
PROBABILITÉS

I. Préliminaires.

1. Ensembles dénombrables.

Ce paragraphe a déjà été traité dans le poly sur les suites. Je rappelle les définitions et
résultats essentiels.

Un ensemble E est dit dénombrable s’il est en bijection avec IN, c’est-à-dire s’il peut être
décrit en extension sous la forme {xi ; i ∈ IN} avec des xi distincts.

Exemples: les ensembles IN, IN∗, Z, Q et IN2 sont dénombrables.

De façon plus générale, tout produit cartésien d’un nombre fini d’ensembles dénombrables
est dénombrable.

Toute partie infinie de IN est dénombrable, autrement dit: toute partie de IN est, soit finie
(si elle est majorée), soit dénombrable (sinon).

Un ensemble E est alors dit au plus dénombrable s’il est fini ou dénombrable, c’est-à-dire
s’il est en bijection avec une partie de IN, soit encore s’il peut être décrit en extension sous
la forme E = {xi ; i ∈ I}, où I est une partie de IN et les xi sont distincts. Une telle
écriture sera appelée une énumération de l’ensemble E.

Toute partie d’un ensemble dénombrable est au plus dénombrable.

Toute union au plus dénombrable d’ensembles dénombrables est dénombrable.

Les ensembles IR et {0, 1}IN sont infinis non dénombrables.

2. Familles sommables de réels positifs.

Les résultats de ce paragraphe seront admis et ils seront utilisés dans les démonstrations
de cours de ce chapitre.

Leur usage doit être strictement réservé au contexte probabiliste.

Dans ce paragraphe, nous nous placerons dans l’ensemble [0,+∞] = IR+ = IR+ ∪ {+∞}.
Nous étendrons d’abord l’addition usuelle de IR+ en convenant que

∀x ∈ [0,+∞] x+ (+∞) = (+∞) + x = +∞ .

On conviendra aussi que a · (+∞) = (+∞) ·a = +∞ pour tout réel a strictement positif.

Nous étendrons aussi la relation d’ordre usuelle en convenant que

∀x ∈ IR+ x < +∞ .

Nous admettrons que, si (xi)i∈I est une famille au plus dénombrable d’éléments de [0,+∞]
(i.e. si l’ensemble I des indices est au plus dénombrable), il est possible de définir la somme

de cette famille, notée
∑
i∈I

xi , qui est aussi un élément de [0,+∞].

Si l’ensemble d’indices I est fini, il n’y a là rien de bien nouveau, si ce n’est que la somme
vaut +∞ lorsque l’un des éléments xi de la famille vaut lui-même +∞.

Si l’ensemble d’indices I est infini dénombrable, on peut considérer une énumération
I = {in ; n ∈ IN} de cet ensemble (rappelons que les in doivent être distincts, autrement
dit l’application n 7→ in doit être une bijection de IN vers I) et se ramener à la notion de
somme d’une série en posant

∑
i∈I

xi =


+∞∑
n=0

xin si cette série converge, les xin étant tous des réels positifs

+∞ si la série diverge, ou si au moins un des xin vaut +∞

.



Pour rendre rigoureuse une telle définition, il faut s’assurer que le résultat (i.e. la nature

de la série
∑
n≥0

xin et la valeur de sa somme en cas de convergence) ne dépend pas de

l’énumération choisie de l’ensemble I. Cette propriété sera admise et a déjà été mentionnée
à la fin du poly de cours sur les séries, puisqu’il y est affirmé (sans preuve) que toute série
à termes positifs convergente est “commutativement convergente”.

On admet aussi que, pour tout découpage en paquets I =
⊔
n∈IN

In, i.e. si on écrit I

comme une réunion dénombrable disjointe de sous-ensembles In, on a alors l’égalité (dite
sommation par paquets), dans [0,+∞]:∑

i∈I
xi =

+∞∑
n=0

(∑
i∈In

xi

)
.

En particulier, si I = IN2 (cas des sommes doubles), en découpant IN2 =
⊔
k∈IN

(
{k}× IN)

ou bien IN2 =
⊔
l∈IN

(
IN× {l}

)
, si (ak,l)(k,l)∈IN2 est une famille de réels positifs, on a, dans

[0,+∞], l’égalité (interversion de sommes)∑
(k,l)∈IN2

ak,l =

+∞∑
k=0

(+∞∑
l=0

ak,l

)
=

+∞∑
l=0

( +∞∑
k=0

ak,l

)
.

La famille (xi)i∈I d’éléments de [0,+∞] est alors dite sommable si on a
∑
i∈I

xi < +∞.

Mentionnons enfin la croissance de la somme:

si ∀i ∈ I 0 ≤ xi ≤ yi, alors
∑
i∈I

xi ≤
∑
i∈I

yi dans [0,+∞].

Dans la pratique, et dans le cas de réels positifs, on se permettra de découper, calculer,
majorer des sommes directement sans justification, et la finitude de la somme pourra être
considérée comme une preuve de sommabilité de la famille.

Exemples. • La famille
( 1

n

)
n∈IN∗

n’est pas sommable, on a
∑
n∈IN∗

1

n
= +∞.

• La famille
( 1

n2
)
n∈Z∗ est sommable et on a

∑
n∈Z∗

1

n2
= 2

+∞∑
n=1

1

n2
=
π2

3
.

• La famille
( 1

2p3q

)
(p,q)∈IN2

est sommable. En effet, on peut écrire (cf. “cas des sommes

doubles” ci-dessus):∑
(p,q)∈IN2

1

2p3q
=

+∞∑
p=0

(+∞∑
q=0

1

2p3q

)
=

+∞∑
p=0

(3

2
× 1

2p

)
= 3 < +∞ .



• La famille
( 1

(k + l)α

)
(k,l)∈(IN∗)2

est sommable si et seulement si α > 2. On le voit en

sommant par paquets, en posant (IN∗)2 =

+∞⊔
n=2

In avec In =
{

(k, l) ∈ (IN∗)2 | k + l = n
}

.

Comme Card(In) = n− 1, on a, dans [0,+∞]∑
(k,l)∈(IN∗)2

1

(k + l)α
=

+∞∑
n=2

( ∑
(k,l)∈In

1

(k + l)α

)
=

+∞∑
n=2

n− 1

nα
,

et il résulte du cours sur les séries que cette dernière somme est finie si et seulement si
α > 2.

II. Espaces probabilisés.
1. Notion d’espace probabilisable.

Soit Ω un ensemble que nous appellerons univers. Cet “univers” est censé rendre compte
de toutes les issues possibles d’une expérience aléatoire. La plupart du temps, il ne sera pas
explicité.

Définition. On appelle tribu sur Ω tout ensemble A de parties de Ω, i.e. toute partie A
de l’ensemble P(Ω), tel que:

(P1): Ω ∈ A ;

(P2): ∀A ∈ A A ∈ A ;

(P3): Pour toute suite (An)n∈IN d’éléments de A, la réunion

+∞⋃
n=0

An appartient à A.

Les éléments de A sont appelés les événements. On dit alors que le couple (Ω,A) est un
espace probabilisable.

Commentaires. Dans la propriété (P2), la notation A représente le complémentaire Ω\A,
parfois aussi noté Ac, et appelé événement contraire de A. La propriété (P2) est la
stabilité de la tribu par passage au complémentaire. La propriété (P3) s’appelle
“stabilité par union dénombrable”.

Conséquences. De ces axiomes de définition découlent quelques propriétés évidentes, par
exemple le fait que ∅ ∈ A, ou encore que toute tribu est aussi stable par réunion
finie, et par intersection finie ou dénombrable.

Preuve. D’abord, ∅ = Ω et Ω ∈ A, donc ∅ ∈ A d’après (P2).

Si (A0, A1, · · · , An) est une famille finie d’événements, en posant Ak = ∅ pour tout k > n,
on a n⋃

k=0

Ak =

+∞⋃
k=0

Ak ∈ A d’après (P3) .

Enfin, si (Ak)k∈IN est une suite d’événements, alors Ak ∈ A pour tout k d’après (P2), puis
par les “lois de De Morgan”,⋂

k∈IN

Ak =
⋃
k∈IN

Ak ∈ A d’après (P3) .

Idem pour une intersection finie.



Signalons aussi que, si A et B sont deux événements, i.e. A ∈ A et B ∈ A, alors A \B ∈ A:
en effet, A \B = A ∩ B. La différence de deux événements en est encore un.

Une tribu est donc stable par toutes les opérations ensemblistes finies ou
dénombrables. Donc, si (Ai)i∈I est une famille d’événements, l’ensemble d’indices I étant

au plus dénombrable, alors les ensembles
⋃
i∈I

Ai et
⋂
i∈I

Ai sont des événements.

Exemples.

• Si Ω est un ensemble non vide, alors A = {∅,Ω} est la tribu grossière sur Ω.

• L’ensemble P(Ω) est une tribu sur Ω.

• Si Ω = IR (ou, plus généralement, IRn), il existe une “plus petite” tribu sur IR contenant
toutes les parties ouvertes de IR, on l’appelle tribu borélienne sur IR.

Rappels de vocabulaire. L’univers Ω est l’événement certain, alors que ∅ est l’événement
impossible. Deux événements A et B sont dits incompatibles (vocabulaire probabiliste)
s’ils sont disjoints (vocabulaire ensembliste), i.e. si A ∩ B = ∅.

Si (An)n∈IN est une suite d’événements, alors l’événement

+∞⋃
n=0

An est réalisé si et seulement

si au moins un des événements An est réalisé. Tandis que l’événement

+∞⋂
n=0

An est réalisé

si et seulement si tous les événements An sont réalisés.

Exercice. Que signifie la réalisation des événements

+∞⋃
n=0

( +∞⋂
k=n

Ak

)
et

+∞⋂
n=0

( +∞⋃
k=n

Ak

)
?

Définition. Dans un espace probabilisable (Ω,A), on appelle système complet d’événe-
ments (SCE) toute famille (Ai)i∈I d’événements, indexée par un ensemble I au plus
dénombrable, telle que⋃

i∈I
Ai = Ω et ∀(i, j) ∈ I2 i 6= j =⇒ Ai ∩ Aj = ∅ .

Cela signifie donc que l’univers Ω est la réunion disjointe des Ai, ce que l’on écrira aussi

Ω =
⊔
i∈I

Ai (Attention! Ce n’est pas une notation standard!).

2. Notion de probabilité. Propriétés élémentaires.

C’est encore une définition axiomatique:

Définition. Soit (Ω,A) un espace probabilisable. On appelle probabilité sur (Ω,A) toute
application P : A → [0, 1] telle que

(P1): P (Ω) = 1 ;

(P2): Pour toute suite (An)n∈IN d’événements incompatibles, P
( +∞⊔
n=0

An

)
=

+∞∑
n=0

P (An).

On dit alors que (Ω,A, P ) est un espace probabilisé.

Commentaire. La propriété (P2) affirme bien sûr la convergence de la série
∑

P (An).

On la nomme σ-additivité ou encore additivité dénombrable.



Conséquences de cette définition.

• P (∅) = 0.

En effet, en prenant An = ∅ pour tout n, d’après (P2), la série de terme général (constant)
P (∅) doit converger, donc nécessairement P (∅) = 0.

• Additivité finie: Si A0, · · ·, An sont des événements deux à deux incompatibles,

alors P
( n⊔
k=0

Ak

)
=

n∑
k=0

P (Ak).

En effet, il suffit d’appliquer (P2) en posant Ak = ∅ pour tout k > n.

Commentaire. On aura donc, pour toute famille (Ai)i∈I d’événements disjoints, indexée

par un ensemble I au plus dénombrable, l’égalité P
(⊔
i∈I

Ai

)
=
∑
i∈I

P (Ai).

• Probabilité de l’événement contraire.

Si A ∈ A, alors P (A) = 1− P (A) .

En effet, on applique l’additivité finie ci-dessus avec Ω = A tA.

• Probabilité de la différence de deux événements.

∀(A,B) ∈ A2 P (A \B) = P (A)− P (A ∩ B) .

Cela résulte de l’égalité A = (A \B) t (A ∩ B) et de l’additivité finie.

Dans le cas particulier où B ⊂ A, cette différence A \B peut être appelée “complémentaire
de B dans A” et on a alors P (A \B) = P (A)− P (B).

• Probabilité de la réunion de deux événements.

∀(A,B) ∈ A2 P (A ∪ B) = P (A) + P (B)− P (A ∩ B) .

En effet, A ∪ B = (A ∩ B)t (A\B)t (B \A), cela résulte alors de la formule précédente.

• Croissance. Si A ∈ A et B ∈ A, si A ⊂ B, alors P (A) ≤ P (B).

En effet, B = A t (B \ A) (union disjointe), donc par la propriété d’additivité finie,
P (B) = P (A) + P (B \A) ≥ P (A).

Définitions. Un événement A ∈ A est dit négligeable (ou encore quasi-impossible) s’il
est de probabilité nulle, i.e. si P (A) = 0. Il est dit presque sûr (ou encore quasi-certain)
si P (A) = 1.

3. Propriétés de continuité monotone, et conséquences.

Dans tout ce paragraphe, (Ω,A, P ) est un espace probabilisé.

Théorème de continuité croissante. Soit (An)n∈IN une suite croissante d’événements,
i.e. telle que, pour tout n, on ait An ⊂ An+1. On a alors

lim
n→+∞

P (An) = P
( +∞⋃
n=0

An

)
.



Preuve. Posons B0 = A0, puis Bn = An \An−1 pour tout n ∈ IN∗.

Alors les Bn sont des événements, et ils sont deux à deux incompatibles. En effet, pour
n ≥ 1, on a Bn = An ∩ An−1 donc, si p < q, on a Bp ⊂ Ap alors que Bq ⊂ Aq−1 ⊂ Ap,
donc Bp ∩ Bq = ∅.

Ensuite,

+∞⋃
n=0

An =

+∞⊔
n=0

Bn: en effet, l’inclusion dans le sens indirect est immédiate puisque

Bn ⊂ An pour tout n. Puis, si ω ∈
+∞⋃
n=0

An, soit n0 = min{n ∈ IN | ω ∈ An}, on a alors

ω ∈ Bn0 donc ω ∈
+∞⋃
n=0

Bn, ce qui montre l’autre inclusion.

La suite
(
P (An)

)
est croissante, et majorée par 1, elle converge donc, la série télescopique∑

n≥1

(
P (An) − P (An−1)

)
est donc aussi convergente, de somme lim

n→+∞
P (An) − P (A0).

En utilisant la propriété de σ-additivité de la probabilité P , on obtient

P
( +∞⋃
n=0

An

)
= P

( +∞⊔
n=0

Bn

)
=

+∞∑
n=0

P (Bn)

= P (A0) +

+∞∑
n=1

P (An \An−1)

= P (A0) +

+∞∑
n=1

(
P (An)− P (An−1)

)
= lim

n→+∞
P (An) .

Théorème de continuité décroissante. Soit (An)n∈IN une suite décroissante d’événements,
i.e. telle que, pour tout n, on ait An+1 ⊂ An. On a alors

lim
n→+∞

P (An) = P
( +∞⋂
n=0

An

)
.

Preuve. Par passage au complémentaire. Posons Cn = An pour tout n, alors la suite

(Cn) est croissante, donc lim
n→+∞

P (Cn) = P
( +∞⋃
n=0

Cn

)
d’après le théorème de continuité

croissante. Mais P (Cn) = 1− P (An) pour tout n et, par les lois de De Morgan,

P
( +∞⋃
n=0

Cn

)
= P

( +∞⋃
n=0

An

)
= P

(+∞⋂
n=0

An

)
= 1− P

( +∞⋂
n=0

An

)
.

On conclut alors facilement.

Conséquences. Soit (An)n∈IN une suite quelconque d’événements, on a alors

lim
n→+∞

P
( n⋃
k=0

Ak

)
= P

( +∞⋃
k=0

Ak

)
et lim

n→+∞
P
( n⋂
k=0

Ak

)
= P

( +∞⋂
k=0

Ak

)
.



Preuve. Pour la première égalité, posons Bn =

n⋃
k=0

Ak pour tout n, la suite d’événements

(Bn) est alors croissante. Le théorème de continuité croissante montre donc que

lim
n→+∞

P (Bn) = P
( +∞⋃
n=0

Bn

)
= P

( +∞⋃
n=0

An

)
puisqu’il est immédiat que la réunion des Bn est aussi la réunion des An. Preuve analogue
pour la deuxième égalité.

Théorème de sous-additivité. Si (An)n∈IN est une suite quelconque d’événements,
on a

P
( +∞⋃
n=0

An

)
≤

+∞∑
n=0

P (An) .

Commentaire. Si la série à termes positifs
∑

P (An) est divergente, on conviendra que
+∞∑
n=0

P (An) = +∞, ainsi cette inégalité reste vraie dans [0,+∞].

Preuve. On le montre d’abord pour une réunion finie: si A0, · · ·, An sont des événements,

alors P
( n⋃
k=0

Ak

)
≤

n∑
k=0

P (Ak), par récurrence sur n.

- pour n = 1, P (A0 ∪ A1) = P (A0) + P (A1)− P (A0 ∩ A1) ≤ P (A0) + P (A1).

- si c’est vrai pour n événements, alors

P
( n+1⋃
k=0

Ak

)
= P

(( n⋃
k=0

Ak

)
∪ An+1

)
≤ P

( n⋃
k=0

Ak

)
+ P (An+1)

≤
n∑
k=0

P (Ak) + P (An+1) =

n+1∑
k=0

P (Ak) .

Dans le cas d’une réunion infinie dénombrable, il suffit de faire tendre n vers l’infini dans
l’inégalité que l’on vient d’obtenir, en utilisant la première des deux égalités obtenues comme
“conséquences” ci-dessus.

Commentaire. On peut reformuler de la façon suivante: si (Ai)i∈I est une famille d’événe-
ments, l’ensemble d’indices I étant au plus dénombrable, on a, dans [0,+∞], l’inégalité

P
(⋃
i∈I

Ai

)
≤
∑
i∈I

P (Ai) .

Conséquence. Toute réunion dénombrable d’événements négligeables est encore
négligeable. Et, par passage au complémentaire, toute intersection dénombrable
d’événements presque sûrs est un événement presque sûr.

Définition. Dans un espace probabilisé (Ω,A, P ), on appelle système quasi-complet
d’événements toute famille (Ai)i∈I d’événements deux à deux incompatibles, indexée par

un ensemble I au plus dénombrable, telle que
∑
i∈I

P (Ai) = 1, i.e. P
(⊔
i∈I

Ai

)
= 1.



Autrement dit, lesAi “recouvrent l’univers à un ensemble négligeable près”. Le complémentaire
de la réunion des Ai est en effet de probabilité nulle.

4. Conditionnement.

Définition. Soit (Ω,A, P ) un espace probabilisé. Soient A ∈ A et B ∈ A deux événements
avec P (B) > 0. On appelle probabilité conditionnelle de A sachant B le réel

PB(A) =
P (A ∩ B)

P (B)
.

On le note aussi P (A|B).

Proposition. L’application PB ainsi définie sur A est une probabilité sur l’espace
probabilisable (Ω,A).

Preuve. Par croissance de la probabilité P , on a P (A ∩ B) ≤ P (B), donc PB(A) ∈ [0, 1].

On a bien PB(Ω) =
P (Ω ∩ B)

P (B)
= 1 et, si (An)n∈IN est une suite d’événements incom-

patibles, les An ∩ B sont aussi incompatibles, donc

PB

( +∞⊔
n=0

An

)
=

P

(( +∞⊔
n=0

An

)
∩ B

)
P (B)

=

P
( +∞⊔
n=0

(An ∩ B)
)

P (B)

=

+∞∑
n=0

P (An ∩ B)

P (B)
=

+∞∑
n=0

P (An ∩ B)

P (B)
=

+∞∑
n=0

PB(An) ,

ce qu’il fallait démontrer (la σ-additivité).

Formule des probabilités composées.

(a): Soient A1 et A2 deux événements avec P (A1) > 0, alors

P (A1 ∩ A2) = PA1
(A2) · P (A1) .

(b): Si A1, · · ·, An sont des événements tels que P (A1 ∩ · · · ∩ An−1) > 0, alors

P (A1 ∩ · · · ∩ An) = PA1 ∩ ··· ∩ An−1
(An) · PA1 ∩ ··· ∩ An−2

(An−1) · · ·PA1
(A2) · P (A1) .

Preuve. La formule (a) n’est qu’une réécriture de la définition d’une probabilité condition-
nelle. Elle peut être considérée comme initialisation d’une récurrence pour prouver (b).

Commentaire. Cette formule des probabilités composées généralisée (b) correspond à la
situation où une suite finie d’expériences aléatoires est réalisée, l’issue de chacune de ces
expériences pouvant être influencée par les résultats des expériences précédentes. Elle se
prête bien à l’illustration par un arbre pondéré mais, à votre niveau, la seule représentation
d’un arbre de probabilité ne peut être considérée comme une preuve valide, un minimum
de formalisation est nécessaire.



Formule des probabilités totales (FPT).

Si (An)n∈IN est un système quasi-complet d’événements, si B est un événement,

alors la série
∑

P (B ∩ An) converge, et on a

P (B) =

+∞∑
n=0

P (B ∩ An) =

+∞∑
n=0

P (B|An) P (An) .

Commentaire 1. En toute rigueur, les probabilités conditionnelles P (B|An) n’ont de
sens que si les An sont de probabilité non nulle. Cependant, si pour certains entiers n,
on a P (An) = 0, on adoptera la convention P (B|An) P (An) = 0 dans ce cas, et la FPT
reste alors valable.

Commentaire 2. La formule est valable en particulier si (An) est un système complet
d’événements.

Preuve. Posons A =
⊔
n∈IN

An, alors A est un événement presque sûr, i.e. P (A) = 1, donc

P (A) = 0. Comme B = (B ∩ A)t (B ∩ A), avec P (B ∩ A) ≤ P (A) donc P (B ∩ A) = 0,
on a donc

P (B) = P (B ∩ A) = P

(
B ∩

( ⊔
n∈IN

An

))
= P

( ⊔
n∈IN

(B ∩ An)
)

=

+∞∑
n=0

P (B ∩ An)

en utilisant la σ-additivité, ce qui donne la première égalité. La deuxième égalité résulte de la
formule des probabilités composées (ou de la convention adoptée dans le cas où P (An) = 0).

Commentaire 3. On peut reformuler ce théorème de la façon suivante: si I est un ensemble
au plus dénombrable, si (Ai)i∈I est un système quasi-complet d’événements, alors la famille(
P (B ∩ Ai)

)
i∈I est sommable, et on a

P (B) =
∑
i∈I

P (B ∩ Ai) =
∑
i∈I

P (B|Ai) P (Ai) ,

toujours avec la convention P (B|Ai) P (Ai) = 0 si P (Ai) = 0.

Formule de Bayes.

Soit B ∈ A un événement de probabilité non nulle, soit (An)n∈IN un système
quasi-complet d’événements. On a alors, pour tout n ∈ IN,

P (An|B) =
P (B|An) P (An)

P (B)
=

P (B|An) P (An)
+∞∑
k=0

P (B|Ak) P (Ak)

.

Cette formule reste vraie si certains des Ak sont de probabilité nulle, en convenant alors
que le produit P (B|Ak) P (Ak) est nul.

Preuve. La première égalité est une conséquence immédiate de la définition des probabilités
conditionnelles si P (An) > 0, elle résulte de la convention adoptée si P (An) = 0. La
deuxième égalité résulte alors de la FPT.



5. Événements indépendants.

Définition. Deux événementsA etB d’un espace probabilisé (Ω,A, P ) sont dits indépendants
si on a P (A ∩ B) = P (A) · P (B).

Commentaire. Si P (B) > 0, l’indépendance de A et B équivaut à P (A|B) = P (A).
Autrement dit, la réalisation ou non de l’événement B n’influe pas sur la probabilité de
réalisation de l’événement A. Il faut toutefois se garder d’interpréter cette indépendance
comme une absence de lien de cause à effet, puisque deux événements d’un même espace
probabilisable (Ω,A) peuvent être indépendants pour une certaine probabilité P sans l’être
pour une autre probabilité P ′.

Définition. Soit (A1, · · · , An) une famille finie d’événements. On dit qu’ils sont indépendants
si, pour toute partie I non vide de l’intervalle [[1, n]], on a

P
(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai) .

On parle parfois d’événements “mutuellement” indépendants (pour ne pas confondre avec
l’indépendance deux à deux).

Attention! Il ne suffit pas d’imposer la relation P
( n⋂
i=1

Ai

)
=

n∏
i=1

P (Ai): cette dernière

égalité serait par exemple vraie dès que l’un des événements Ai, disons An, est impos-
sible (les deux membres de l’égalité seraient alors nuls), cela ne garantit pourtant pas
l’indépendance de la sous-famille (A1, · · · , An−1). On désire en effet avoir le résultat:

Si une famille d’événements est indépendante, alors toute sous-famille l’est
encore. Avec la définition choisie, cette propriété de transmission aux sous-familles est
trivialement vérifiée.

En particulier, l’indépendance “mutuelle” des événements A1, · · ·, An entrâıne
leur indépendance deux à deux, la réciproque étant fausse. Pour cette réciproque,
un contre-exemple est donné dans le poly de révisions sur le cours de 1ère année.

Propriété. Si A et B sont indépendants, il en est de même de A et B, et bien sûr aussi
de A et B, ou encore de A et B. Plus généralement, si A1, · · ·, An sont des événements
indépendants, si B1, · · ·, Bn sont des événements tels que, pour tout i, on ait
Bi = Ai ou Bi = Ai, alors les événements B1, · · ·, Bn sont indépendants.

Preuve. Soient A1, · · ·, An des événements indépendants. Il suffit de montrer que l’indépen-
dance est conservée si l’on remplace l’un des événements, disons A1, par son contraire, il
conviendra ensuite d’itérer ce raisonnement si plusieurs événements sont remplacés par leur
contraire.

Posons donc B1 = A1 et Bk = Ak pour k ∈ [[2, n]]. Soit I une partie non vide de [[1, n]].

- si 1 6∈ I, alors P
(⋂
i∈I

Bi

)
= P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai) =
∏
i∈I

P (Bi) puisque les Ai sont

indépendants.

- si 1 ∈ I, posons J = I \ {1} alors, comme Ω = A1 tA1, et Bi = Ai pour i ∈ J ,

P

(⋂
i∈J

Bi

)
= P

(⋂
i∈J

Ai

)
= P

(
A1 ∩

( ⋂
i∈J

Ai

))
+ P

(
A1 ∩

( ⋂
i∈J

Ai

))



= P
(⋂
i∈I

Ai

)
+ P

(⋂
i∈I

Bi

)
.

Donc

P
(⋂
i∈I

Bi

)
= P

(⋂
i∈J

Ai

)
− P

(⋂
i∈I

Ai

)
=

∏
i∈J

P (Ai)−
∏
i∈I

P (Ai) par indépendance des Ai

=
∏
i∈J

P (Ai)− P (A1)
∏
i∈J

P (Ai) comme I = J t {1}

=
(
1− P (A1)

) ∏
i∈J

P (Ai)

= P (B1)
∏
i∈J

P (Bi)

=
∏
i∈I

P (Bi) ,

ce qui achève la démonstration (et le lecteur).

De façon plus générale, si (Ai)i∈I est une famille au plus dénombrable d’événements,
on dit qu’ils sont (mutuellement) indépendants si, pour tout partie finie J de I, on a

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P (Ai).

6. Cas des univers finis ou dénombrables. Si Ω est un ensemble fini, on choisit en général
pour tribu A = P(Ω), une probabilité P sur l’espace probabilisable

(
Ω,P(Ω)

)
est alors

déterminée par la donnée d’une famille finie (pω)ω∈Ω de réels positifs tels que
∑
ω∈Ω

pω = 1

(ce que l’on appelle une distribution de probabilités sur Ω), en posant P (A) =
∑
ω∈A

pω

pour tout A ∈ P(Ω), notamment P
(
{ω}

)
= pω pour tout événement élémentaire {ω}. On

retrouve ici la situation du programme de première année.

Proposition. Si l’univers Ω est au plus dénombrable, une probabilité P sur
l’espace probabilisable

(
Ω,P(Ω)

)
est déterminée par la donnée d’une

“distribution de probabilités” sur Ω, i.e. d’une famille (pω)ω∈Ω de réels posi-

tifs tels que
∑
ω∈Ω

pω = 1. On pose alors P (A) =
∑
ω∈A

pω pour toute partie A de Ω,

et on a en particulier P
(
{ω}

)
= pω pour tout ω ∈ Ω.

Preuve. • Si P est une probabilité sur Ω, les nombres pω = P
(
{ω}

)
forment une famille de

réels positifs, dont la somme vaut 1 grâce aux propriétés (P1) et (P2) puisque

1 = P (Ω) = P

( ⊔
ω∈Ω

{ω}
)

=
∑
ω∈Ω

P
(
{ω}

)
=
∑
ω∈Ω

pω

par σ-additivité (il s’agit bien d’une réunion finie ou dénombrable disjointe).



• Inversement, soit (pω)ω∈Ω une distribution de probabilités sur Ω, il faut montrer que

l’application P : P(Ω) → IR définie par P (A) =
∑
ω∈A

pω est bien une probabilité sur

l’espace probabilisable
(
Ω,P(Ω)

)
. On a déjà P (A) ∈ [0,+∞] pour tout A ∈ P(Ω) comme

somme de réels positifs. Puis P (Ω) =
∑
ω∈Ω

pω = 1, ce qui prouve la propriété (P1). Par

addition d’inégalités, on déduit au passage que, si A ∈ P(Ω), alors

P (A) =
∑
ω∈A

pω =
∑
ω∈Ω

pω l1A(ω) ≤
∑
ω∈Ω

pω = 1

par “croissance de la somme”, ce qui montre que P est bien à valeurs dans [0, 1]. Enfin, si

(An)n∈IN est une suite d’événements incompatibles, soit A =
⊔
n∈IN

An, par sommation par

paquets, on obtient

P

( +∞⊔
n=0

An

)
= P (A) =

∑
ω∈A

pω =

+∞∑
n=0

( ∑
ω∈An

pω

)
=

+∞∑
n=0

P (An) ,

soit la propriété (P2).

En revanche, si l’univers Ω est infini non dénombrable, la situation est plus compliquée.
Il est impossible alors de définir des probabilités “intéressantes” sur l’ensemble P(Ω) tout
entier, ce qui motive l’introduction de la notion de tribu, il y aura donc des parties de Ω que
l’on ne pourra pas qualifier d’événements. De plus, les événements élémentaires {ω} (si ce
sont des événements!) ont bien souvent une probabilité nulle, ce qui n’est pas incompatible

avec la propriété (P2) puisque l’écriture Ω =
⊔
ω∈Ω

{ω} n’est plus une réunion dénombrable.

Tout ceci est bien difficile à expliquer sans sortir très largement du cadre du programme.

III. Variables aléatoires discrètes.
1. Définition.

Définition. Soit (Ω,A) un espace probabilisable. Une variable aléatoire discrète sur
(Ω,A) est une application X définie sur Ω, dont l’image X(Ω) est au plus dénombrable, et
telle que l’image réciproque de tout singleton de X(Ω) est un événement, i.e. appartient à
la tribu A.

Commentaire. Cette dernière condition, assez formelle, s’écrit

∀x ∈ X(Ω) X−1
(
{x}
)
∈ A .

Mais nous utiliserons d’autres notations. L’événement X−1
(
{x}
)

=
{
ω ∈ Ω | X(ω) = x

}
sera couramment noté {X = x} ou encore (X = x).

Commentaire. Conformément à votre programme, nous ne considérerons dans ce cours
que des variables aléatoires (en abrégé v.a.) “discrètes”. Il existe d’autres types de variables
aléatoires, notamment celles dites “à densité”, vous avez sans doute entendu parler de
variables aléatoires réelles “suivant une loi normale (gaussienne) ou une loi exponentielle”,
nous n’en parlerons pas ici.

Proposition. Si X est une variable aléatoire discrète sur (Ω,A), et si U est une
partie de l’ensemble-image X(Ω), alors X−1(U) est un événement.



Preuve. Comme X(Ω) est au plus dénombrable, il en est de même de U qui en est un sous-
ensemble. L’ensemble X−1(U) est alors une réunion finie ou dénombrable d’événements
puisque

X−1(U) =
⋃
u∈U

X−1
(
{u}
)

=
⋃
u∈U
{X = u} ,

donc X−1(U) ∈ A (stabilité d’une tribu par réunion au plus dénombrable).

Commentaire. Ici aussi, l’événement X−1(U) =
{
ω ∈ Ω | X(ω) ∈ U

}
sera noté {X ∈ U},

ou encore (X ∈ U).

Remarque. La plupart des variables aléatoires étudiées dans ce cours sont à valeurs réelles,
i.e. X(Ω) ⊂ IR, on rencontrera toutefois lors de l’étude des couples ou n-uplets de variables
aléatoires quelques “variables aléatoires vectorielles”, ici à valeurs dans IR2 ou IRn.

Dans le cas d’une variable aléatoire réelle X, si x ∈ IR est un réel, on considérera souvent
des événements tels que

(X ≥ x) = {X ≥ x} =
{
ω ∈ Ω | X(ω) ≥ x

}
= X−1

(
[x,+∞[

)
,

c’est bien un événement d’après ce qui précède, puisque cet ensemble est aussi l’image
réciproque par X de la partie X(Ω) ∩ [x,+∞[ de X(Ω). On rencontrera aussi des {X > x},
{X < x}, {X ≤ x}, écrits indifféremment avec des accolades ou des parenthèses.

Notion de fonction d’une variable aléatoire. Si X est une v.a. discrète sur (Ω,A), et
si f est une application définie sur X(Ω), on peut considérer l’application Y = f ◦X, alors
définie sur Ω. Alors Y est une variable aléatoire discrète sur (Ω,A). En effet, l’ensemble-
image Y (Ω) = f

(
X(Ω)

)
est au plus dénombrable et, si y ∈ Y (Ω), alors Y −1

(
{y}
)

= X−1(U)

où U = f−1
(
{y}
)

est une partie de X(Ω), donc Y −1
(
{y}
)
∈ A d’après la proposition

ci-dessus. Cette nouvelle variable aléatoire Y est couramment notée Y = f(X), et on dit
que c’est une fonction de la variable aléatoire X.

2. Loi d’une variable aléatoire discrète.

Proposition et définition. Soit X une variable aléatoire discrète sur un espace
probabilisé (Ω,A, P ). Pour toute partie A de X(Ω), on pose PX(A) = P (X ∈ A).
L’application PX ainsi définie est alors une probabilité sur l’espace probabilisable(
X(Ω),P

(
X(Ω)

))
, appelée loi de la variable X.

Preuve. Comme l’ensemble X(Ω) est au plus dénombrable, il suffit de montrer que la famille
(px)x∈X(Ω), où l’on pose px = PX

(
{x}
)

= P (X = x), est une distribution de probabilités
sur X(Ω). Ce sont clairement des réels positifs et on a bien, par σ-additivité de P et par le
fait que

(
{X = x}

)
x∈X(Ω)

est un système complet d’événements,∑
x∈X(Ω)

px =
∑

x∈X(Ω)

P
(
{X = x}

)
= P

( ⊔
x∈X(Ω)

{X = x}
)

= P (Ω) = 1 .

Commentaire 1. En fait, une variable aléatoire discrète permet de construire un nouvel

espace probabilisé, ou “univers-image” fini ou dénombrable, qui est
(
X(Ω),P

(
X(Ω)

)
, PX

)
,

et tous les calculs ultérieurs (espérance, variance) seront faits à partir de cet univers-image,
et se ramèneront donc à des sommes finies ou “infinies dénombrables”, i.e. à des sommes
de séries.



Commentaire 2. Dans les exercices et problèmes de probabilités, l’univers (Ω,A, P ),
rendant compte de toutes les issues possibles d’une expérience aléatoire, ne sera presque
jamais explicité. On se contentera d’étudier des variables aléatoires qui seront données par
une loi, et ce qui précède montre que “se donner une loi de variable aléatoire” revient
précisément à se donner un ensemble-image au plus dénombrable X(Ω), et une distribution
de probabilités sur cet ensemble X(Ω). Remarquons aussi que l’ensemble-image X(Ω) peut
comporter des valeurs atteintes avec une probabilité nulle, ces valeurs pourront être omises
sans rien modifier aux calculs “intéressants” (espérance, variance), comme nous le verrons
bientôt par exemple dans le cas de la loi géométrique.

Commentaire 3. Enfin, une distribution de probabilités étant donnée sur un ensemble E

au plus dénombrable, c’est-à-dire une famille (px)x∈E de réels positifs telle que
∑
x∈E

px = 1,

on peut se poser la question de l’existence d’une variable aléatoire sur un certain espace
probabilisé suivant la loi associée. La réponse est affirmative, il suffit de considérer l’espace
probabilisé

(
E,P(E), P

)
, où la probabilité P est celle associée à cette distribution, i.e. telle

que, pour tout A ∈ P(E), on ait P (A) =
∑
x∈A

px (cf. proposition à la fin du paragraphe II.6.:

“cas des univers finis ou dénombrables”), et de considérer l’application X = idE : E → E,
x 7→ x, ainsi X est bien une variable aléatoire sur

(
E,P(E), P

)
dont la loi est donnée par

cette distribution de probabilités (px)x∈E .

Notation. On notera X ∼ Y pour signifier que deux variables aléatoires X et Y (pas
nécessairement définies sur le même espace probabilisé) suivent la même loi.

Attention! Deux variables aléatoires ayant la même loi ne sont pas nécessairement égales!
Par exemple, si Ω = [[1, 6]], muni de la tribu A = P(Ω) et de la probabilité uniforme P
(on modélise ici le lancer d’un dé équilibré), les variables aléatoires X : ω 7→ ω et
Y = 7 − X : ω 7→ 7 − ω ont la même loi (loi uniforme sur [[1, 6]]), mais ne sont bien
sûr pas égales.

Propriété. Si X ∼ X ′, alors f(X) ∼ f(X ′).

Preuve. Soient X et X ′ deux v.a., définies respectivement sur (Ω,A, P ) et sur (Ω′,A′, P ′),
telles que X ∼ X ′. On a alors X(Ω) = X ′(Ω′) et on a P (X ∈ A) = P ′(X ′ ∈ A) pour
toute partie A de X(Ω). Soit f une application définie sur X(Ω), notons F = f

(
X(Ω)

)
son

ensemble-image. Si B est une partie de F , alors
{
f(X) ∈ B

}
=
{
X ∈ f−1(B)

}
, donc

P
(
f(X) ∈ B

)
= P

(
X ∈ f−1(B)

)
= P ′

(
X ′ ∈ f−1(B)

)
= P ′

(
f(X ′) ∈ B

)
,

donc les variables aléatoires f(X) et f(X ′), qui sont définies respectivement sur (Ω,A, P )
et sur (Ω′,A′, P ′), ont la même loi.

3. Une loi usuelle: la loi géométrique.

Définition. Soit p ∈]0, 1[. On dit qu’une variable aléatoire X sur (Ω,A, P ) suit la loi
géométrique de paramètre p si X(Ω) = IN∗ et si

∀k ∈ IN∗ P (X = k) = p (1− p)k−1 .

On note alors X ∼ G(p).



Remarque. Comme on le verra dans l’interprétation ci-dessous, on peut aussi considérer
que X(Ω) = IN∗ ∪ {+∞}, en rajoutant la condition P (X = +∞) = 0, ce qui ne change
rien fondamentalement.

Commentaire. Pour simplifier, nous poserons q = 1 − p. Vérfions la cohérence de cette
définition: les nombres ak = p qk−1, avec k ∈ IN∗, sont bien des réels positifs et on a

+∞∑
k=1

ak = p

+∞∑
k=0

qk = p
1

1− q
= p

1

p
= 1 .

D’après le “commentaire 4” du paragraphe précédent, si p ∈]0, 1[, il existe bien des variables
aléatoires X dont la loi est G(p).

Interprétation. La loi géométrique G(p) peut être interprétée comme rang du premier
succès dans une suite illimitée d’épreuves de Bernoulli indépendantes de même paramètre p.
En effet, considérons cette expérience aléatoire (suite infinie de pile ou face, jouer au loto
chaque semaine, ...). Supposons donc qu’à chaque essai, la probabilité de succès est p et,
sans construire explicitement un univers, introduisons les événements

Sk: “la k-ième tentative conduit à un succès” (k ∈ IN∗),

et notons X le nombre de tentatives nécessaires pour obtenir un premier succès. Admettons
que X puisse être considérée comme une variable aléatoire sur un certain espace probabilisé.
On a alors X(Ω) = IN∗ et, pour tout k ∈ IN∗, on observe que

{X = k} = S1 ∩ · · · ∩ Sk−1 ∩ Sk .

Par indépendance des événements S1, · · ·, Sk (dont on peut remplacer certains par leur
complémentaire), on a

P (X = k) =
( k−1∏
i=1

P (Si)
)
· P (Sk) = qk−1 p .

Donc X ∼ G(p). On dira que X est le temps d’attente du premier succès.

Notons que l’indépendance mutuelle des événements S1, · · ·, Sk est une façon de traduire
la notion intuitive d’“épreuves de Bernoulli indépendantes”.

En toute rigueur, il faudrait considérer que X(Ω) = IN∗ ∪ {+∞}. En effet, l’événement
{X = +∞}, qui traduirait le fait que l’on n’obtient jamais aucun succès lors de cette
répétition infinie d’épreuves, n’est pas a priori impossible. Il est seulement négligeable:

en effet, son complémentaire est l’événement {X < +∞} =
⊔
k∈IN∗

{X = k}, dont la

probabilité est P (X < +∞) =

+∞∑
k=1

P (X = k) =

+∞∑
k=1

pqk−1 = 1.

Un petit calcul. Si une variable aléatoire X suit la loi géométrque G(p), on peut être
amené à calculer la probabilité de l’événement {X > n} pour n ∈ IN donné. Pour cela,

on peut bien sûr écrire que {X > n} =

+∞⊔
k=n+1

{X = k}, et en déduire, par additivité

dénombrable, que

P (X > n) =

+∞∑
k=n+1

P (X = k) =

+∞∑
k=n+1

pqk−1 = pqn
+∞∑
j=0

qj = pqn
1

1− q
= qn



(on reconnâıt un reste de série géométrique, on factorise donc par qn et on fait un décalage
d’indice). Mais il est plus rapide de se souvenir de l’interprétation en termes de temps
d’attente d’un succès: l’événement {X > n} signifie alors que les n premières tentatives se

sont soldées par des échecs. Avec des notations déjà introduites ci-dessus, {X > n} =

n⋂
k=1

Sk,

donc par indépendance des épreuves,

P (X > n) =

n∏
k=1

P (Sk) = qn = (1− p)n .


