EXERCICES de PROBABILITES PSI2 2025-2026

Notion de probabilité. Espaces probabilisés.

1. Un animal erre entre trois points d’eau A, B, C. A linstant t = 0, il est au point A. Si, a
I'instant n, il est en 'un des trois points A, B ou C, il en part alors et sera a l'instant n+1 de
fagon équiprobable en I'un des deux autres points d’eau. Pour n entier naturel, on note a,,
la probabilité pour que ’animal soit au point A a I'instant n. On définit de méme b, et c,,.

a. Exprimer a,41, bpt1 €t ¢,41 en fonction de a,, b, et c,.

0 1/2 1/2

b. Soit la matrice A = | 1/2 0 1/2 |. Montrer qu’elle est diagonalisable et, en moins
1/2 1/2 0

d’une minute, trouver une matrice diagonale D et une matrice inversible P telles que

A= PDP L.

c. Exprimer a,, b,, ¢, en fonction de n.

2. On effectue une suite de lancers indépendants d’une piece de monnaie. La probabilité d’obtenir
“Face” & chaque lancer est p €0, 1].
Pour tout n > 1, on considere I’événement U,: “on obtient deux Face de suite, pour la
premiere fois, aux lancers numéros n et n + 1”7, et on pose u,, = P(U,).

Notons r,, la probabilité qu’au cours des n premiers lancers, on ait obtenu au moins une

fois deux Face consécutifs. Exprimer r,, en fonction des ug. On considere aussi I’événement

E,: “il existe k € [1,n] tel que on ait obtenu Face aux lancers numéros 2k — 1 et 2k”.
—+o0

Montrer que P(E,) = 1— (1 —p*)". Montrer que P(E,,) < 73,. En déduire que Z u, = 1.

Interpréter. n=1

3*. Probléme de la ruine du joueur. Deux joueurs A et B s’affrontent en des parties
indépendantes. Le joueur A dispose d’une fortune égale a n brouzoufs tandis que le joueur B
dispose de N—n brouzoufs. A chaque tour, le joueur A ala probabilité p €]0, 1] de "emporter
et le joueur B a la probabilité complémentaire ¢ = 1 — p. Le joueur perdant cede alors un
brouzouf au vainqueur. Le jeu continue jusqu’a la ruine d’un des deux joueurs. On note a,,
la probabilité que le joueur A ’emporte lorsque sa fortune initiale vaut n.

a. Que valent ag et ay ? Etablir la formule de récurrence

Yn € [1,N —1] p =Pani1+qan_1 -
b. En déduire que la suite (uy,)1<n<n définie par u, = a, — a,—1 est géométrique.
c. Calculer a,, en distinguant les cas p = q et p # q.
d. Montrer que le jeu s’arréte presque siirement.
+oco  +oo
4. Soit (A,) une suite d’événements sur un espace probabilisé (€2, A, P). On pose S = ﬂ ( U Ak).

n=0 k=n
a. Montrer que S est un événement, i.e. S € A, et qu'il est réalisé si et seulement si une infinité

des événements A,, sont réalisés.

b. Dans cette question et la suivante, on considere une suite infinie de lancers indépendants
d’une piece, la probabilité d’obtenir “Pile” & chaque lancer étant p €]0, 1[. Pour tout n € IN,
on considere ’événement A,, : “au cours des 2n premiers lancers, on obtient autant de Pile
que de Face”. Calculer P(A,,) pour tout n.

. 2n " s . 1
c. Montrer que, pour tout n entier naturel, on a < n ) < 4", En déduire que, si p # 3 la

série Z P(A,) converge. Montrer alors que P(S) = 0.

n>0



5*. Soit (A4,) une suite d’événements mutuellement indépendants. Montrer que la probabilité
+oo
qu’aucun des événements A,, ne soit réalisé est majorée par M = exp ( — Z P(An)).
n=0

xT

On pourra utiliser l'inégalité Yx €¢ IR 1 —xz <e™*.

Variables aléatoires discrétes.

6. Deux variables aléatoires indépendantes X et Y suivent des lois géométriques G(p) et G(q)
respectivement. Calculer P(X <Y).

1
7. Calculer E(m) si X suit la loi de Poisson de parametre A > 0.

8. Deux variables aléatoires indépendantes X et Y suivent des lois géométriques G(p) et G(q)

X1 ) soit diagonalisable ?

respectivement. Quelle est la probabilité que la matrice A = ( 0y

9. Soit N € IN*. Soit p €]0,1[. On pose ¢ = 1 —p. On considere N variables aléatoires X1, - -+, X
définies sur un méme espace probabilisé (2, A, P), mutuellement indépendantes et de méme
loi géométrique de parameétre p.
a. Soit i € [1, N], soit n € IN*. Déterminer P(X; < n), puis P(X; > n).

b. On considere la variable aléatoire Y définie par Y = min X;, c’est-a-dire
1<i<N

Yw € Q Y (w) = min { X1 (w), -+, Xn(w)} .

Soit n € IN*, calculer P(Y > n). En déduire P(Y < n), puis P(Y =n).
c. Reconnaitre la loi de Y. En déduire E(Y).

10. Lors d’une rencontre d’athlétisme, la barre est montée d’un cran apres chaque saut réussi par
le concurrent. La compétition s’arréte pour le sauteur au premier saut raté. Pour le saut
numéro n, l'athlete a une chance sur n de passer la barre. On note X le rang du dernier
saut réussi.

Quelle est la loi de X? Montrer que X2 est d’espérance finie, calculer Iespérance et la
variance de X.

11. On considére un détecteur de particules ayant une probabilité de détection de chaque par-
ticule égale & p €]0, 1[. On note N et S les variables aléatoires qui comptent respectivement
le nombre de particules arrivant sur le capteur et le nombre de particules détectées. On
suppose que NN suit une loi de Poisson de parametre A.

a. Soient s et n entiers naturels. Calculer P(S = s|N = n), puis P(S = s, N = n). En déduire
la loi de S.

b. Sans calcul, donner la loi de N — S.

. Les variables S et N — S sont-elles indépendantes ?

a o

. Les variables N et S sont-elles indépendantes ?



12. Une urne contient trois boules numérotées 1, 2, 3. On tire avec remise une boule dans cette
urne, on note X le nombre de tirages nécessaires pour voir apparaitre les trois numéros. On
note A le rang d’apparition du premier 1, B celui du premier 2, C' celui du premier 3.

a. Exprimer I'événement {X > n} en fonction de A, B et C. Calculer P(X > n) pour n € IN*.
+oo

b. Calculer P(X = n), puis Z P(X = n). Interpréter.
n=1

c. Calculer E(X).

13. X et Y sont deux variables aléatoires indépendantes et a valeurs dans IN. Elles suivent la
méme loi définie par:
VkeIN  P(X=k)=PY =k)=pq",
oup €]0,1[ et ¢ = 1—p. On considere alors les variables U et V' définies par U = max(X,Y)
et V=min(X,Y).
. Déterminer la loi du couple S = (U, V).
. Déterminer les lois marginales de U et de V.

. Vérifier que W =V + 1 suit une loi géométrique. En déduire 1'espérance de V.

Qa o oo

. Les variables U et V sont-elles indépendantes ?

14. Soient X et Y deux variables aléatoires a valeurs dans IN. On suppose que X suit une loi de
Poisson de parametre A > 0 et que, pour tout n, la loi conditionnelle de Y sachant {X = n}
est binomiale de parametres n et p, avec p €]0, 1[.

a. Déterminer la loi conjointe du couple (X,Y).

b. Reconnaitre la loi de Y.
15.a. Rappeler I'inégalité de Bienaymé-Tchebychev.
b. Soit (Y,,) une suite de variables aléatoires mutuellement indépendantes, de méme loi et

n
admettant un moment d’ordre 2. On pose S, = Z Y. Prouver que :
k=1

Va € RY. P(‘S" —E(Yl)‘ > a> < V(Yé) .
n na
c. Application : On effectue des tirages successifs, avec remise, d'une boule dans une urne
contenant 2 boules rouges et 3 boules noires. A partir de quel nombre de tirages peut-on
garantir & plus de 95% que la proportion de boules rouges obtenues restera comprise entre
0,35 et 0,45 ? Indication : considérer la suite (Y;) de variables aléatoires de Bernoulli ot Y;
mesure l’issue du i-éme tirage.



16. On effectue une suite de lancers d’une piece de monnaie. On suppose que les résultats des
lancers sont indépendants et que, a chaque lancer, la piece donne pile avec la probabilité
p €]0, 1] et face avec la probabilité 1 — p. On note X la variable aléatoire égale au nombre
de lancers nécessaires pour obtenir deux ”pile” consécutifs. Par exemple, pour la suite de
lancers PFFPFPPFFF..., on a X = 7. Pour tout n entier naturel non nul, on nomme P,
I’événement: “le n-ieme lancer donne pile” et F,, = P, ’événement: “le n-ieme lancer donne
face”

a. Pour tout n entier naturel, on note A,, 'événement: "on obtient pile aux lancers 2n + 1 et
n—1 400 “+o00
2n 4 27. Calculer P(A,,) et P( ﬂ A7k) En déduire P( ﬂ Tn)7 puis P( U An).
k=0 n=0 n=0

b. Pour tout n, on note F,, I’événement: “on n’a pas obtenu deux pile consécutifs lors des n
premiers lancers”. Montrer que, pour n > 3, on a

P(X =n)=p*(1 —p) P(Ep-3) .

+oo
c. En utilisant la relation E(X) = Z P(X > n), calculer le temps d’attente moyen de deux
“pile” consécutifs. n=1

17. Soient X et Y deux variables aléatoires indépendantes et de méme loi, & valeurs dans IN,
soit Z =X +Y. On suppose que Z ~ P(A) avec X > 0.

a. Espérance et variance de X ? b. Fonction génératrice de X 7 c. Loide X 7
d. Soit n € IN. Quelle est la loi conditionnelle de X sachant {Z =n} ?

18. Soit T une variable aléatoire & valeurs dans IN. On suppose que Vn € IN P(T > n) > 0.
On appelle taux de panne associé & T la suite (6,,),en définie par

0,=P(T=n|T>n).

Typiquement, si T est la variable aléatoire indiquant I'instant ou un matériel tombe en
panne, la quantité 6,, indique la probabilité qu’il tombe en panne a I'instant n sachant qu’il
était encore fonctionnel jusque la.

a. Montrer que 6,, € [0, 1] pour tout n.
b. Exprimer P(T > n) a l’aide des 6. En déduire que la série Z 0 diverge.

c*. Inversement, soit (6,,) une suite d’éléments de [0, 1] telle que la série Z 6,, diverge. Montrer

que la suite (0,,)new est un taux de panne associé & une certaine variable aléatoire T

19. Soient Xy, ---, X,, des variables aléatoires réelles discretes de variance finie. On appelle
matrice des covariances de la famille (X7, -, X,,) la matrice carrée d’ordre n:
S = (COV(Xi7Xj))1Si7jSTl .
a. Soient aq, ---, a, des réels. Exprimer la variance de X = a1 X1 + -+ + a, X, a l'aide de la
matrice S.

b. Montrer que Sp(S) C R...



“+o0
20*. Pour tout réel x tel que x > 1, on pose ((x) = Z —. On consideére une variable aléatoire
n

n=1
X sur un espace probabilisé (€2, A, P), qui suit la loi zéta de parameétre x, c’est-a-dire
telle que )
X(Q) =IN* et YneIN* P(X=n)=
() (X=n)= iy

a. Vérifier la cohérence de cette définition.
b. Soit @ € IN*. Calculer la probabilité de 1'événement {a | X }.

c. Pour tout n € IN*, on note p,, le n-iéme nombre premier, ainsi p; =2, ps =3, p3 =5, - -
Montrer que, pour tout n € IN*, les événements {p; | X}, 1 < k < n, sont mutuellement

indépendants. too
d. Montrer que {X =1} = ﬂ {pr | X}.
k=1
. . : 1 T 1
e. En déduire la (jolie) relation —— = lim I——.
((x)  nooo Py

k=1

21%*. Inégalité de Paley-Zygmund.

Soit X une variable aléatoire & valeurs dans IN, on suppose que X2 est d’espérance finie.
Prouver la relation

E(X)?
vt €]o,1 P(X >tE(X)) > (1—1)? :
€l P(XZtEX) > (-0 g
Si on considére [’événement A = {X > tE(X)}, on pourra commencer par écrire

X =X 14+ X 13, odlly est la variable indicatrice de I’événement A.

Fonctions génératrices.

22. On considére deux dés que l'on lance indépendamment. Montrer qu’il est impossible de
truquer les dés de fagon que la somme des résultats affichés sur leur face supérieure suive
une loi uniforme sur [2,12]. On pourra utiliser la fonction génératrice de la loi de la somme
des résultats affichés.

23. La loi binomiale négative. On procede a une suite de répétitions indépendantes d’une
expérience a deux issues: “succes” avec probabilité p, “échec” avec probablité ¢ =1 — p.

a. Soit X, la variable aléatoire égale au nombre de répétitions nécessaires pour obtenir deux
succes. Donner la loi de X5, et calculer son espérance.

+oo
1
b. Montrer, pour k € IN et = €] — 1, 1], la relation nz_;c (n) vk = m

c. Généralisation du a.: Soit k un entier naturel non nul, on note Xy, la variable aléatoire égale
au temps d’attente du k-ieme succes. Donner la loi de X}, et calculer son espérance.
d. Déterminer la fonction génératrice Gx, de la variable X}, et son intervalle de convergence.

e. Retrouver ainsi 'espérance E(X}). Calculer la variance V(X).



24. On note X une variable aléatoire & valeurs dans IN. On se donne une suite (X;);>1 de
variables aléatoires indépendantes sur un espace probabilisé (£2,.4, P), de méme loi que X.
Soit d’autre part N une variable aléatoire a valeurs dans IN, que ’on suppose indépendante
des X;. Pour tout w € €2, on pose

On conviendra que T'(w) =1 si N(w) = 0.

On suppose que X est d’espérance finie notée m. En utilisant la fonction génératrice Gy
de la variable N, donner une condition nécessaire et suffisante pour que T soit d’espérance
finie, et exprimer dans ce cas E(T). Etudier le cas particulier o N et X sont des variables
de Poisson.

25. Soit X une variable aléatoire a valeurs dans IN. On définit sa fonction caractéristique ¢ x
par ®x(t) = E(e™X) pour tout ¢ réel.

a. Montrer que ®x est définie et continue sur IR.
™

1 .
b. Pour k € IN, calculer l'intégrale I, = o dx(t) et dt. Que dire de deux variables
™ —Tr
aléatoires X et Y, & valeurs dans IN, telles que &x = @y 7
c. On suppose que X est d’espérance finie. Montrer que la fonction ® x est de classe C' sur IR

et déterminer ®'y (0).

26. Une urne contient trois boules blanches, numérotées 1, 2, 3, ainsi que k boules noires
(k € IN"). On effectue dans I'urne des tirages avec remise.

a. Soit X7 la variable aléatoire donnant le numéro de la premiére boule blanche tirée. Quelle
est la loi de X7 ? Déterminer sa fonction génératrice.

b. Soit n € IN*. On effectue des tirages avec remise dans I'urne jusqu’a obtention de n boules
blanches dont on note les numéros. On note .S,, la variable aléatoire donnant la somme des
numéros des boules blanches obtenues. Quelle est la fonction génératrice de .S,, ? Donner
son espérance et sa variance.

c. Soit 7 un entier naturel non nul. On effectue r tirages avec remise dans I'urne, on note NV
le nombre de boules blanches obtenues. On définit alors une variable aléatoire S par
{ S5=0 si N=0

S=S, si Ne=n(nelN) Calculer la fonction génératrice de S.

Exercices avec Python.

27. Une piéce a la probabilité p €]0, 1] de tomber sur pile. On la lance jusqu’a avoir obtenu deux
fois pile, et on note X le nombre de fois ou elle est tombée sur “face”.

a. Loi de X. Montrer que X est d’espérance finie et calculer E(X).

Lorsque X = n, on place n+ 1 boules numérotées de 0 & n dans une urne, et on en tire une
au hasard. On note Y le numéro de la boule tirée.

b. Utiliser Python pour simuler cette expérience aléatoire.
c. Loi de Y. Calculer E(Y).



