
EXERCICES de PROBABILITÉS PSI2 2025-2026

Notion de probabilité. Espaces probabilisés.

1. Un animal erre entre trois points d’eau A, B, C. À l’instant t = 0, il est au point A. Si, à
l’instant n, il est en l’un des trois points A, B ou C, il en part alors et sera à l’instant n+1 de
façon équiprobable en l’un des deux autres points d’eau. Pour n entier naturel, on note an
la probabilité pour que l’animal soit au point A à l’instant n. On définit de même bn et cn.

a. Exprimer an+1, bn+1 et cn+1 en fonction de an, bn et cn.

b. Soit la matrice A =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

. Montrer qu’elle est diagonalisable et, en moins

d’une minute, trouver une matrice diagonale D et une matrice inversible P telles que
A = PDP−1.

c. Exprimer an, bn, cn en fonction de n.

2. On effectue une suite de lancers indépendants d’une pièce de monnaie. La probabilité d’obtenir
“Face” à chaque lancer est p ∈]0, 1[.
Pour tout n ≥ 1, on considère l’événement Un: “on obtient deux Face de suite, pour la
première fois, aux lancers numéros n et n+ 1”, et on pose un = P (Un).

Notons rn la probabilité qu’au cours des n premiers lancers, on ait obtenu au moins une
fois deux Face consécutifs. Exprimer rn en fonction des uk. On considère aussi l’événement

En: “il existe k ∈ [[1, n]] tel que l’on ait obtenu Face aux lancers numéros 2k − 1 et 2k”.

Montrer que P (En) = 1− (1−p2)n. Montrer que P (En) ≤ r2n. En déduire que

+∞∑
n=1

un = 1.

Interpréter.

3*. Problème de la ruine du joueur. Deux joueurs A et B s’affrontent en des parties
indépendantes. Le joueur A dispose d’une fortune égale à n brouzoufs tandis que le joueur B
dispose de N−n brouzoufs. À chaque tour, le joueur A a la probabilité p ∈]0, 1[ de l’emporter
et le joueur B a la probabilité complémentaire q = 1− p. Le joueur perdant cède alors un
brouzouf au vainqueur. Le jeu continue jusqu’à la ruine d’un des deux joueurs. On note an
la probabilité que le joueur A l’emporte lorsque sa fortune initiale vaut n.

a. Que valent a0 et aN ? Établir la formule de récurrence

∀n ∈ [[1, N − 1]] an = p an+1 + q an−1 .

b. En déduire que la suite (un)1≤n≤N définie par un = an − an−1 est géométrique.

c. Calculer an en distinguant les cas p = q et p 6= q.

d. Montrer que le jeu s’arrête presque sûrement.

4. Soit (An) une suite d’événements sur un espace probabilisé (Ω,A, P ). On pose S =

+∞⋂
n=0

( +∞⋃
k=n

Ak

)
.

a. Montrer que S est un événement, i.e. S ∈ A, et qu’il est réalisé si et seulement si une infinité
des événements An sont réalisés.

b. Dans cette question et la suivante, on considère une suite infinie de lancers indépendants
d’une pièce, la probabilité d’obtenir “Pile” à chaque lancer étant p ∈]0, 1[. Pour tout n ∈ IN,
on considère l’événement An : “au cours des 2n premiers lancers, on obtient autant de Pile
que de Face”. Calculer P (An) pour tout n.

c. Montrer que, pour tout n entier naturel, on a

(
2n
n

)
≤ 4n. En déduire que, si p 6= 1

2
, la

série
∑
n≥0

P (An) converge. Montrer alors que P (S) = 0.



5*. Soit (An) une suite d’événements mutuellement indépendants. Montrer que la probabilité

qu’aucun des événements An ne soit réalisé est majorée par M = exp
(
−

+∞∑
n=0

P (An)
)

.

On pourra utiliser l’inégalité ∀x ∈ IR 1− x ≤ e−x.

Variables aléatoires discrètes.

6. Deux variables aléatoires indépendantes X et Y suivent des lois géométriques G(p) et G(q)
respectivement. Calculer P (X < Y ).

7. Calculer E
( 1

X + 1

)
si X suit la loi de Poisson de paramètre λ > 0.

8. Deux variables aléatoires indépendantes X et Y suivent des lois géométriques G(p) et G(q)

respectivement. Quelle est la probabilité que la matrice A =

(
X 1
0 Y

)
soit diagonalisable ?

9. Soit N ∈ IN∗. Soit p ∈]0, 1[. On pose q = 1−p. On considère N variables aléatoires X1, · · ·, XN

définies sur un même espace probabilisé (Ω,A, P ), mutuellement indépendantes et de même
loi géométrique de paramètre p.

a. Soit i ∈ [[1, N ]], soit n ∈ IN∗. Déterminer P (Xi ≤ n), puis P (Xi > n).

b. On considère la variable aléatoire Y définie par Y = min
1≤i≤N

Xi, c’est-à-dire

∀ω ∈ Ω Y (ω) = min
{
X1(ω), · · · , XN (ω)

}
.

Soit n ∈ IN∗, calculer P (Y > n). En déduire P (Y ≤ n), puis P (Y = n).

c. Reconnâıtre la loi de Y . En déduire E(Y ).

10. Lors d’une rencontre d’athlétisme, la barre est montée d’un cran après chaque saut réussi par
le concurrent. La compétition s’arrête pour le sauteur au premier saut raté. Pour le saut
numéro n, l’athlète a une chance sur n de passer la barre. On note X le rang du dernier
saut réussi.

Quelle est la loi de X? Montrer que X2 est d’espérance finie, calculer l’espérance et la
variance de X.

11. On considère un détecteur de particules ayant une probabilité de détection de chaque par-
ticule ègale à p ∈]0, 1[. On note N et S les variables aléatoires qui comptent respectivement
le nombre de particules arrivant sur le capteur et le nombre de particules détectées. On
suppose que N suit une loi de Poisson de paramètre λ.

a. Soient s et n entiers naturels. Calculer P (S = s|N = n), puis P (S = s,N = n). En déduire
la loi de S.

b. Sans calcul, donner la loi de N − S.

c. Les variables S et N − S sont-elles indépendantes ?

d. Les variables N et S sont-elles indépendantes ?



12. Une urne contient trois boules numérotées 1, 2, 3. On tire avec remise une boule dans cette
urne, on note X le nombre de tirages nécessaires pour voir apparâıtre les trois numéros. On
note A le rang d’apparition du premier 1, B celui du premier 2, C celui du premier 3.

a. Exprimer l’événement {X > n} en fonction de A, B et C. Calculer P (X > n) pour n ∈ IN∗.

b. Calculer P (X = n), puis

+∞∑
n=1

P (X = n). Interpréter.

c. Calculer E(X).

13. X et Y sont deux variables aléatoires indépendantes et à valeurs dans IN. Elles suivent la
même loi définie par:

∀k ∈ IN P (X = k) = P (Y = k) = pqk ,

où p ∈]0, 1[ et q = 1−p. On considère alors les variables U et V définies par U = max(X,Y )
et V = min(X,Y ).

a. Déterminer la loi du couple S = (U, V ).

b. Déterminer les lois marginales de U et de V .

c. Vérifier que W = V + 1 suit une loi géométrique. En déduire l’espérance de V .

d. Les variables U et V sont-elles indépendantes ?

14. Soient X et Y deux variables aléatoires à valeurs dans IN. On suppose que X suit une loi de
Poisson de paramètre λ > 0 et que, pour tout n, la loi conditionnelle de Y sachant {X = n}
est binomiale de paramètres n et p, avec p ∈]0, 1[.

a. Déterminer la loi conjointe du couple (X,Y ).

b. Reconnâıtre la loi de Y .

15.a. Rappeler l’inégalité de Bienaymé-Tchebychev.

b. Soit (Yn) une suite de variables aléatoires mutuellement indépendantes, de même loi et

admettant un moment d’ordre 2. On pose Sn =

n∑
k=1

Yk. Prouver que :

∀a ∈ IR∗+ P

(∣∣∣Sn
n
− E(Y1)

∣∣∣ ≥ a) ≤ V(Y1)

n a2
.

c. Application : On effectue des tirages successifs, avec remise, d’une boule dans une urne
contenant 2 boules rouges et 3 boules noires. À partir de quel nombre de tirages peut-on
garantir à plus de 95% que la proportion de boules rouges obtenues restera comprise entre
0,35 et 0,45 ? Indication : considérer la suite (Yi) de variables aléatoires de Bernoulli où Yi
mesure l’issue du i-ème tirage.



16. On effectue une suite de lancers d’une pièce de monnaie. On suppose que les résultats des
lancers sont indépendants et que, à chaque lancer, la pièce donne pile avec la probabilité
p ∈]0, 1[ et face avec la probabilité 1− p. On note X la variable aléatoire égale au nombre
de lancers nécessaires pour obtenir deux ”pile” consécutifs. Par exemple, pour la suite de
lancers PFFPFPPFFF..., on a X = 7. Pour tout n entier naturel non nul, on nomme Pn
l’événement: “le n-ième lancer donne pile” et Fn = Pn l’événement: “le n-ième lancer donne
face”

a. Pour tout n entier naturel, on note An l’événement: ”on obtient pile aux lancers 2n+ 1 et

2n+ 2”. Calculer P (An) et P
( n−1⋂
k=0

Ak

)
. En déduire P

( +∞⋂
n=0

An

)
, puis P

( +∞⋃
n=0

An

)
.

b. Pour tout n, on note En l’événement: “on n’a pas obtenu deux pile consécutifs lors des n
premiers lancers”. Montrer que, pour n ≥ 3, on a

P (X = n) = p2(1− p) P (En−3) .

c. En utilisant la relation E(X) =

+∞∑
n=1

P (X ≥ n), calculer le temps d’attente moyen de deux

“pile” consécutifs.

17. Soient X et Y deux variables aléatoires indépendantes et de même loi, à valeurs dans IN,
soit Z = X + Y . On suppose que Z ∼ P(λ) avec λ > 0.

a. Espérance et variance de X ? b. Fonction génératrice de X ? c. Loi de X ?

d. Soit n ∈ IN. Quelle est la loi conditionnelle de X sachant {Z = n} ?

18. Soit T une variable aléatoire à valeurs dans IN. On suppose que ∀n ∈ IN P (T > n) > 0.
On appelle taux de panne associé à T la suite (θn)n∈IN définie par

θn = P (T = n | T ≥ n) .

Typiquement, si T est la variable aléatoire indiquant l’instant où un matériel tombe en
panne, la quantité θn indique la probabilité qu’il tombe en panne à l’instant n sachant qu’il
était encore fonctionnel jusque là.

a. Montrer que θn ∈ [0, 1[ pour tout n.

b. Exprimer P (T ≥ n) à l’aide des θk. En déduire que la série
∑

θk diverge.

c*. Inversement, soit (θn) une suite d’éléments de [0, 1[ telle que la série
∑

θn diverge. Montrer

que la suite (θn)n∈IN est un taux de panne associé à une certaine variable aléatoire T .

19. Soient X1, · · ·, Xn des variables aléatoires réelles discrètes de variance finie. On appelle
matrice des covariances de la famille (X1, · · · , Xn) la matrice carrée d’ordre n:

S =
(
Cov(Xi, Xj)

)
1≤i,j≤n .

a. Soient a1, · · ·, an des réels. Exprimer la variance de X = a1X1 + · · ·+ anXn à l’aide de la
matrice S.

b. Montrer que Sp(S) ⊂ IR+.



20*. Pour tout réel x tel que x > 1, on pose ζ(x) =

+∞∑
n=1

1

nx
. On considère une variable aléatoire

X sur un espace probabilisé (Ω,A, P ), qui suit la loi zéta de paramètre x, c’est-à-dire
telle que

X(Ω) = IN∗ et ∀n ∈ IN∗ P (X = n) =
1

nx ζ(x)
.

a. Vérifier la cohérence de cette définition.

b. Soit a ∈ IN∗. Calculer la probabilité de l’événement {a | X}.
c. Pour tout n ∈ IN∗, on note pn le n-ième nombre premier, ainsi p1 = 2, p2 = 3, p3 = 5, · · ·

Montrer que, pour tout n ∈ IN∗, les événements {pk | X}, 1 ≤ k ≤ n, sont mutuellement
indépendants.

d. Montrer que {X = 1} =

+∞⋂
k=1

{pk | X}.

e. En déduire la (jolie) relation
1

ζ(x)
= lim
n→+∞

n∏
k=1

(
1− 1

pxk

)
.

21*. Inégalité de Paley-Zygmund.

Soit X une variable aléatoire à valeurs dans IN, on suppose que X2 est d’espérance finie.
Prouver la relation

∀t ∈ ]0, 1[ P
(
X ≥ t E(X)

)
≥ (1− t)2 E(X)2

E(X2)
.

Si on considère l’événement A =
{
X ≥ t E(X)

}
, on pourra commencer par écrire

X = X · l1A +X · l1A, où l1A est la variable indicatrice de l’événement A.

Fonctions génératrices.

22. On considère deux dés que l’on lance indépendamment. Montrer qu’il est impossible de
truquer les dés de façon que la somme des résultats affichés sur leur face supérieure suive
une loi uniforme sur [[2, 12]]. On pourra utiliser la fonction génératrice de la loi de la somme
des résultats affichés.

23. La loi binomiale négative. On procède à une suite de répétitions indépendantes d’une
expérience à deux issues: “succès” avec probabilité p, “échec” avec probablité q = 1− p.

a. Soit X2 la variable aléatoire égale au nombre de répétitions nécessaires pour obtenir deux
succès. Donner la loi de X2, et calculer son espérance.

b. Montrer, pour k ∈ IN et x ∈]− 1, 1[, la relation

+∞∑
n=k

(
n
k

)
xn−k =

1

(1− x)k+1
.

c. Généralisation du a.: Soit k un entier naturel non nul, on note Xk la variable aléatoire égale
au temps d’attente du k-ième succès. Donner la loi de Xk et calculer son espérance.

d. Déterminer la fonction génératrice GXk
de la variable Xk et son intervalle de convergence.

e. Retrouver ainsi l’espérance E(Xk). Calculer la variance V(Xk).



24. On note X une variable aléatoire à valeurs dans IN. On se donne une suite (Xi)i≥1 de
variables aléatoires indépendantes sur un espace probabilisé (Ω,A, P ), de même loi que X.
Soit d’autre part N une variable aléatoire à valeurs dans IN, que l’on suppose indépendante
des Xi. Pour tout ω ∈ Ω, on pose

T (ω) =

N(ω)∏
i=1

Xi(ω) .

On conviendra que T (ω) = 1 si N(ω) = 0.

On suppose que X est d’espérance finie notée m. En utilisant la fonction génératrice GN
de la variable N , donner une condition nécessaire et suffisante pour que T soit d’espérance
finie, et exprimer dans ce cas E(T ). Étudier le cas particulier où N et X sont des variables
de Poisson.

25. Soit X une variable aléatoire à valeurs dans IN. On définit sa fonction caractéristique ΦX
par ΦX(t) = E(eitX) pour tout t réel.

a. Montrer que ΦX est définie et continue sur IR.

b. Pour k ∈ IN, calculer l’intégrale Ik =
1

2π

∫ π

−π
ΦX(t) e−ikt dt. Que dire de deux variables

aléatoires X et Y , à valeurs dans IN, telles que ΦX = ΦY ?

c. On suppose que X est d’espérance finie. Montrer que la fonction ΦX est de classe C1 sur IR
et déterminer Φ′X(0).

26. Une urne contient trois boules blanches, numérotées 1, 2, 3, ainsi que k boules noires
(k ∈ IN∗). On effectue dans l’urne des tirages avec remise.

a. Soit X1 la variable aléatoire donnant le numéro de la première boule blanche tirée. Quelle
est la loi de X1 ? Déterminer sa fonction génératrice.

b. Soit n ∈ IN∗. On effectue des tirages avec remise dans l’urne jusqu’à obtention de n boules
blanches dont on note les numéros. On note Sn la variable aléatoire donnant la somme des
numéros des boules blanches obtenues. Quelle est la fonction génératrice de Sn ? Donner
son espérance et sa variance.

c. Soit r un entier naturel non nul. On effectue r tirages avec remise dans l’urne, on note N
le nombre de boules blanches obtenues. On définit alors une variable aléatoire S par{
S = 0 si N = 0

S = Sn si N = n (n ∈ IN∗)
. Calculer la fonction génératrice de S.

Exercices avec Python.

27. Une pièce a la probabilité p ∈]0, 1[ de tomber sur pile. On la lance jusqu’à avoir obtenu deux
fois pile, et on note X le nombre de fois où elle est tombée sur “face”.

a. Loi de X. Montrer que X est d’espérance finie et calculer E(X).

Lorsque X = n, on place n+ 1 boules numérotées de 0 à n dans une urne, et on en tire une
au hasard. On note Y le numéro de la boule tirée.

b. Utiliser Python pour simuler cette expérience aléatoire.

c. Loi de Y . Calculer E(Y ).


