EXERCICES sur les ESPACES PREHILBERTIENS et EUCLIDIENS
PSI2 2025-2026

Produit scalaire, norme associée, orthogonalité
1. Soit F un espace préhilbertien réel. Soient f et g deux applications de F vers E telles que

V(z,y) € B2 (xlf(y) = (9(2)]y) -

Montrer que f et g sont des endomorphismes de E.

Soient x1, xo, y des vecteurs de F, soient a et b des réels ; alors

(9(azy +bxo)ly) = (az1 +bxo|f(y)) = a (z1|f(y)) + b (22]f(y))
a (g(z1)ly) + b (g(z2)|y)
= (ag(z1)+bglxa)ly) .

Ceci étant vrai pour tout vecteur y de E, on déduit g(azq + bxa) = ag(z1) +bg(x2), donc
g est linéaire. On procede de méme pour montrer la linéarité de f.

2. Soit E = Cl([O, 1],IR). Pour f € E et g € E, on pose
1
<fa>= [ OO+ 1050+ 10) 90

Montrer que I'on définit ainsi un produit scalaire sur E.

La bilinéarité et la symétrie sont évidentes. Pour le caractere défini positif, il faut penser a

1 2 1
Mrs. Cauchy & Schwarz, qui nous disent notamment que < / ) dt) < / f(t)* dt.
0 0
Ainsi,

<ff>

/0 F/()% dt +2 £(0) £(1)

Y

1 2
([ roa) +25050) = (0 - 700 +2£0) 50
— FOP+ (1) 2 0.
La forme est donc positive et, si < f, f >= 0, alors f(0)*+ f(1)? = 0, donc f(0) = f(1) =0,
1
mais on a aussi dans ce cas / f’(t)2dt =0, d’ou f = 0 par le théoréme de stricte positivité,

0
puis f =0 d’ou le caractere défini.

3. Soient a et b deux vecteurs unitaires dans un espace préhilbertien réel E. Pour tout vecteur z

(]a)(x[b)

A Exprimer p(z) a laide des vecteurs u = a +b et
x

non nul de E, on pose ¢(z) =
v = a — b. Déterminer les réels

= i t M = .
LAy A e M= e ele)

U+ v
2

Notons que (u|v) = ||a||* — ||b]|* = 0 : les vecteurs u et v sont orthogonaux. Avec a =

u—"v
et b= —5 on obtient



1 (@lutv) (@lu—v) 1 (zlu)? - (z[v)?
Ve e EN{0g} ()= =7
4 ]| 4 ]|
(z|u)? 1 2 S
Donc ¢(z) < EE < 1 lw]]® (cette derniere inégalité par Cauchy-Schwarz). Comme u et
(ulw)? [l
v sont orthogonaux, on a ¢(u) = = , donc
Aul> 4
luf® _ 1 2 2 1+ (alb)
M= - == bl|2 + 2 (alb)) = .
e o) =150 = 2 (ol + [0l + 2 alp) = =
2 2 2
De méme, p(z) > _ix|||;}|)|2 > —@, et pv) =— HU4” , donc
: o] 1 2 2 (ab) —1
— = — = —— b -2 b = .
m= min (o) = =15 == (lalP + [bl® =2 (alt)) = 2]

4. Soit A € M, ,(IR). Comparer les rangs des matrices A et A" A. On pourra s’intéresser auz
noyaux des applications linéaires canoniquement associées a ces matrices.

Les matrices A et AT A ont le méme noyau. En effet, A représente canoniquement une
application linéaire de IR? vers IR?, alors que A' A représente un endomorphisme de IRY.
Et, si X € M,;(R) ~ IR? appartient au noyau de A, alors AX = 0 donc ATAX = 0,
ainsi Ker(A) C Ker(AT A). Réciproquement, si X € Ker(AT A), alors ATAX = 0, puis
XTATAX =0, soit (AX)"(AX) =0, ou encore |AX|*> = 0, le symbole || - || représentant
la norme euclidienne canonique de IR”, donc AX =0 et X € Ker(A).

On a ainsi prouvé que Ker(AT A) = Ker(A).

Enfin, les applications linéaires canoniquement associées aux matrices A et A’ A ayant
toutes deux pour espace de départ IR?, le théoreme du rang donne

rg(ATA) = ¢ — dim (Ker(ATA)) = ¢ — dim (Ker(A)) =rg(A) .

5. Soit E le IR-espace vectoriel constitué des suites réelles bornées. Si u et v sont deux suites

+oo
appartenant a E, on pose (ulv) = Z u;:n
n=0

a. Montrer que 1’on définit bien ainsi un produit scalaire sur F.

b. On note F' le sous-espace vectoriel de E constitué des suites “presque nulles”, c’est-a-dire
dont les termes sont nuls & partir d’'un certain rang. Déterminer 'orthogonal de F'. Le
sous-espace F' admet-il un supplémentaire orthogonal 7 Déterminer (FJ‘)J‘.

c. Montrer que F' est dense dans FE.



UpV

n .
converge : en effet, les suites u
Uy Vny MM’

277/ - 27L
convergence absolue de la série définissant (u|v). Les vérifications des caracteres bilinéaire,
symétrique et défini positif, sont laissées & I’éventuel (et bienvenu) lecteur.

a. D’abord, pour (u,v) € E?, la série de terme général

et v sont bornées, donc |u,| < M et |v,| < M’ pour tout n, puis ‘

, d’ou la

b. Pour tout k € IN, notons e*) = (egf))nem la suite définie par egf) = 0k,n, autrement dit la
suite dont le terme d’indice k vaut 1, et les autres valent 0. On a bien e*) € F pour tout k.
En fait, on a plus précisément F' = Vect {e(k) ; ke ]N} Si u € F*, alors, pour tout

Uk

2716 =
Comme F # E,ona F @& F+ = F® {0} = F # E, donc orthogonal F* de F n’est pas un
supplémentaire de F'.

Enfin, (FY)* = {0}* = E, et en particulier (F*)* # F.

c. Soit u = (ux)ken € E. Il existe donc M € IRy tel que |ux| < M pour tout k. Pour tout n

entier naturel, notons s 1a suite u tronquée a l'ordre n, soit encore

entier naturel k, on a (u\e(k)) = 0, donc u = 0. On a ainsi prouvé que F*+ = {0}.

S('ﬂ) e (uo’ul’ Ce Uy, 07 0’ .. ) — Zuk‘e(k) .
k=0

On a alors s € F pour tout n, et on a lim s = 4 dans I’espace vectoriel normé

n—-+oo
(E,[[-), si ||| est la norme associée au produit scalaire (-|-) de E. En effet, pour tout n,
ona u—s" =r™=(0,0,--,0,Uns1, Unso, ) et
+oo 2 +o0o k 2
2 Uk 2 1 M
mew  pop- 3 Hoe 3 (1) A
k=n-+1 k=n+1
donc  lim |ju —s™| = 1lim [r™]| = 0, ce qu’il fallait démontrer. Le sous-espace
n—-+4oo n——+oo
vectoriel F' est donc dense dans E.
6*. Soit I/ un espace préhilbertien réel, soient x1, ---, x, des vecteurs de E. On suppose qu'il
existe un réel positif M tel que
n
V(er, - en) € {-1,1}" HZ%%H <M.
k=1

n
Montrer que E [l < M.
k=1
On va faire une récurrence sur n. On va prouver pour tout n € IN* la propriété P,, :

<<Pour tout réel positif M, pour tout n-uplet (z1,---,z,) de vecteurs de FE tels que

n n
V(er, - en) € {—1,1)" HZEMH <M ona 3 fayl? < M. >
k= k=1

e Pour n = 1, l’assertion P; est évidente!

e Pour n = 2, elle résulte de I’identité du parallélogramme



@1 + x2||* + [lz1 — 22l = 2(|le1 [|* + ll22l?) -

e Soit n > 3, supposons P, _; vraie, soit alors M > 0, soient x1, - --, x,, des vecteurs de

n
tels que V(ey,---,en) € {-1,1}" H Zaka:kH < M . Fixons (g1,---,6n0_1) € {—1,1}""!

k=1
n—1

et posons ¥y = Z ExTh et Y2 = Tn,onaalors V(og,az) € {—1,1}°  ||aryr+asys|| < M ;
k=1
la propriété Py étant vraie, on en déduit que |y ||* + [|az||* < M?. On a donc prouvé que

n—1
V(e1, -+, en1) € {—1,1}"1 H Zskka < v/ M? — ||z, ||? et, la propriété (P,—1) étant
k=1

n—1
supposée vraie, on en déduit que Z llzp|* < M? — ||z, ||?, ce qui acheve la récurrence.
k=1

Familles orthogonales ou orthonormales

+oo
7. Soit E = IR[X]. Pour (P, Q) € E?, on pose (P|Q) = / P(t) Q(t) e " dt.
0

a. Montrer que 1’on définit bien ainsi un produit scalaire sur I'espace vectoriel E.
b. Calculer (X?|X?) pour p et ¢ entiers naturels.

c. Orthonormaliser la famille (1, X, X?) pour ce produit scalaire.

a. Tout d’abord, 'intégrale ci-dessus converge: en effet, si le polynome P(Q est non nul, soit
aqX? son terme dominant avec d € IN et ag € IR*, on a alors

2 —t d+2 —t
P ~
t* P(t) Q(t) e et agt® e S 0
1
par croissances comparées, donc P(t) Q(t) e” ' = o(t—Q) lorsque t — 400, ce qui garantit
I'intégrabilité de cette fonction continue sur [0, +o00].

Ensuite, on a bien un produit scalaire: La bilinéarité et la symétrie sont évidentes, et on a
+oo

(P|P) = / P(t)? e dt > 0. Comme la fonction ¢ +— P(t)? " est continue et positive
0

sur IRy, on déduit du théoréme de stricte positivité que (P|P) est nul si et seulement si

Vvt € Ry P(t)?et =0, ce qui entraine que V¢ € IRy P(t) = 0, ce qui entraine enfin

que le polynome P admet une infinité de racines, donc est le polynome nul. On a obtenu le

caractere défini positif.

+o0o
b. Posons I, = / t" e~tdt pour tout n entier naturel. Un calcul classique, par une
0

intégration par parties, donne Iy = 1 puis I, = nl,_; pour tout n € IN*, donc I,, = n!
pour tout n entier naturel.

Ensuite, pour tout (p,q) € IN?, (X?|X?) = I,,, = (p+ q)!



c. Notons &€ = (Ey, B, E) orthonormalisée de la base canonique (1, X, X?) de Ry [X].

e D’abord, ||1]|2 = (1]1) = Iy = 1, le polynéme constant est donc unitaire (dans le sens “de
norme 1”). On pose donc Ey = 1.

e Ensuite, (Eg|X) = (1|X) =1, donc V; = X — (Ep|X) Ep = X — 1, qu'il reste & “normer”.

On calcule
X -1P=X-1X-1)=(X|X)-2-A|X)+(1[1)=2-24+1=1,
Vi
donc F1 = — =V =X — 1.
VAl

e Enfin, (Ey|X?) = (1|X?) =2 et (B1]|X?) = (X|X?) — (1]X?) =6 — 2 = 4, donc
Vo=X2— (Eo|X?)Ey— (B1|X)E1 =X?—2-4X-1)=X?—4X +2,

V \% 1
puis ||Va||? = 4 (y’a un petit calcul), donc Fy = —— = —= = (X2 —4X +2).
Va2 2
8. Soit (e, -, e,) une famille de vecteurs unitaires d’un espace préhilbertien réel E, telle que

n

Ve e E |z||* = Z(m|ei)2. Montrer que cette famille est orthogonale, puis que c’est une

i=1
base orthonormale de E.

Fixons un indice j € [1,n], on a alors
L=lef* = (ejle)* =1+ (ejle);

i=1 i#]

les (ej|ei)2, avec i # j, étant tous positifs, on en déduit qu’ils sont nuls. La famille
(e1,-+,en) est donc orthogonale, et finalement orthonormale.

La famille (eq,---,e,) est libre car orthonormale, il reste & prouver qu’elle est génératrice.
Et cela résulte du cas d’égalité de 'inégalité de Bessel. Explicitons! Soit le sous-espace
V = Vect(ey, -, ey), il s’agit de prouver que V = E. Or, si « € E, d’apres le cours,

n
le projeté orthogonal de x sur V' a pour expression py(x) = Z(eﬁx)ei et on a alors

i=1
n

||py(x)H2 = Z(ei\z)2, soit Hpv(x)||2 = ||z||? vu Phypothese. Mais la relation de Pythagore
i=1

donne aussi ||z|? = ||pv(:c)||2 + ||z - pv(x)||2. On a donc ici ||z — py(z)| = 0, donc

x=py(z) € V. Ainsi, ECV, donc V = E.

9.a. Montrer que, pour tout n € IN| il existe un unique polynoéme 7T;, € IR[X] tel que
vh € IR T, (cos ) = cosnf .

On pourra procéder par récurrence, apres avoir transformé en produit [’expression
cos(n + 2)x + cosnx .



b. Pour (P,Q) € (IR[X])Q, on pose

1
P(z)Q(x)
P|Q) = ———dz.
Pl - [ S
Montrer que 'on définit ainsi un produit scalaire sur IR[X]. Montrer que la famille (T, )nen

est une famille orthogonale dans cet espace préhilbertien. En déduire une famille orthonor-
male. Peut-on parler de “base orthonormale” de R[X] ?

a. Pour lunicité, si deux polynémes T, et U, vérifient la relation (1), on a alors
V8 € R T,(cosf) = Uy,(cosf), donc Vz € [-1,1] T,(z) = U,(x). Les fonctions poly-
nomiales associées aux polynémes T, et U, coincidant sur ’ensemble infini [—1, 1], on en
déduit ’égalité des polynomes T;, et U,.

Pour l'existence, on peut, soit utiliser la formule de Moivre et la formule du binéme, soit
procéder par récurrence sur n (ce qui est plus simple et a 'avantage de fournir la relation
de récurrence T2 =2XT, 11 — Th).

La propriété a démontrer (existence de T;,) est vraie pour n = 0, n = 1, avec To(z) = 1 et
T1 (l‘) = XT.

Supposons-la vraie aux rangs n et n 4+ 1, n étant un entier naturel donné. En utilisant les
formules de transformation de sommes en produits, nous avons

cos(n + 2)0 + cosnf = 2cos(n + 1) cos b ,
soit

cos(n + 2)0 = 2cos(n + 1)8 cos@ — cosnf .
Or, par hypothese, il existe des polynoémes T, et T,41 tels que cosnf = T, (cosf) et
cos(n + 1)8 = T,,11(cos@). Nous en déduisons l'existence d’un polynéme T o tel que
cos(n +2)0 = T, 2(cos ) et la relation de récurrence

Thni2(x) =22 Thyq(z) — Tn(x) .

Nous obtenons ainsi Th(z) = 22% — 1, T3(x) = 4a® — 3z, --- ; on vérifie facilement par
une récurrence (“double”) que, pour tout n € IN, le polynéme T,, est de degré n et que, si
n > 1, son coefficient dominant est 2"~ 1. Les polynémes T}, sont appelés polynémes de
Tchebychev de premiéere espeéce.

b. La premiére chose a vérifier est l'existence de l'intégrale définissant (P|Q). La fonction

P(z)Q(z) . . iy :
i x — ————= est définie et continue sur | — 1, 1[. Au voisinage du point 1, en posant
P(1—-nh 1—h
r=1-h(h—0"),ona f(z)=f(1-h)= ( ) ) ; le numérateur est borné

V2h — h?

1 1
fonction intégrable sur ]0,a] pour tout a > 0. En procédant de

V2h — 12 hsot 2R

méme au voisinage de —1, on justifie 'intégrabilité de la fonction f sur | — 1,1].

et

La bilinéarité et la symétrie de Uapplication (P, Q) — (P|Q) sont immédiates, de méme

1 2
P(z)? dz

-1 V 1 — I2

I'intégrande étant une fonction continue, positive et intégrable sur | — 1,1, on déduit alors

que sa positivité : (P|P) > 0 pour tout P. Enfin, si (P|P) =0, on a =0,



du théoréme de stricte positivité que cette fonction est nulle sur | — 1, 1], donc le polynéme
P est le polynéme nul puisqu’il admet une infinité de racines.

Nous avons donc un produit scalaire, et IR[X] est ainsi muni d’une structure d’espace
préhilbertien réel.

En faisant le changement de variable = cosf (ou, plus précisément, § = Arccosz), on a,
pour tous polynémes P et @,

0 T
(PIQ) = / Pleost) Q(eost) gy ap — /0 P(cos8) Q(cos §) df .

sin 6
Si p et ¢ sont deux entiers naturels, nous avons donc

(T,|T,) = /07T cos(ph) cos(qh) df = % </7r cos(p + ¢)0 df + /07r cos(p — q)0 d0> .

0
Or,

iy 1 s
- pour tout k € Z*, / cos kO df = {k sin k&] =0;
0 0

- pour k =0, / coskf df = .
0

11 en résulte que, si p # ¢, (T,|Ty) = 0 : la famille (7},)nen est orthogonale.
De plus,

* T
ITol = (@|To) == et Vke N ||T? = (TlTh) = 5 -

T 2
En posant Py = TO et P, = \[Tk pour k € IN*, la famille (P,),en est orthonormale.
T s

Remarque. De la relation de récurrence obtenue en a., on déduit facilement, par récurrence,
que deg(T,,) = n pour tout n. Il en résulte que, pour tout n € IN, la famille (P, ..., P,)
est une base orthonormale du sous-espace R,,[X]. La famille (P,,),cw est enfin une base de
IR[X] car elle est libre (i.e. toute sous-famille finie est libre car orthonormale) et génératrice
(tout polynéme, si ’on note d son degré, est combinaison linéaire de Py, Py, - -, Py).

10%*.

. Montrer qu’il existe un vecteur z non nul de E tel que (u(z)|z) = 0.

Soit E un espace euclidien, soit © un endomorphisme de F, de trace nulle.

. Montrer qu’il existe une base orthonormale de F dans laquelle la matrice de u a tous ses

coefficients diagonaux nuls. On pourra raisonner par récurrence sur la dimension de E.

. Soit (g1, -,€pn) une base orthonormale de E, on a alors tr(u) = Z (u(ei)le;) = 0.

i=1
Si tous les termes de cette somme sont nuls, alors x = &; convient, pour n’importe quel
i€ [1,n].

Sinon, comme la somme est nulle, il existe deux indices i et j distincts tels que (u(e;)|e;) > 0
et (u(gj)le;) < 0. L’application f : ¢ — (u((l —t)e; +ej )|(1—t)e —l—tsj) est continue sur

[0, 1], cela résulte notamment de la continuité des applications linéaires (I’endomorphisme



u) et bilinéaires (le produit scalaire) en dimension finie. Comme f(0) > 0 et f(1) < 0,
par le théoréme des valeurs intermédiaires, il existe to €]0, 1] tel que f(tp) = 0. Le vecteur
x = (1 —to)e; + tog; convient alors (il est non nul car ¢; et €; ne sont pas colinéaires).

b. Initialisation évidente: si n = dim(E) = 1, si tr(u) = 0, alors u est 'endomorphisme nul.
Soit n > 2, supposons la propriété vraie dans tout espace euclidien de dimension n — 1.

Soit u € L(E) avec E euclidien de dimension n. La question a. permet d’obtenir un vecteur
unitaire ey de E tel que (u(e1)|er) = 0. Soit D = Vect(e1) et H =D". SiC = (e2, -, €y)

est une base orthonormale de H, alors B = (ey,es,---,€,) est une base orthonormale
de E dans laquelle la matrice de u est de la forme M = Matg(u) = g fl avec

LeMipi1(R),CeMu_11(R) et A M,_1(IR) telle que tr(A) = tr(M) = tr(u) = 0.
Notons v 'endomorphisme de H tel que Mate(v) = A, on a alors tr(v) = tr(A4) = 0. Par
I'hypothese de récurrence, il existe alors une base orthonormale C' = (eb,---,e}) de H
telle que les coefficients diagonaux de la matrice A’ = Matc/ (v) soient tous nuls. La famille

B = (e1,€eh, -+, €) est alors une base orthonormale de F, et la matrice M’ de u dans cette
base a tous ses coefficients diagonaux nuls. En effet, soit P = P g € GL,(IR) la matrice de

passage de la base B a la base B’ dans E. Comme le premier vecteur e; est inchangé et que

Vect(ey, - -, el) = Vect(er, -, e,) = H, cette matrice est de la forme P = <01 01Q”>
n,1l

avec Q = Pe ¢ € GL,_1(IR). Un calcul par blocs montre que

P (1 Oy 0 L 1 01\ 0 LQ
M_leP_(Om1 Q1)<C’ A><On,1 Q>_<QIC’ A’>~

Les coefficients diagonaux de M’, qui sont 0 et les coefficients diagonaux de A’, sont donc
nuls.

Projecteurs orthogonaux

11. Pour tout (a,b) € R?, on pose I(a,b) = / (asinz+bcos x—2)?dz. Déterminer le minimum
0
de I(a,b) lorsque (a,b) décrit I]R?.

Soit E = C([0,7],R), muni du produit scalaire (f|g) = fg. Soient les fonctions
[0,7]
e:x—x ; s:x+rsinx ; ¢z coST.
Alors I(a,b) = |le — (as+bc)||? et, si 'on note P le plan vectoriel P = Vect(s, c), alors

= min I(a,b)=d(e, P)? = |e|> - 2
mi= min (a,b) = d(e, P)* = lel|* = lpp(e)l” ,

en notant pp le projecteur orthogonal sur le plan P. D’autre part, si (¢1,£2) est une base
orthonormale du plan P, on a

pp(e) = (eile) 1+ (e2le) e et pp(e)]* = (c1le)” + (e2le)” .



La famille (s, c) est orthogonale puisque (s|c) = / sinz cosx dz = 0, il suffit donc de
0

normer ces “vecteurs” pour avoir une base orthonormale du plan P. Or, ||s]|* = ||c[|* =
™ T
. s /2 2 .
sin?z dz = cos?z dx = 5 on posera donc €1 = {/— s et eg = {/— ¢. On acheve
™ ™

0
I'exerfife par quelques calculs d’intégrales :

2 iy 2 e 2 ™ 3
(e1]e) = \/>/ rsinazdr = V21 5 (esle) = \/>/ rcoszdr = =24/ = ;|| = / 22 =1,
™ Jo T™Jo ™ 0 3

enfin,
w3 8
m= ol = eie) ~ (e = T —2m 2.

12. L’espace vectoriel E = M,,(IR) est muni du produit scalaire (A|B) = tr(A' B). Soit J la
matrice de M, (IR) dont tous les coefficients sont égaux a 1, soit H I'hyperplan constitué
des matrices de trace nulle. Déterminer la distance d(J, H).

L’hyperplan H est constitué des matrices M telles que tr(I,) M) = 0, autrement dit telles
que (I,|M) = 0. L’orthogonal de ’hyperplan H est donc la droite vectorielle D = Vect(I,)
constituée des “matrices scalaires”. Autrement dit, un “vecteur” unitaire normal & cet

I 1
hyperplan H est la matrice N = —— = —— I,,. On en déduit, d’apres le cours, que
Inll v

4. 3) = [pp()] = [(N17) N = (V)] = 2= ) = Vi

13. Soit p un projecteur dans un espace euclidien £. Montrer que p est un projecteur orthogonal
si et seulement si Vo € £ ||p(x)] < ||z

Posons FF = Imp et G = Kerp. On a alors F = F & G, et p est le projecteur sur F
parallélement & G. Dire que p est un projecteur orthogonal signifie que G = F*.

e Si p est un projecteur orthogonal, on a ||p(z)|| < ||z| pour tout = de E, c’est du cours,
cest I'inégalité de Bessel. Sa preuve est simple: on écrit z = p(z) + (z — p(x)), avec
p(z) € F et z —p(z) € G = F*, ces deux vecteurs sont donc orthogonaux et la relation de
Pythagore donne ||z = [[p(2)|* + [l = p(2)|* > [[p(=)]*.

e Si p vérifie la relation ||p(z)|| < ||| pour tout z, choisissons z appartenant & G*. Comme
p(x) —x € G = Ker p, ces deux vecteurs sont orthogonaux et de nouveau Pythagore nous
donne

lp@)|? = [|& + (p(z) = ) ||” = l|l| + lIp(z) — 2> -

L’hypothese [|p(z)|| < |lz|| entraine alors que ||p(z) — z||* < 0, ce qui n’est possible que si
p(z) —z = 0, cest-d-dire si € F. On a ainsi prouvé I'inclusion G+ C F. Comme G* et F



sont tous deux des supplémentaires de G, on a d’autre part égalité des dimensions, donc
Gt = F, puis (GH)* = F1, soit G = F+, ce qu'il fallait démontrer.

14. L’espace vectoriel IR? est muni de sa structure euclidienne canonique. Ecrire la matrice A
(relativement & la base canonique) du projecteur orthogonal sur le sous-espace vectoriel F
défini par les équations

{:c + y+ 2z +t =0

Le sous-espace F' est un plan, que I’on peut définir plus simplement par le systeme équivalent
1 0
z+z =0 — = — 0 — 1 :
. Une base de ce planest (u, v ), avec © = et v = . Mais nous
0 -1
avons besoin d’une base orthonormale de F' pour pouvoir exprimer le projeté orthogonal
x

— — PR . .
d’un vecteur X = de IR®. Les vecteurs « et v sont déja orthogonaux, il sufiit donc

~+ N <

_)
U —
— et e

b
Vo

— =
(e1,e3) du plan F. Nous avons alors

prX) = @X)a+(@X) e

— .
de les normer : en posant e; = nous disposons d’'une base orthonormale

1 0
Tr—z 1 0 y—t 1 1
= _ X — _|_ X —
v2 o v2 | -l vz  v2 | 0
0 -1
T —z
z—
t—y
1 0 -1 0
. . 1 0 1 0 -1
La matrice du projecteur pr est alors A = 51 -1 o 1 0
0 -1 o0 1
15. L’espace E = M, (IR) est muni du produit scalaire canonique défini par la relation
(A|B) = tr(A" B) = Zai’jbi’j. Soit M = (m; ;) € E. Calculer la distance de la ma-

0,J
trice M au sous-espace vectoriel S, (IR) des matrices symétriques.



L’orthogonal dans M,,(IR) du sous-espace S, (IR) est le sous-espace A, (IR) des matrices
antisymétriques : en effet, il est classique que ces deux sous-espaces sont supplémentaires
dans M,,(IR), ils sont de plus orthogonaux puisque, si S € S,,(R) et A € A,,(IR), alors
(A]S) =tr(AT S) =tr(—AS) = —tr(AS) ,
mais aussi
(A]S) = (S|A) = tr(ST A) = tr(SA) = tr(AS) = —(4]9) ,

finalement (A|S) = 0. La distance de la matrice M au sous-espace S, (IR) est la distance
de M & son projeté orthogonal sur S, (IR), c’est-a-dire la distance & son projeté sur S, (IR)
suivant la direction de A, (IR). Autrement dit, si M se décompose en M = S + A avec
S e Su(R) et A€ A, (R), alors d(M,S,,(IR)) = [|A]|. Or, il est classique (sinon, procéder

1 1
par analyse-synthese) que S = §(M + MT) et A= §(M — MT)7 donc

d(M,S,(R)) = ! |IM—MT| = ! > (mij —my)? = ! > (mig —mji)?
2 2 2

i<j

16. Soit F un espace euclidien de dimension n, soit B = (e, - -, €,) une base orthonormale de F,
soit p € L(E) un projecteur orthogonal de rang r.

a. Montrer que Vz € E [|p(2)|]*> = (p(z)|z).

b. Calculer la somme S = Z Ip(ed)]?.
i=1

a. Il suffit de décomposer = en z = p(x) + q(z), avec q(z) = v — p(z) € Kerp = (Imp)L7 alors

(p(@)]z) = (p()lp(2) +q(x)) = (p()p(2)) + (p(2)]a(2)) = [Ip(=)]*

puisque les vecteurs p(z) et ¢(z) sont orthogonaux.
n
b. Alors Z llp(es) |2 Z eilp( eZ = tr(p) = rg(p) = r puisque la trace d’un projecteur

i=1 i=1
est égale a son rang.

17. Soient p et g deux projecteurs orthogonaux dans un espace euclidien E. Prouver 1’équivalence

Im(p) CIm(q) < Ve e E ||p(x)| < |q(@)| -

e Supposons Im(p) C Im(g). Soient r et s les dimensions de Im(p) et Im(g), alors
0 <r <s<n=dim(E). Soit (e1,---,e,) une base orthonormale de Im(p), c’est alors



une famille orthonormale dans Im(g), on peut donc la compléter en une base orthonor-

male (e1, -, €r,€r41, " ,€5) de Im(g). Si x est un vecteur quelconque de F, on a alors
I S
p(z) = Z(eﬂx)ei et q(x) = Z(ei\m)ei, puis

lp@)[* =D (eile)? < Y (eka)? = [la@)].
i=1 i=1

done )] < la@].

e Supposons Vz € E |]p(z)|| < [jq(z)|. Si Vinclusion Im(p) C Im(q) était fausse, il

existerait un vecteur x appartenant & Im(p) mais pas & Im(q). On aurait alors p(z) = z

mais ||g(z)| < [lz|| (le cas d’égalité dans l'inégalité de Bessel n'étant pas vérifié), donc

|g(2)|| < ||p(x)]|, ce qui est une contradiction. Ainsi, Im(p) C Im(q).

Isométries. Matrices orthogonales.

18. Soit A = (a;;) € M, (IR) une matrice que l'on suppose & la fois orthogonale et triangulaire
supérieure. Montrer que A est diagonale et que ses coefficients diagonaux valent 1 ou —1.

Rappel : une matrice A = (a; ;) € M, (IR) est orthogonale si et seulement si A’ A = I,,,
c’est-a~dire :

- sur chaque colonne, la somme des carrés des coefficients vaut 1 ;

- la somme des produits deux a deux des coefficients de deux colonnes distinctes est nulle.
D’autre part, A étant triangulaire supérieure, on a a;; = 0 dés que ¢ > j. Ainsi, sur la
premiere colonne, on a ail =1, dolt ay,1 € {—1;1}. En faisant le produit scalaire des deux
premieres colonnes, on a ai1a1,2 = 0, donc a;,2 = 0 puisque le coefficient diagonal a1; est
non nul. Il reste alors, sur la deuxiéme colonne, agg = 1 donc az2 € {—1;1}. On montre
ainsi, par récurrence finie sur j € [1,n], que la j-ieme colonne C; de la matrice A vaut
+E;, ou E; désigne le j-ieme vecteur de la base canonique de IR". Les détails sont laissés
a I'improbable lecteur.

19.a. Soit E un espace euclidien. Soit B une base de F, soit £ son orthonormalisée. Montrer que
la matrice de passage de £ vers B est triangulaire supérieure avec des coefficients diagonaux
strictement positifs.

b. En déduire que, si A est une matrice de GL, (IR), alors il existe une matrice orthogonale Q
et une matrice triangulaire supérieure R a coeflicients diagonaux strictement positifs telles
que A = QR. En utilisant éventuellement I’exercice 18. ci-dessus, montrer I'unicité de cette
“décomposition QR”.

a. Notons B = (z1,--+,%,) et €= (e1,--,ep). Soit P = (a; ;) = Pe p la matrice de passage
considérée. Pour tout couple (4, j), le coefficient a; ; est la i-éme coordonnée dans la base £



du vecteur z;, donc a; ; = (e;]x;) (coordonnées d’un vecteur dans une base orthonormale).
D’apres le procédé d’orthonormalisation de Gram-Schmidt, on a, pour tout j € [1,n], les
deux conditions

(1) : Vect(e,---,e;) = Vect(xq,---,xj) ;

(2) : (ejlz;) € RY.

La condition (2) exprime exactement que les coefficients diagonaux a;; sont strictement
positifs. La condition (1) entraine que, pour tout j, le vecteur x; appartient au sous-espace

engendré par les e;, avec ¢ < j, autrement dit les coefficients a; ; avec ¢ > j sont nuls, et la
matrice P est triangulaire supérieure.

b. Notons By la base canonique de IR™ (muni de sa structure euclidienne canonique). La
matrice A étant supposée inversible, on peut la voir comme matrice de passage de By vers
une certaine base B de IR" (qui est en fait la famille des vecteurs-colonnes de A). Notons
enfin £ I'orthonormalisée de B. On a alors la relation “de Chasles”

PBO’B:PB(J,E'PE,B s soit 14:(2R7

ol ) = Pg, ¢ est orthogonale puisque c’est la matrice de passage d’une base orthonormale
vers une base orthonormale, et R = Pg  est triangulaire supérieure avec des coeflicients
diagonaux strictement positifs d’apres la question a.

Remarque. On peut en fait montrer l'unicité d’une telle écriture : en effet, supposons
A = Q1R; = Q2Rs, avec Q1 et Q2 orthogonales, R; et Ry triangulaires supérieures a
coefficients diagonaux strictement positifs. On a alors Q5 1o, = Rngl. Or, la structure de
groupe de O, (IR) fait que Q5 '@ est orthogonale. On peut montrer que 'ensemble 7, (IR)
des matrices triangulaires supérieures a coefficients diagonaux strictement positifs est aussi
un sous-groupe de GL,, (R) (i.e. stable par produit et par passage a linverse ), donc RyRy* €
T, (IR). L’exercice 18. ci-dessus permet alors de déduire que Rngl = Q;lQl = I,
et donc Ry = Ry et Q1 = Qs.

20. Soit A = (a; ;) € O(n). Montrer que Z lai ;| < nyn et ‘Zam—’ < n. On pourra utiliser
2 2%

le vecteur U = (1,1,---,1) de R".

21. Soit u € O(E), ou E est un espace euclidien.
a. Montrer que (Ker(u — iclE))L = Im(u —idg).

k—1
b. Pour tout &k € IN*, on considére ’endomorphisme 7, = Z u?. Soit = un vecteur de F.
§=0

T =

Déterminer lim rg(z).
k— 400

Dans tout 'exercice, on posera F = Ker(u —idg) et G =Im(u —idg).

a. Soient x € F et y € G ; alors u(x) = z et il existe z € E tel que y = u(z) — z. Alors

(zly) = (zlu(z) — 2) = (z|u(2)) — (2[2) = (w(@)|u(2)) — (z]2) =0



puisque u est un automorphisme orthogonal, donc conserve le produit scalaire. On a donc
montré que les sous-espaces F' et G sont orthogonaux, ce qui signifie par exemple que
G C F*. Mais on sait que F* est un supplémentaire de F, donc dim(F*) = dim £ —dim F,
et on a aussi dimG = dim E — dim F par le théoréeme du rang. Finalement, G = F*, ce
qu’il fallait démontrer.

. Soit = € E, on le décompose en z = y + z avec y € F et z € G = F*. Alors u(y) = v,
donc par récurrence immédiate, u’(y) = y pour tout j, puis r4(y) = y pour tout entier k.
D’autre part, il existe 2/ € F tel que z = u(z’) — 2/, alors v/ (2) = w/ T (2') — u?(2') et

_lkz_:l i(2) lz_: (o) — il ( /))_1< k(o) — /)
—kaou k U u’(z _k u (z 4

Jj=

(somme télescopique). Comme u € O(E) conserve la norme, on a

1 1 2
Ire@ll =7 lu" ) = || < = (I EOI+11) = 2 11— 0,

k— 400
donc lim 7g(z) = 0pg. Finalement, lim 7;(xz) =y = pr(x). Dans espace vectoriel E, la
k—4oc0 k—4o0c0

suite (r(z)) converge vers le vecteur pr(x), projeté orthogonal de z sur F = Ker(u —idg).



