−t = 0, ce qui entrâıne que ∀t ∈ IR+ P (t) = 0, ce qui entrâıne enfin
que le polynôme P admet une infinité de racines, donc est le polynôme nul. On a obtenu le
caractère défini positif.

b. Posons In =

∫ +∞

0

tn e−t dt pour tout n entier naturel. Un calcul classique, par une

intégration par parties, donne I0 = 1 puis In = nIn−1 pour tout n ∈ IN∗, donc In = n!
pour tout n entier naturel.

Ensuite, pour tout (p, q) ∈ IN2, (Xp|Xq) = Ip+q = (p+ q)!



c. Notons E = (E0, E1, E2) l’orthonormalisée de la base canonique (1, X,X2) de IR2[X].

• D’abord, ‖1‖2 = (1|1) = I0 = 1, le polynôme constant est donc unitaire (dans le sens “de
norme 1”). On pose donc E0 = 1.

• Ensuite, (E0|X) = (1|X) = 1, donc V1 = X − (E0|X)E0 = X − 1, qu’il reste à “normer”.
On calcule

‖X − 1‖2 = (X − 1|X − 1) = (X|X)− 2 · (1|X) + (1|1) = 2− 2 + 1 = 1 ,

donc E1 =
V1
‖V1‖

= V1 = X − 1.

• Enfin, (E0|X2) = (1|X2) = 2 et (E1|X2) = (X|X2)− (1|X2) = 6− 2 = 4, donc

V2 = X2 − (E0|X2) E0 − (E1|X2) E1 = X2 − 2− 4(X − 1) = X2 − 4X + 2 ,

puis ‖V2‖2 = 4 (y’a un petit calcul), donc E2 =
V2
‖V2‖

=
V2
2

=
1

2
(X2 − 4X + 2).

8. Soit (e1, · · · , en) une famille de vecteurs unitaires d’un espace préhilbertien réel E, telle que

∀x ∈ E ‖x‖2 =

n∑
i=1

(x|ei)2. Montrer que cette famille est orthogonale, puis que c’est une

base orthonormale de E.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fixons un indice j ∈ [[1, n]], on a alors

1 = ‖ej‖2 =

n∑
i=1

(ej |ei)2 = 1 +
∑
i 6=j

(ej |ei)2 ;

les (ej |ei)2, avec i 6= j, étant tous positifs, on en déduit qu’ils sont nuls. La famille
(e1, · · · , en) est donc orthogonale, et finalement orthonormale.

La famille (e1, · · · , en) est libre car orthonormale, il reste à prouver qu’elle est génératrice.
Et cela résulte du cas d’égalité de l’inégalité de Bessel. Explicitons! Soit le sous-espace
V = Vect(e1, · · · , en), il s’agit de prouver que V = E. Or, si x ∈ E, d’après le cours,

le projeté orthogonal de x sur V a pour expression pV (x) =

n∑
i=1

(ei|x)ei et on a alors

∥∥pV (x)
∥∥2 =

n∑
i=1

(ei|x)2, soit
∥∥pV (x)

∥∥2 = ‖x‖2 vu l’hypothèse. Mais la relation de Pythagore

donne aussi ‖x‖2 =
∥∥pV (x)

∥∥2 +
∥∥x − pV (x)

∥∥2. On a donc ici
∥∥x − pV (x)

∥∥ = 0, donc
x = pV (x) ∈ V . Ainsi, E ⊂ V , donc V = E.

9.a. Montrer que, pour tout n ∈ IN, il existe un unique polynôme Tn ∈ IR[X] tel que

∀θ ∈ IR Tn(cos θ) = cosnθ .

On pourra procéder par récurrence, après avoir transformé en produit l’expression

cos(n+ 2)x+ cosnx .



b. Pour (P,Q) ∈
(
IR[X]

)2
, on pose

(P |Q) =

∫ 1

−1

P (x)Q(x)√
1− x2

dx .

Montrer que l’on définit ainsi un produit scalaire sur IR[X]. Montrer que la famille (Tn)n∈IN
est une famille orthogonale dans cet espace préhilbertien. En déduire une famille orthonor-
male. Peut-on parler de “base orthonormale” de IR[X] ?

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Pour l’unicité, si deux polynômes Tn et Un vérifient la relation (1), on a alors
∀θ ∈ IR Tn(cos θ) = Un(cos θ), donc ∀x ∈ [−1, 1] Tn(x) = Un(x). Les fonctions poly-
nomiales associées aux polynômes Tn et Un cöıncidant sur l’ensemble infini [−1, 1], on en
déduit l’égalité des polynômes Tn et Un.

Pour l’existence, on peut, soit utiliser la formule de Moivre et la formule du binôme, soit
procéder par récurrence sur n (ce qui est plus simple et a l’avantage de fournir la relation
de récurrence Tn+2 = 2XTn+1 − Tn).

La propriété à démontrer (existence de Tn) est vraie pour n = 0, n = 1, avec T0(x) = 1 et
T1(x) = x.
Supposons-la vraie aux rangs n et n + 1, n étant un entier naturel donné. En utilisant les
formules de transformation de sommes en produits, nous avons

cos(n+ 2)θ + cosnθ = 2 cos(n+ 1)θ cos θ ,
soit

cos(n+ 2)θ = 2 cos(n+ 1)θ cos θ − cosnθ .

Or, par hypothèse, il existe des polynômes Tn et Tn+1 tels que cosnθ = Tn(cos θ) et
cos(n + 1)θ = Tn+1(cos θ). Nous en déduisons l’existence d’un polynôme Tn+2 tel que
cos(n+ 2)θ = Tn+2(cos θ) et la relation de récurrence

Tn+2(x) = 2x Tn+1(x)− Tn(x) .

Nous obtenons ainsi T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x, · · · ; on vérifie facilement par
une récurrence (“double”) que, pour tout n ∈ IN, le polynôme Tn est de degré n et que, si
n ≥ 1, son coefficient dominant est 2n−1. Les polynômes Tn sont appelés polynômes de
Tchebychev de première espèce.

b. La première chose à vérifier est l’existence de l’intégrale définissant (P |Q). La fonction

f : x 7→ P (x)Q(x)√
1− x2

est définie et continue sur ]− 1, 1[. Au voisinage du point 1, en posant

x = 1 − h (h → 0+), on a f(x) = f(1 − h) =
P (1− h)Q(1− h)√

2h− h2
; le numérateur est borné

et
1√

2h− h2
∼

h→0+

1√
2h

, fonction intégrable sur ]0, a] pour tout a > 0. En procédant de

même au voisinage de −1, on justifie l’intégrabilité de la fonction f sur ]− 1, 1[.

La bilinéarité et la symétrie de l’application (P,Q) 7→ (P |Q) sont immédiates, de même

que sa positivité : (P |P ) ≥ 0 pour tout P . Enfin, si (P |P ) = 0, on a

∫ 1

−1

P (x)2 dx√
1− x2

= 0,

l’intégrande étant une fonction continue, positive et intégrable sur ]− 1, 1[, on déduit alors



du théorème de stricte positivité que cette fonction est nulle sur ]− 1, 1[, donc le polynôme
P est le polynôme nul puisqu’il admet une infinité de racines.

Nous avons donc un produit scalaire, et IR[X] est ainsi muni d’une structure d’espace
préhilbertien réel.

En faisant le changement de variable x = cos θ (ou, plus précisément, θ = Arccosx), on a,
pour tous polynômes P et Q,

(P |Q) =

∫ 0

π

P (cos θ)Q(cos θ)

sin θ
(− sin θ) dθ =

∫ π

0

P (cos θ)Q(cos θ) dθ .

Si p et q sont deux entiers naturels, nous avons donc

(Tp|Tq) =

∫ π

0

cos(pθ) cos(qθ) dθ =
1

2

(∫ π

0

cos(p+ q)θ dθ +

∫ π

0

cos(p− q)θ dθ

)
.

Or,

- pour tout k ∈ Z∗,

∫ π

0

cos kθ dθ =

[
1

k
sin kθ

]π
0

= 0 ;

- pour k = 0,

∫ π

0

cos kθ dθ = π.

Il en résulte que, si p 6= q, (Tp|Tq) = 0 : la famille (Tn)n∈IN est orthogonale.

De plus,

‖T0‖2 = (T0|T0) = π et ∀k ∈ IN∗ ‖Tk‖2 = (Tk|Tk) =
π

2
.

En posant P0 =
T0√
π

et Pk =

√
2

π
Tk pour k ∈ IN∗, la famille (Pn)n∈IN est orthonormale.

Remarque. De la relation de récurrence obtenue en a., on déduit facilement, par récurrence,
que deg(Tn) = n pour tout n. Il en résulte que, pour tout n ∈ IN, la famille (P0, . . . , Pn)
est une base orthonormale du sous-espace IRn[X]. La famille (Pn)n∈IN est enfin une base de
IR[X] car elle est libre (i.e. toute sous-famille finie est libre car orthonormale) et génératrice
(tout polynôme, si l’on note d son degré, est combinaison linéaire de P0, P1, · · ·, Pd).

10*. Soit E un espace euclidien, soit u un endomorphisme de E, de trace nulle.

a. Montrer qu’il existe un vecteur x non nul de E tel que
(
u(x)|x

)
= 0.

b. Montrer qu’il existe une base orthonormale de E dans laquelle la matrice de u a tous ses
coefficients diagonaux nuls. On pourra raisonner par récurrence sur la dimension de E.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Soit (ε1, · · · , εn) une base orthonormale de E, on a alors tr(u) =

n∑
i=1

(
u(εi)|εi

)
= 0.

Si tous les termes de cette somme sont nuls, alors x = εi convient, pour n’importe quel
i ∈ [[1, n]].

Sinon, comme la somme est nulle, il existe deux indices i et j distincts tels que
(
u(εi)|εi

)
> 0

et
(
u(εj)|εj

)
< 0. L’application f : t 7→

(
u
(
(1− t)εi + tεj

)∣∣(1− t)εi + tεj

)
est continue sur

[0, 1], cela résulte notamment de la continuité des applications linéaires (l’endomorphisme



u) et bilinéaires (le produit scalaire) en dimension finie. Comme f(0) > 0 et f(1) < 0,
par le théorème des valeurs intermédiaires, il existe t0 ∈]0, 1[ tel que f(t0) = 0. Le vecteur
x = (1− t0)εi + t0εj convient alors (il est non nul car εi et εj ne sont pas colinéaires).

b. Initialisation évidente: si n = dim(E) = 1, si tr(u) = 0, alors u est l’endomorphisme nul.

Soit n ≥ 2, supposons la propriété vraie dans tout espace euclidien de dimension n − 1.
Soit u ∈ L(E) avec E euclidien de dimension n. La question a. permet d’obtenir un vecteur
unitaire e1 de E tel que

(
u(e1)|e1

)
= 0. Soit D = Vect(e1) et H = D⊥. Si C = (e2, · · · , en)

est une base orthonormale de H, alors B = (e1, e2, · · · , en) est une base orthonormale

de E dans laquelle la matrice de u est de la forme M = MatB(u) =

(
0 L
C A

)
avec

L ∈ M1,n−1(IR), C ∈ Mn−1,1(IR) et A ∈ Mn−1(IR) telle que tr(A) = tr(M) = tr(u) = 0.
Notons v l’endomorphisme de H tel que MatC(v) = A, on a alors tr(v) = tr(A) = 0. Par
l’hypothèse de récurrence, il existe alors une base orthonormale C′ = (e′2, · · · , e′n) de H
telle que les coefficients diagonaux de la matrice A′ = MatC′(v) soient tous nuls. La famille
B′ = (e1, e

′
2, · · · , e′n) est alors une base orthonormale de E, et la matrice M ′ de u dans cette

base a tous ses coefficients diagonaux nuls. En effet, soit P = PB,B′ ∈ GLn(IR) la matrice de
passage de la base B à la base B′ dans E. Comme le premier vecteur e1 est inchangé et que

Vect(e′2, · · · , e′n) = Vect(e1, · · · , en) = H, cette matrice est de la forme P =

(
1 01,n

0n,1 Q

)
avec Q = PC,C′ ∈ GLn−1(IR). Un calcul par blocs montre que

M ′ = P−1MP =

(
1 01,n

0n,1 Q−1

)(
0 L
C A

)(
1 01,n

0n,1 Q

)
=

(
0 LQ

Q−1C A′

)
.

Les coefficients diagonaux de M ′, qui sont 0 et les coefficients diagonaux de A′, sont donc
nuls.

Projecteurs orthogonaux

11. Pour tout (a, b) ∈ IR2, on pose I(a, b) =

∫ π

0

(a sinx+b cosx−x)2dx. Déterminer le minimum

de I(a, b) lorsque (a, b) décrit IR2.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Soit E = C
(
[0, π], IR

)
, muni du produit scalaire (f |g) =

∫
[0,π]

fg. Soient les fonctions

e : x 7→ x ; s : x 7→ sinx ; c : x 7→ cosx .

Alors I(a, b) = ‖e− (a s+ b c)‖2 et, si l’on note P le plan vectoriel P = Vect(s, c), alors

m := min
(a,b)∈IR2

I(a, b) = d(e, P )2 = ‖e‖2 − ‖pP (e)‖2 ,

en notant pP le projecteur orthogonal sur le plan P . D’autre part, si (ε1, ε2) est une base
orthonormale du plan P , on a

pP (e) = (ε1|e) ε1 + (ε2|e) ε2 et ‖pP (e)‖2 = (ε1|e)2 + (ε2|e)2 .



La famille (s, c) est orthogonale puisque (s|c) =

∫ π

0

sinx cosx dx = 0, il suffit donc de

normer ces “vecteurs” pour avoir une base orthonormale du plan P . Or, ‖s‖2 = ‖c‖2 =∫ π

0

sin2 x dx =

∫ π

0

cos2 x dx =
π

2
, on posera donc ε1 =

√
2

π
s et ε2 =

√
2

π
c. On achève

l’exerfife par quelques calculs d’intégrales :

(ε1|e) =

√
2

π

∫ π

0

x sinxdx =
√

2π ; (ε2|e) =

√
2

π

∫ π

0

x cosxdx = −2

√
2

π
; ‖e‖2 =

∫ π

0

x2dx =
π3

3
;

enfin,

m = ‖e‖2 − (ε1|e)2 − (ε2|e)2 =
π3

3
− 2π − 8

π
.

12. L’espace vectoriel E = Mn(IR) est muni du produit scalaire (A|B) = tr(A>B). Soit J la
matrice de Mn(IR) dont tous les coefficients sont égaux à 1, soit H l’hyperplan constitué
des matrices de trace nulle. Déterminer la distance d(J,H).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

L’hyperplan H est constitué des matrices M telles que tr(I>nM) = 0, autrement dit telles
que (In|M) = 0. L’orthogonal de l’hyperplan H est donc la droite vectorielle D = Vect(In)
constituée des “matrices scalaires”. Autrement dit, un “vecteur” unitaire normal à cet

hyperplan H est la matrice N =
In
‖In‖

=
1√
n
In. On en déduit, d’après le cours, que

d(J,H) =
∥∥pD(J)

∥∥ =
∥∥(N |J)N

∥∥ =
∣∣(N |J)

∣∣ =
1√
n

tr(J) =
√
n .

13. Soit p un projecteur dans un espace euclidien E. Montrer que p est un projecteur orthogonal
si et seulement si ∀x ∈ E ‖p(x)‖ ≤ ‖x‖.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Posons F = Im p et G = Ker p. On a alors E = F ⊕ G, et p est le projecteur sur F
parallèlement à G. Dire que p est un projecteur orthogonal signifie que G = F⊥.

• Si p est un projecteur orthogonal, on a ‖p(x)‖ ≤ ‖x‖ pour tout x de E, c’est du cours,
c’est l’inégalité de Bessel. Sa preuve est simple: on écrit x = p(x) +

(
x − p(x)

)
, avec

p(x) ∈ F et x− p(x) ∈ G = F⊥, ces deux vecteurs sont donc orthogonaux et la relation de
Pythagore donne ‖x‖2 = ‖p(x)‖2 + ‖x− p(x)‖2 ≥ ‖p(x)‖2.

• Si p vérifie la relation ‖p(x)‖ ≤ ‖x‖ pour tout x, choisissons x appartenant à G⊥. Comme
p(x) − x ∈ G = Ker p, ces deux vecteurs sont orthogonaux et de nouveau Pythagore nous
donne

‖p(x)‖2 =
∥∥x+

(
p(x)− x

)∥∥2 = ‖x‖2 + ‖p(x)− x‖2 .

L’hypothèse ‖p(x)‖ ≤ ‖x‖ entrâıne alors que ‖p(x) − x‖2 ≤ 0, ce qui n’est possible que si
p(x)−x = 0E , c’est-à-dire si x ∈ F . On a ainsi prouvé l’inclusion G⊥ ⊂ F . Comme G⊥ et F



sont tous deux des supplémentaires de G, on a d’autre part égalité des dimensions, donc
G⊥ = F , puis (G⊥)⊥ = F⊥, soit G = F⊥, ce qu’il fallait démontrer.

14. L’espace vectoriel IR4 est muni de sa structure euclidienne canonique. Écrire la matrice A
(relativement à la base canonique) du projecteur orthogonal sur le sous-espace vectoriel F
défini par les équations {

x + y+ z +t = 0

x − y+ z −t = 0
.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Le sous-espace F est un plan, que l’on peut définir plus simplement par le système équivalent{
x+ z = 0

y + t = 0
. Une base de ce plan est (

−→
u ,
−→
v ), avec

−→
u =


1
0
−1
0

 et
−→
v =


0
1
0
−1

. Mais nous

avons besoin d’une base orthonormale de F pour pouvoir exprimer le projeté orthogonal

d’un vecteur
−→
X =


x
y
z
t

 de IR4. Les vecteurs
−→
u et

−→
v sont déjà orthogonaux, il sufiit donc

de les normer : en posant
−→
e1 =

−→
u√
2

et
−→
e2 =

−→
v√
2

, nous disposons d’une base orthonormale

(
−→
e1 ,
−→
e2) du plan F . Nous avons alors

pF (
−→
X ) =

(−→
e1 |
−→
X
)−→
e1 +

(−→
e2 |
−→
X
)−→
e2

=
x− z√

2
× 1√

2


1
0
−1
0

+
y − t√

2
× 1√

2


0
1
0
−1



=
1

2


x− z
y − t
z − x
t− y

 .

La matrice du projecteur pF est alors A =
1

2


1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

.

15. L’espace E = Mn(IR) est muni du produit scalaire canonique défini par la relation

(A|B) = tr(A> B) =
∑
i,j

ai,jbi,j . Soit M = (mi,j) ∈ E. Calculer la distance de la ma-

trice M au sous-espace vectoriel Sn(IR) des matrices symétriques.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



L’orthogonal dans Mn(IR) du sous-espace Sn(IR) est le sous-espace An(IR) des matrices
antisymétriques : en effet, il est classique que ces deux sous-espaces sont supplémentaires
dans Mn(IR), ils sont de plus orthogonaux puisque, si S ∈ Sn(IR) et A ∈ An(IR), alors

(A|S) = tr(A> S) = tr(−A S) = −tr(A S) ,

mais aussi

(A|S) = (S|A) = tr(S> A) = tr(SA) = tr(AS) = −(A|S) ,

finalement (A|S) = 0. La distance de la matrice M au sous-espace Sn(IR) est la distance
de M à son projeté orthogonal sur Sn(IR), c’est-à-dire la distance à son projeté sur Sn(IR)
suivant la direction de An(IR). Autrement dit, si M se décompose en M = S + A avec
S ∈ Sn(IR) et A ∈ An(IR), alors d

(
M,Sn(IR)

)
= ‖A‖. Or, il est classique (sinon, procéder

par analyse-synthèse) que S =
1

2

(
M +M>

)
et A =

1

2

(
M −M>

)
, donc

d
(
M,Sn(IR)

)
=

1

2
‖M −M>‖ =

1

2

√∑
i,j

(mi,j −mj,i)2 =

√
1

2

∑
i<j

(mi,j −mj,i)2 .

16. Soit E un espace euclidien de dimension n, soit B = (e1, · · · , en) une base orthonormale de E,
soit p ∈ L(E) un projecteur orthogonal de rang r.

a. Montrer que ∀x ∈ E ‖p(x)‖2 =
(
p(x)|x

)
.

b. Calculer la somme S =

n∑
i=1

‖p(ei)‖2.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Il suffit de décomposer x en x = p(x) + q(x), avec q(x) = x− p(x) ∈ Ker p =
(

Im p
)⊥

, alors(
p(x)|x

)
=
(
p(x)|p(x) + q(x)

)
=
(
p(x)|p(x)

)
+
(
p(x)|q(x)

)
= ‖p(x)‖2

puisque les vecteurs p(x) et q(x) sont orthogonaux.

b. Alors

n∑
i=1

‖p(ei)‖2 =

n∑
i=1

(
ei|p(ei)

)
= tr(p) = rg(p) = r puisque la trace d’un projecteur

est égale à son rang.

17. Soient p et q deux projecteurs orthogonaux dans un espace euclidien E. Prouver l’équivalence

Im(p) ⊂ Im(q) ⇐⇒ ∀x ∈ E
∥∥p(x)

∥∥ ≤ ∥∥q(x)
∥∥ .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

• Supposons Im(p) ⊂ Im(q). Soient r et s les dimensions de Im(p) et Im(q), alors
0 ≤ r ≤ s ≤ n = dim(E). Soit (e1, · · · , er) une base orthonormale de Im(p), c’est alors



une famille orthonormale dans Im(q), on peut donc la compléter en une base orthonor-
male (e1, · · · , er, er+1, · · · , es) de Im(q). Si x est un vecteur quelconque de E, on a alors

p(x) =

r∑
i=1

(ei|x)ei et q(x) =

s∑
i=1

(ei|x)ei, puis

∥∥p(x)
∥∥2 =

r∑
i=1

(ei|x)2 ≤
s∑
i=1

(ei|x)2 =
∥∥q(x)

∥∥2 ,
donc

∥∥p(x)
∥∥ ≤ ∥∥q(x)

∥∥.

• Supposons ∀x ∈ E
∥∥p(x)

∥∥ ≤ ∥∥q(x)
∥∥. Si l’inclusion Im(p) ⊂ Im(q) était fausse, il

existerait un vecteur x appartenant à Im(p) mais pas à Im(q). On aurait alors p(x) = x
mais

∥∥q(x)
∥∥ < ‖x‖ (le cas d’égalité dans l’inégalité de Bessel n’étant pas vérifié), donc∥∥q(x)

∥∥ < ∥∥p(x)
∥∥, ce qui est une contradiction. Ainsi, Im(p) ⊂ Im(q).

Isométries. Matrices orthogonales.

18. Soit A = (ai,j) ∈ Mn(IR) une matrice que l’on suppose à la fois orthogonale et triangulaire
supérieure. Montrer que A est diagonale et que ses coefficients diagonaux valent 1 ou −1.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Rappel : une matrice A = (ai,j) ∈ Mn(IR) est orthogonale si et seulement si A>A = In,
c’est-à-dire :

- sur chaque colonne, la somme des carrés des coefficients vaut 1 ;

- la somme des produits deux à deux des coefficients de deux colonnes distinctes est nulle.

D’autre part, A étant triangulaire supérieure, on a ai,j = 0 dès que i > j. Ainsi, sur la
première colonne, on a a21,1 = 1, d’où a1,1 ∈ {−1; 1}. En faisant le produit scalaire des deux
premières colonnes, on a a1,1a1,2 = 0, donc a1,2 = 0 puisque le coefficient diagonal a1,1 est
non nul. Il reste alors, sur la deuxième colonne, a22,2 = 1 donc a2,2 ∈ {−1; 1}. On montre
ainsi, par récurrence finie sur j ∈ [[1, n]], que la j-ième colonne Cj de la matrice A vaut
±Ej , où Ej désigne le j-ième vecteur de la base canonique de IRn. Les détails sont laissés
à l’improbable lecteur.

19.a. Soit E un espace euclidien. Soit B une base de E, soit E son orthonormalisée. Montrer que
la matrice de passage de E vers B est triangulaire supérieure avec des coefficients diagonaux
strictement positifs.

b. En déduire que, si A est une matrice de GLn(IR), alors il existe une matrice orthogonale Q
et une matrice triangulaire supérieure R à coefficients diagonaux strictement positifs telles
que A = QR. En utilisant éventuellement l’exercice 18. ci-dessus, montrer l’unicité de cette
“décomposition QR”.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Notons B = (x1, · · · , xn) et E = (e1, · · · , en). Soit P = (ai,j) = PE,B la matrice de passage
considérée. Pour tout couple (i, j), le coefficient ai,j est la i-ème coordonnée dans la base E



du vecteur xj , donc ai,j = (ei|xj) (coordonnées d’un vecteur dans une base orthonormale).
D’après le procédé d’orthonormalisation de Gram-Schmidt, on a, pour tout j ∈ [[1, n]], les
deux conditions

(1) : Vect(e1, · · · , ej) = Vect(x1, · · · , xj) ;

(2) : (ej |xj) ∈ IR∗+.

La condition (2) exprime exactement que les coefficients diagonaux ai,i sont strictement
positifs. La condition (1) entrâıne que, pour tout j, le vecteur xj appartient au sous-espace
engendré par les ei, avec i ≤ j, autrement dit les coefficients ai,j avec i > j sont nuls, et la
matrice P est triangulaire supérieure.

b. Notons B0 la base canonique de IRn (muni de sa structure euclidienne canonique). La
matrice A étant supposée inversible, on peut la voir comme matrice de passage de B0 vers
une certaine base B de IRn (qui est en fait la famille des vecteurs-colonnes de A). Notons
enfin E l’orthonormalisée de B. On a alors la relation “de Chasles”

PB0,B = PB0,E · PE,B , soit A = QR ,

où Q = PB0,E est orthogonale puisque c’est la matrice de passage d’une base orthonormale
vers une base orthonormale, et R = PE,B est triangulaire supérieure avec des coefficients
diagonaux strictement positifs d’après la question a.

Remarque. On peut en fait montrer l’unicité d’une telle écriture : en effet, supposons
A = Q1R1 = Q2R2, avec Q1 et Q2 orthogonales, R1 et R2 triangulaires supérieures à
coefficients diagonaux strictement positifs. On a alors Q−12 Q1 = R2R

−1
1 . Or, la structure de

groupe de On(IR) fait que Q−12 Q1 est orthogonale. On peut montrer que l’ensemble T ++
n (IR)

des matrices triangulaires supérieures à coefficients diagonaux strictement positifs est aussi
un sous-groupe de GLn(IR) (i.e. stable par produit et par passage à l’inverse ), donc R2R

−1
1 ∈

T ++
n (IR). L’exercice 18. ci-dessus permet alors de déduire que R2R

−1
1 = Q−12 Q1 = In,

et donc R1 = R2 et Q1 = Q2.

20. Soit A = (ai,j) ∈ O(n). Montrer que
∑
i,j

|ai,j | ≤ n
√
n et

∣∣∣∑
i,j

ai,j

∣∣∣ ≤ n. On pourra utiliser

le vecteur U = (1, 1, · · · , 1) de IRn.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

21. Soit u ∈ O(E), où E est un espace euclidien.

a. Montrer que
(

Ker(u− idE)
)⊥

= Im(u− idE).

b. Pour tout k ∈ IN∗, on considère l’endomorphisme rk =
1

k

k−1∑
j=0

uj . Soit x un vecteur de E.

Déterminer lim
k→+∞

rk(x).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Dans tout l’exercice, on posera F = Ker(u− idE) et G = Im(u− idE).

a. Soient x ∈ F et y ∈ G ; alors u(x) = x et il existe z ∈ E tel que y = u(z)− z. Alors

(x|y) =
(
x|u(z)− z

)
=
(
x|u(z)

)
− (x|z) =

(
u(x)|u(z)

)
− (x|z) = 0



puisque u est un automorphisme orthogonal, donc conserve le produit scalaire. On a donc
montré que les sous-espaces F et G sont orthogonaux, ce qui signifie par exemple que
G ⊂ F⊥. Mais on sait que F⊥ est un supplémentaire de F , donc dim(F⊥) = dimE−dimF ,
et on a aussi dimG = dimE − dimF par le théorème du rang. Finalement, G = F⊥, ce
qu’il fallait démontrer.

b. Soit x ∈ E, on le décompose en x = y + z avec y ∈ F et z ∈ G = F⊥. Alors u(y) = y,
donc par récurrence immédiate, uj(y) = y pour tout j, puis rk(y) = y pour tout entier k.
D’autre part, il existe z′ ∈ E tel que z = u(z′)− z′, alors uj(z) = uj+1(z′)− uj(z′) et

rk(z) =
1

k

k−1∑
j=0

uj(z) =
1

k

k−1∑
j=0

(
uj+1(z′)− uj(z′)

)
=

1

k

(
uk(z′)− z′

)
(somme télescopique). Comme u ∈ O(E) conserve la norme, on a

‖rk(z)‖ =
1

k

∥∥uk(z′)− z′
∥∥ ≤ 1

k

(
‖uk(z′)‖+ ‖z′‖

)
=

2

k
‖z′‖ −→

k→+∞
0 ,

donc lim
k→+∞

rk(z) = 0E . Finalement, lim
k→+∞

rk(x) = y = pF (x). Dans l’espace vectoriel E, la

suite
(
rk(x)

)
converge vers le vecteur pF (x), projeté orthogonal de x sur F = Ker(u− idE).


