PROBABILITES

I. Préliminaires.

1. Ensembles dénombrables.

Ce paragraphe a déja été traité dans le poly sur les suites. Je rappelle les définitions et
résultats essentiels.

Un ensemble F est dit dénombrable s’il est en bijection avec IN, c’est-a-dire s’il peut étre
décrit en extension sous la forme {z; ; ¢ € IN} avec des x; distincts.

Exemples: les ensembles IN, IN*, Z, Q et IN? sont dénombrables.

De facon plus générale, tout produit cartésien d’un nombre fini d’ensembles dénombrables
est dénombrable.

Toute partie infinie de IN est dénombrable, autrement dit: toute partie de IN est, soit finie
(si elle est majorée), soit dénombrable (sinon).

Un ensemble E est alors dit au plus dénombrable s’il est fini ou dénombrable, ¢’est-a-dire
s’il est en bijection avec une partie de IN, soit encore s’il peut étre décrit en extension sous
la forme E = {z; ; i € I}, ou I est une partie de IN et les z; sont distincts. Une telle
écriture sera appelée une énumération de I’ensemble F.

Toute partie d’'un ensemble dénombrable est au plus dénombrable.
Toute union au plus dénombrable d’ensembles dénombrables est dénombrable.

Les ensembles IR et {0, 1} sont infinis non dénombrables.

2. Familles sommables de réels positifs.

Les résultats de ce paragraphe seront admis et ils seront utilisés dans les démonstrations
de cours de ce chapitre.

Leur usage doit étre strictement réservé au contexte probabiliste.

Dans ce paragraphe, nous nous placerons dans 'ensemble [0, +o00] = Ry = Ry U {+o0}.
Nous étendrons d’abord l'addition usuelle de IR} en convenant que

Yz € [0, +o0] T+ (+00) = (+00) + T = 400 .
On conviendra aussi que a- (+00) = (+00)-a = +00 pour tout réel a strictement positif.

Nous étendrons aussi la relation d’ordre usuelle en convenant que

Ve Ry T < 400 .

Nous admettrons que, si (z;);cs est une famille au plus dénombrable d’éléments de [0, 4+00]
(i.e. si ensemble I des indices est au plus dénombrable), il est possible de définir la somme
de cette famille, notée le , qui est aussi un élément de [0, +o00].

il
Si ’ensemble d’indices I est fini, il n’y a la rien de bien nouveau, si ce n’est que la somme
vaut +oo lorsque 'un des éléments x; de la famille vaut lui-méme +oo.

Si I'ensemble d’indices I est infini dénombrable, on peut considérer une énumération
I = {i, ; n € IN} de cet ensemble (rappelons que les i,, doivent étre distincts, autrement
dit application n — 4, doit étre une bijection de IN vers I) et se ramener & la notion de
somme d’une série en posant

+oo

Z x;, sicette série converge, les z;, étant tous des réels positifs

Z Ti = n=0

el . PR . .
+o0o  sila série diverge, ou si au moins un des z;, vaut +oo



Pour rendre rigoureuse une telle définition, il faut s’assurer que le résultat (i.e. la nature

de la série inn et la valeur de sa somme en cas de convergence) ne dépend pas de
n>0

I’énumération choisie de ’ensemble I. Cette propriété sera admise et a déja été mentionnée

a la fin du poly de cours sur les séries, puisqu'il y est affirmé (sans preuve) que toute série

a termes positifs convergente est “commutativement convergente”.

On admet aussi que, pour tout découpage en paquets [ = |_| I, ie. si on écrit [

nelN
comme une réunion dénombrable disjointe de sous-ensembles I,,, on a alors ’égalité (dite

sommation par paquets), dans [0, 4+o00]:

+oo
Se-Y(Xn).
iel n=0 i€l,
En particulier, si I = IN? (cas des sommes doubles), en découpant IN? = |_| ({k} x IN)
keN
ou bien IN? = |_| (IN % {1}), si (ak,1)(x,1en2 est une famille de réels positifs, on a, dans

leN
[0, 4+0¢], I'égalité (interversion de sommes)

= e E(En) - E(En).

(k,l)eIN? k=0 =0

La famille (z;);c; d’éléments de [0, +00] est alors dite sommable si on a Z x; < 400.
il
Mentionnons enfin la croissance de la somme:
siviel 0<uxz; <y, alors in < Zyi dans [0, +00].
iel iel
Dans la pratique, et dans le cas de réels positifs, on se permettra de découper, calculer,
majorer des sommes directement sans justification, et la finitude de la somme pourra étre
considérée comme une preuve de sommabilité de la famille.
1

1
Exemples. o La famille (—) n’est pas sommable, on a E — = +00.
N/ nelN*
nelN*
1 =1 2

1
o La famille (—z)nez* est sommable et on a Z — =2 Z — = %
n n n
ned’™ n=1

e La famille ( est sommable. En effet, on peut écrire (¢f. “cas des sommes

1
2r34 ) (p,q)€IN?
doubles” ci-dessus):

Z _Z(Zzp3q>:+§(;’x;):3<+w'

(zp,q)elN2 p=0 p=0




e La famille ( est sommable si et seulement si & > 2. On le voit en

)
(k+ 1)/ (knyea=)z

+oo

sommant par paquets, en posant (IN*)? = |_| I, avec I, = {(k,1) € (IN*)? | k+1 = n}.
n=2

Comme Card(I,) =n — 1, on a, dans [0, +0o0]

+oo +oo

1 1 n—1
>ogrr e al X ) X

(k,1)e(IN*)2 n=2 (k,\)El,

et il résulte du cours sur les séries que cette derniere somme est finie si et seulement si
a> 2.

I1. Espaces probabilisés.

1. Notion d’espace probabilisable.

Soit €2 un ensemble que nous appellerons univers. Cet “univers” est censé rendre compte
de toutes les issues possibles d'une expérience aléatoire. La plupart du temps, il ne sera pas
explicité.
Définition. On appelle tribu sur 2 tout ensemble A de parties de €2, i.e. toute partie A
de Pensemble P(£2), tel que:
(P1): Qe A;
(P2): VAe A Ac A; +o0
(P3): Pour toute suite (A, )nen d’éléments de A, la réunion U A,, appartient & A.

n=0
Les éléments de A sont appelés les événements. On dit alors que le couple (£2,.4) est un
espace probabilisable.
Commentaires. Dans la propriété (P2), la notation A représente le complémentaire Q\ A,
parfois aussi noté A¢ et appelé événement contraire de A. La propriété (P2) est la
stabilité de la tribu par passage au complémentaire. La propriété (P3) s’appelle
“stabilité par union dénombrable”.

Conséquences. De ces axiomes de définition découlent quelques propriétés évidentes, par
exemple le fait que f € A, ou encore que toute tribu est aussi stable par réunion
finie, et par intersection finie ou dénombrable.

Prewve. D’abord, ) = Q et Q € A, donc O € A d’aprés (P2).

Si (Ap, A1,- -+, A,) est une famille finie d’événements, en posant Ay, = () pour tout k > n,
on a

n +oo
U Ay = U A, e A d’aprés (P3) .
k=0

k=0

Enfin, si (Ap)rew est une suite d’événements, alors Ay, € A pour tout k d’apres (P2), puis
par les “lois de De Morgan”,

ﬂ Ay = U Ay e A d’aprés (P3) .

keIN keIN

Idem pour une intersection finie.



Signalons aussi que, si A et B sont deux événements, i.e. A € Aet B € A, alors A\ B € A:
en effet, A\ B=A N B. La différence de deux événements en est encore un.

Une tribu est donc stable par toutes les opérations ensemblistes finies ou
dénombrables. Donc, si (4;);cr est une famille d’événements, ’ensemble d’indices I étant
au plus dénombrable, alors les ensembles U A; et ﬂ A; sont des événements.

iel iel
Exemples.
e Si  est un ensemble non vide, alors A = {0, Q} est la tribu grossiére sur Q.

e L’ensemble P(2) est une tribu sur Q.

e Si Q = 1R (ou, plus généralement, IR™), il existe une “plus petite” tribu sur IR contenant
toutes les parties ouvertes de IR, on ’appelle tribu borélienne sur IR.

Rappels de vocabulaire. L’univers ) est ’événement certain, alors que () est 'événement
impossible. Deux événements A et B sont dits incompatibles (vocabulaire probabiliste)

s’ils sont disjoints (vocabulaire ensembliste), i.e. si A N B = (.
—+oo

Si (A)nenw est une suite d’événements, alors I’événement U A, est réalisé si et seulement

n=0 +oo
si au moins un des événements A,, est réalisé. Tandis que 1’événement ﬂ A,, est réalisé

. . P R n=0
si et seulement si tous les événements A,, sont réalisés.

+oo +oo +oo +oo
Exercice. Que signifie la réalisation des événements U ( ﬂ Ak.) et ﬂ ( U Ak.) ?

n=0 k=n n=0 k=n
Définition. Dans un espace probabilisable (£2,.4), on appelle systéme complet d’événe-
ments (SCE) toute famille (A;);c; d’événements, indexée par un ensemble I au plus
dénombrable, telle que

Udi= et V@jel® i#j=AnA;=0.
iel
Cela signifie donc que 'univers €2 est la réunion disjointe des A;, ce que l'on écrira aussi

Q= |_| A; (Attention! Ce n’est pas une notation standard!).
iel

. Notion de probabilité. Propriétés élémentaires.

C’est encore une définition axiomatique:

Définition. Soit (£2,.4) un espace probabilisable. On appelle probabilité sur (02, A) toute
application P : A — [0,1] telle que

(P1): P(Q)=1; oo oo
(P2): Pour toute suite (A, )nen d’événements incompatibles, P( |_| An) = Z P(A,).
n=0 n=0

On dit alors que (€2, A, P) est un espace probabilisé.

Commentaire. La propriété (P2) affirme bien str la convergence de la série Z P(A,).
On la nomme c-additivité ou encore additivité dénombrable.



Conséquences de cette définition.

o[ P(0)=0.
En effet, en prenant A, = 0 pour tout n, d’aprés (P2), la série de terme général (constant)
P(0) doit converger, donc nécessairement P()) = 0.

e Additivité finie: Si Ag, ---, A, sont des événements deux a deux incompatibles,
alors P( | | Ak) =" P(Ay).
k=0 k=0

En effet, il suffit d’appliquer (P2) en posant Ay, = 0 pour tout k > n.
Commentaire. On aura donc, pour toute famille (4;);c; d’événements disjoints, indexée

par un ensemble I au plus dénombrable, 'égalité P( |_| Ai) = Z P(4;).
iel i€l

e Probabilité de I’événement contraire.

SiAe A, alors| P(A)=1—-P(A4).

En effet, on applique Uadditivité finie ci-dessus avec Q = AU A.
e Probabilité de la différence de deux événements.

V(A,B)€ A> P(A\B)=P(A)-P(AN B).
Cela résulte de ’égalité A= (A\ B)U (A N B) et de ladditivité finie.

Dans le cas particulier ot B C A, cette différence A\ B peut étre appelée “complémentaire
de B dans A” et on a alors P(A\ B) = P(A) — P(B).

e Probabilité de la réunion de deux événements.

V(A,B)e A2 P(AU B)=P(A)+P(B)-P(AnN B).
En effet, AU B= (AN B)U(A\B)U(B\A), cela résulte alors de la formule précédente.
e Croissance. Si A€ Aet Be€ A, |si AC B, alors P(A) < P(B). ‘

En effet, B = AU (B \ A) (union disjointe), donc par la propriété d’additivité finie,
P(B)=P(A)+P(B\ A) > P(A).

Définitions. Un événement A € A est dit négligeable (ou encore quasi-impossible) s’il
est de probabilité nulle, i.e. si P(A) = 0. Il est dit presque siir (ou encore quasi-certain)
si P(A) = 1.

. Propriétés de continuité monotone, et conséquences.

Dans tout ce paragraphe, (£2, 4, P) est un espace probabilisé.
Théoréeme de continuité croissante. Soit (A4, ),cn une suite croissante d’événements,
i.e. telle que, pour tout n, on ait A,, C A,4+1. On a alors

Jm ) -p(J )

n=0




Preuve. Posons By = Ag, puis B, = A, \ An—1 pour tout n € IN*.

Alors les By, sont des événements, et ils sont deur a deux incompatibles. En effet, pour
n>1,onabB,=A4, N A, donc, sip <gq, on a B, C Ay, alors que B, C Aq_1 C Ap,
donc B, N B, = 0.

—+o0 —+o0
Ensuite, U A, = |_| B,,: en effet, linclusion dans le sens indirect est immédiate puisque
n=0 n=0 +oo
B, C A, pour tout n. Puis, si w € U Ay, soit ng = min{n € N |w € A,}, on a alors
+oo n=0
w € B, doncw € U B,,, ce qui montre l'autre inclusion.
n=0

La suite (P(An)) est croissante, et magjorée par 1, elle converge donc, la série télescopique
Z (P(An) — P(An—1)) est donc aussi convergente, de somme lirf P(A,) — P(Ap).
n—-+0oo

n>1
En utilisant la propriété de o-additivité de la probabilité P, on obtient

+oo +o0 00
(o) - (i - £
“+o0
—+00
= P(A)+ Y (P(An) = P(Au-1)
= ngrfoo P(A4,) .

Théoréme de continuité décroissante. Soit (A, ),cN une suite décroissante d’événements,
i.e. telle que, pour tout n, on ait A,,,; C A,. On a alors

+00
Jm P =P( [ 40).

Prewve. Par passage au complémentaire. Posons C, = A, pour tout n, alors la suite
+o00

(Cy) est croissante, donc lim P(C,) = P( U Cn) d’apres le théoréme de continuité
n—-4o0o neo

croissante. Mais P(Cy) =1— P(A,,) pour tout n et, par les lois de De Morgan,

P(Ue)=r(Um)=r(Na)-1-r((4).

On conclut alors facilement.

Conséquences. Soit (4, ),cn une suite quelconque d’événements, on a alors

dm p(Ua)-r(Ua) o« m p((a)-r((4).
k=0 k=0 k=0 k=0



n

Preuwve. Pour la premiére égalité, posons B, = U A pour tout n, la suite d’événements
k=0

(By) est alors croissante. Le théoréme de continuité croissante montre donc que

Jim p =p(J ) - P(U 4)

puisqu’il est immédiat que la réunion des B, est aussi la réunion des A,. Preuve analogue
pour la deuxieme égalité.

Théoréme de sous-additivité. Si (A, ),cn est une suite quelconque d’événements,
on a +o0 400
P( U An) <3 P(A,).
n=0 n=0

Commentaire. Si la série & termes positifs Z P(A,,) est divergente, on conviendra que

+oo
Z P(A,,) = +oo, ainsi cette inégalité reste vraie dans [0, +00].
n=0

Preuve. On le montre d’abord pour une réunion finie: si Ay, -+, A, sont des événements,
n n

alors P( U Ak> < E P(Ayg), par récurrence sur n.
k=0 k=0

- pour n = 1, P(AO @] Al) :P(A0)+P(A1)—P(AO N Al) SP(Ao)—i-P(Al)

- st c’est vrai pour n événements, alors

P(:Q;Ak) - P((Q@Ak) u An+1) < P(QOAk)W(AnH)
n n+1
< ) P(Ap) + P(Anya) = iP(Ak)~
k=0 k=0

Dans le cas d’une réunion infinie dénombrable, il suffit de faire tendre n vers l'infini dans
l'inégalité que ’on vient d’obtenir, en utilisant la premiére des deux égalités obtenues comme
“conséquences” ci-dessus.

Commentaire. On peut reformuler de la fagon suivante: si (A4;);cs est une famille d’événe-
ments, ’ensemble d’indices I étant au plus dénombrable, on a, dans [0, +o0], I'inégalité
p( U Ai) <3 PA).
iel i€l
Conséquence. Toute réunion dénombrable d’événements négligeables est encore

négligeable. Et, par passage au complémentaire, toute intersection dénombrable
d’événements presque surs est un événement presque sur.

Définition. Dans un espace probabilisé (2,4, P), on appelle systéme quasi-complet
d’événements toute famille (A;);c; d’événements deux & deux incompatibles, indexée par

un ensemble I au plus dénombrable, telle que Z P(A;) =1, ie. P( |_| A,») =1.
icl iel



Autrement dit, les A; “recouvrent I'univers & un ensemble négligeable pres”. Le complémentaire
de la réunion des A; est en effet de probabilité nulle.

. Conditionnement.
Définition. Soit (2, .4, P) un espace probabilisé. Soient A € A et B € A deux événements
avec P(B) > 0. On appelle probabilité conditionnelle de A sachant B le réel
P(A N B)
P(B)

Pp(A) =

On le note aussi P(A|B).
Proposition. L’application Pp ainsi définie sur A est une probabilité sur I’espace
probabilisable (Q, A).

Preuve. Par croissance de la probabilité P, on a P(A N B) < P(B), donc Pg(A) € [0,1].
P(Q N B)
P(B)
patibles, les A, N B sont aussi incompatibles, donc

P((+|_O|0An) n B) P(Do(An n B))

(L an) = B = 5B

On a bien Pp(Q) = =1 et, si (An)new est une suite d’événements incom-

ZPA NB) i,

AmB =
e D ILC UL VY

ce qu’il fallait démontrer (la o-additivité).

Formule des probabilités composées.

(a): Soient A; et A; deux événements avec P(A;) > 0, alors

P(A; N Ag) = P4, (As) - P(Ay) .
(b): Si Ay, ---, A, sont des événements tels que P(4; N --- N A,_1) > 0, alors
PAi; N~ NA)=Panna, (An) Pa,n..na, ,(An_1) - Pa,(As)  P(A1).

Preuve. La formule (a) n’est qu’une réécriture de la définition d’une probabilité condition-
nelle. Elle peut étre considérée comme initialisation d’une récurrence pour prouwver (b).

Commentaire. Cette formule des probabilités composées généralisée (b) correspond a la
situation ol une suite finie d’expériences aléatoires est réalisée, I'issue de chacune de ces
expériences pouvant étre influencée par les résultats des expériences précédentes. Elle se
préte bien a 'illustration par un arbre pondéré mais, a votre niveau, la seule représentation
d’un arbre de probabilité ne peut étre considérée comme une preuve valide, un minimum
de formalisation est nécessaire.



Formule des probabilités totales (FPT).

Si (A,)nen est un systéme quasi-complet d’événements, si B est un événement,

alors la série ZP(B N A,) converge, et on a
+oo +oo
P(B)=> P(B N A,) =Y P(B|A,) P(A,) .
n=0 n=0

Commentaire 1. En toute rigueur, les probabilités conditionnelles P(B|A,) n’ont de
sens que si les A, sont de probabilité non nulle. Cependant, si pour certains entiers n,
on a P(A,) = 0, on adoptera la convention P(B|A,) P(A,) = 0 dans ce cas, et la FPT
reste alors valable.

Commentaire 2. La formule est valable en particulier si (4,) est un systéme complet
d’événements.

Preuve. Posons A = |_| Ay, alors A est un événement presque sir, i.e. P(A) =1, donc
neN

P(A) =0. Comme B= (B N A)U(B N A), avec P(B N A) < P(A) donc P(B N A) =0,

on a donc

P(B)=P(B N A)P(B N ( || An)) :P( || Bn An)> :JicP(B N Ay)
nelN n=0

nelN

en utilisant la o-additivité, ce qui donne la premiére égalité. La deuxieme €galité résulte de la
formule des probabilités composées (ou de la convention adoptée dans le cas ot P(A,) =0).

Commentaire 3. On peut reformuler ce théoreme de la fagon suivante: si I est un ensemble
au plus dénombrable, si (A;);c; est un systéme quasi-complet d’événements, alors la famille
(P(B N Ai))iel est sommable, et on a

P(B)=> P(B N A;) =Y P(B|4;)P(A),
i€l iel
toujours avec la convention P(B|A;) P(A4;) =0si P(4;) =0.

Formule de Bayes.

Soit B € A un événement de probabilité non nulle, soit (4, ),en un systéme
quasi-complet d’événements. On a alors, pour tout n € IN,
P(B|Aa) P(A4) _ P(B|A,) P(An)

== ,
> P(B|Ay) P(Ay)
k=0

Cette formule reste vraie si certains des Ay sont de probabilité nulle, en convenant alors
que le produit P(B|Ag) P(A) est nul.

Preuve. La premiére égalité est une conséquence immédiate de la définition des probabilités
conditionnelles si P(A,) > 0, elle résulte de la convention adoptée si P(A,) = 0. La
deuxiéme égalité résulte alors de la FPT.



5. Evénements indépendants.

Définition. Deux événements A et B d’un espace probabilisé (2, .4, P) sont dits indépendants
siona P(A N B)=P(A)- P(B).

Commentaire. Si P(B) > 0, l'indépendance de A et B équivaut a P(A|B) = P(A).
Autrement dit, la réalisation ou non de I’événement B n’influe pas sur la probabilité de
réalisation de ’événement A. Il faut toutefois se garder d’interpréter cette indépendance
comme une absence de lien de cause a effet, puisque deux événements d’un méme espace
probabilisable (€2, .A) peuvent étre indépendants pour une certaine probabilité P sans 1'étre
pour une autre probabilité P’.

Définition. Soit (A1, -, A,,) une famille finie d’événements. On dit qu’ils sont indépendants
si, pour toute partie I non vide de l'intervalle [1,n], on a
P( N Ai) =[P
iel iel
On parle parfois d’événements “mutuellement” indépendants (pour ne pas confondre avec
I'indépendance deux & deux).

n n
Attention! Il ne suffit pas d’imposer la relation P( ﬂ AZ) = H P(A;): cette derniere
i=1 i=1
égalité serait par exemple vraie dés que l'un des événements A;, disons A,, est impos-
sible (les deux membres de 1'égalité seraient alors nuls), cela ne garantit pourtant pas
I'indépendance de la sous-famille (Ay,---, A,—1). On désire en effet avoir le résultat:

Si une famille d’événements est indépendante, alors toute sous-famille 1’est
encore. Avec la définition choisie, cette propriété de transmission aux sous-familles est
trivialement vérifiée.

En particulier, ’indépendance “mutuelle” des événements A;, ---, A, entraine
leur indépendance deux a deux, la réciproque étant fausse. Pour cette réciproque,

un contre-exemple est donné dans le poly de révisions sur le cours de 1ére année.

Prgpriéjé. SiAet B sont indépendants, il en est de méme de A et B, et bien siir aussi
de A et B, ou encore de A et B. Plus généralement, si Ay, ---, A, sont des événements
indépendants, si By, ---, B, sont des événements tels que, pour tout i, on ait

B; = A; ou B; = A;, alors les événements B, ---, B, sont indépendants.

Preuve. Soient Ay, - -+, A, des événements indépendants. 1l suffit de montrer que l’indépen-
dance est conservée si l’on remplace 'un des événements, disons Ay, par son contraire, il
conviendra ensuite d’itérer ce raisonnement si plusieurs événements sont remplacés par leur
contraire.

Posons donc By = A; et By = Ay pour k € [2,n]. Soit I une partie non vide de [1,n].
-si 1 &1, alors P(ﬂBi) = P(ﬂAZ) = HP(AZ») = HP(BZ») puisque les A; sont
indépendants. i€l = = =

-si1 €1, posons J =1\ {1} alors, comme Q = A; U Ay, et B; = A; pouri € J,

P(mBz‘) - P(QIAi) = P(A1 n (QA)) +P(Al n (QA))

ieJ



- r(Na)+r(NB)-

iel iel
Donc
pP(OB) = P(N4)-P( A
(e = r(02)-(0e)
= HP(AZ-)—HP(AZ-) par indépendance des A;
icJ i€l
= [P -PA) [[P(A)  commeT=Ju{l}
ieJ icJ
= (1-P(Ay) [ P(A)
ieJ
= PB) [[P(B)
icJ
= [Ir®),
iel

ce qui achéve la démonstration (et le lecteur).

De fagon plus générale, si (A;);er est une famille au plus dénombrable d’événements,

on dit qu’ils sont (mutuellemeﬁt) indépendants si, pour tout partie finie J de I, on a
P( N Ai) =[] P
icJ icJ

. Cas des univers finis ou dénombrables. Si ) est un ensemble fini, on choisit en général

pour tribu A = P(Q), une probabilité P sur 'espace probabilisable (Q,P(Q)) est alors
déterminée par la donnée d’une famille finie (p,)weq de réels positifs tels que Z pw =1
weN
(ce que l'on appelle une distribution de probabilités sur ), en posant P(A) = Z P
wEA
pour tout A € P(Q), notamment P({w}) = p., pour tout événement élémentaire {w}. On
retrouve ici la situation du programme de premiére année.

Proposition. Si ’univers (2 est au plus dénombrable, une probabilité P sur
I’espace probabilisable (Q,P(Q)) est déterminée par la donnée d’une
“distribution de probabilités” sur €, i.e. d’une famille (p,).cq de réels posi-
tifs tels que pr = 1. On pose alors P(A) = Z po pour toute partie A de €2,
wenN w€EA

et on a en particulier P({w}) = p, pour tout w € Q.

Preuve. ® Si P est une probabilité sur €, les nombres p,, = P({w}) forment une famille de
réels positifs, dont la somme vaut 1 grice auzx propriétés (P1) et (P2) puisque

lP(Q)P( |_|{w}> => P({w}) =D pro
wEN weN we

par o-additivité (il s’agit bien d’une réunion finie ou dénombrable disjointe).



III.

o Inversement, soit (p,)weq une distribution de probabilités sur §Q, il faut montrer que
Uapplication P : P(Q) — IR définie par P(A) = pr est bien une probabilité sur
weA
Uespace probabilisable (2, P(Q)). On a déja P(A) € [0,+00] pour tout A € P() comme
somme de réels positifs. Puis P(Q) = pr =1, ce qui prouve la propriété (P1). Par
weN
addition d’inégalités, on déduit au passage que, si A € P(Q), alors

PA) = po=) polaw) <D po=1
weA we we
par “croissance de la somme”, ce qui montre que P est bien & valeurs dans [0, 1]. Enfin, si

(An)new est une suite d’événements incompatibles, soit A = |_| Ay, par sommation par

paquets, on obtient n€N

P(:|;|<;An) =P(A)=> p.= f( >, pw) =§P(An>,

w€EA n=0 “weA,
soit la propriété (P2).

En revanche, si I'univers €2 est infini non dénombrable, la situation est plus compliquée.
Il est impossible alors de définir des probabilités “intéressantes” sur I'ensemble P(2) tout
entier, ce qui motive I'introduction de la notion de tribu, il y aura donc des parties de € que
l’on ne powrra pas qualifier d’événements. De plus, les événements élémentaires {w} (si ce
sont des événements!) ont bien souvent une probabilité nulle, ce qui n’est pas incompatible
avec la propriété (P2) puisque I'écriture Q = |_| {w} n’est plus une réunion dénombrable.

we
Tout ceci est bien difficile a expliquer sans sortir tres largement du cadre du programme.

Variables aléatoires discreétes.

. Définition.

Définition. Soit (€2,.A) un espace probabilisable. Une variable aléatoire discréte sur
(Q, A) est une application X définie sur €2, dont 'image X (Q2) est au plus dénombrable, et
telle que I'image réciproque de tout singleton de X (€2) est un événement, i.e. appartient &
la tribu A.

Commentaire. Cette derniére condition, assez formelle, s’écrit
Ve X(Q) X '({z})eA.

Mais nous utiliserons d’autres notations. L’événement X ' ({z}) = {w € Q | X(w) = z}
sera couramment noté {X = z} ou encore (X = z).

Commentaire. Conformément & votre programme, nous ne considérerons dans ce cours
que des variables aléatoires (en abrégé v.a.) “discretes”. Il existe d’autres types de variables
aléatoires, notamment celles dites “a densité”, vous avez sans doute entendu parler de
variables aléatoires réelles “suivant une loi normale (gaussienne) ou une loi exponentielle”,
nous n’en parlerons pas ici.

Proposition. Si X est une variable aléatoire discréte sur (2,.4), et si U est une
partie de I’ensemble-image X (), alors X *(U) est un événement.



Preuve. Comme X () est au plus dénombrable, il en est de méme de U qui en est un sous-
ensemble. L’ensemble X_l(U) est alors une réunion finie ou dénombrable d’événements

puisque U Y- {u} _ U (X =},

uelU uelU

done X1 (U) € A (stabilité d'une tribu par réunion au plus dénombmble)

Commentaire. Ici aussi, 'événement X ~ ={we Q| X(w) €U} seranoté {X € U},
ou encore (X € U).

Remarque. La plupart des variables aléatoires étudiées dans ce cours sont a valeurs réelles,
i.e. X(Q) C IR, on rencontrera toutefois lors de I’étude des couples ou n-uplets de variables
aléatoires quelques “variables aléatoires vectorielles”, ici & valeurs dans IR? ou IR™.

Dans le cas d’une variable aléatoire réelle X, si x € IR est un réel, on considérera souvent
des événements tels que

(X>2)={X>2}={weQ|X(w)>2}=X""([z,+00) ,

c’est bien un événement d’apres ce qui précede, puisque cet ensemble est aussi 'image
réciproque par X de la partie X (Q) N [z, 4+o00[ de X (©2). On rencontrera aussi des {X > z},
{X <z}, {X <z}, écrits indifféremment avec des accolades ou des parentheses.

Notion de fonction d’une variable aléatoire. Si X est une v.a. discrete sur (€,.4), et
si f est une application définie sur X (£2), on peut considérer application Y = f o X, alors
définie sur Q. Alors Y est une variable aléatoire discrete sur (£2,.4). En effet, I’'ensemble-
image Y (Q) = f(X(Q)) est au plus dénombrable et, siy € Y (), alors Y ' ({y}) = X' (U)
ouw U = fﬁl({y}) est une partie de X (), donc Yﬁl({y}) € A d’aprés la proposition
ci-dessus. Cette nouvelle variable aléatoire Y est couramment notée Y = f(X), et on dit
que c’est une fonction de la variable aléatoire X.

. Loi d’une variable aléatoire discreéte.

Proposition et définition. Soit X une variable aléatoire discréte sur un espace
probabilisé (2, A, P). Pour toute partie A de X(2), on pose Px(A) = P(X € A).
L’application Px ainsi définie est alors une probabilité sur 1’espace probabilisable
(X(Q),P(X(Q))), appelée loi de la variable X.

Preuve. Comme l'ensemble X () est au plus dénombrable, il suffit de montrer que la famille
(po)zex(a), ot lon pose p, = Px({z}) = P(X = x), est une distribution de probabilités
sur X (). Ce sont clairement des réels positifs et on a bien, par o-additivité de P et par le

fait que ({X }) rEX(Q) est un systéeme complet d’événements,
> = X P =a)=r( | x=a)-re-1.
zeX(Q) zeX () zeX ()

Commentaire 1. En fait, une variable aléatoire discrete permet de construire un nouvel

espace probabilisé, ou “univers-image” fini ou dénombrable, qui est (X (Q), P(X (Q)) , PX),
et tous les calculs ultérieurs (espérance, variance) seront faits & partir de cet univers-image,
et se rameéneront donc a des sommes finies ou “infinies dénombrables”, i.e. & des sommes
de séries.



Commentaire 2. Dans les exercices et problémes de probabilités, 'univers (2,4, P),
rendant compte de toutes les issues possibles d'une expérience aléatoire, ne sera presque
jamais explicité. On se contentera d’étudier des variables aléatoires qui seront données par
une loi, et ce qui précede montre que “se donner une loi de variable aléatoire” revient
précisément a se donner un ensemble-image au plus dénombrable X (£2), et une distribution
de probabilités sur cet ensemble X (§2). Remarquons aussi que I’ensemble-image X (§2) peut
comporter des valeurs atteintes avec une probabilité nulle, ces valeurs pourront étre omises
sans rien modifier aux calculs “intéressants” (espérance, variance), comme nous le verrons
bientot par exemple dans le cas de la loi géométrique.

Commentaire 3. Enfin, une distribution de probabilités étant donnée sur un ensemble F

au plus dénombrable, c’est-a-dire une famille (p,).c g de réels positifs telle que Z pe =1,

zeE
on peut se poser la question de l'existence d’une variable aléatoire sur un certain espace

probabilisé suivant la loi associée. La réponse est affirmative, il suffit de considérer I’espace

probabilisé (E7 P(E), P)7 ol la probabilité P est celle associée a cette distribution, i.e. telle

que, pour tout A € P(FE), on ait P(A) = Z pe (cf. proposition a la fin du paragraphe I1.6.:
z€A

“cas des univers finis ou dénombrables”), et de considérer I'application X =idg : F — FE,

r — x, ainsi X est bien une variable aléatoire sur (E, P(E), P) dont la loi est donnée par
cette distribution de probabilités (ps)zecp-

Notation. On notera X ~ Y pour signifier que deux variables aléatoires X et Y (pas
nécessairement définies sur le méme espace probabilisé) suivent la méme loi.

Attention! Deux variables aléatoires ayant la méme loi ne sont pas nécessairement égales!
Par exemple, si Q = [[1,6], muni de la tribu A = P(Q) et de la probabilité uniforme P
(on modélise ici le lancer d’un dé équilibré), les variables aléatoires X : w — w et
Y =7—-X:w— 7—wont la méme loi (loi uniforme sur [1,6]), mais ne sont bien
str pas égales.

Propriété. Si X ~ X', alors f(X) ~ f(X').

Preuve. Soient X et X' deuz v.a., définies respectivement sur (Q, A, P) et sur (Q', A", P'),
telles que X ~ X'. On a alors X(Q) = X' () et on a P(X € A) = P'(X' € A) pour
toute partie A de X (). Soit f une application définie sur X (), notons F = f(X(Q)) son
ensemble-image. Si B est une partie de F, alors {f(X) € B} = {X € f~!(B)}, donc

P(f(X)eB)=P(X e f}(B) =P (X' € f'(B) =P (f(X")eB),

donc les variables aléatoires f(X) et f(X'), qui sont définies respectivement sur (2, A, P)
et sur (', A', P'), ont la méme loi.

. Une loi usuelle: la loi géométrique.

Définition. Soit p €]0,1[. On dit qu'une variable aléatoire X sur (2,4, P) suit la loi
géométrique de parameétre p si X () = IN* et si

VEeIN*  P(X =k =p(1—-pPrt.
On note alors X ~ G(p).




Remarque. Comme on le verra dans l'interprétation ci-dessous, on peut aussi considérer
que X(Q) = IN* U {400}, en rajoutant la condition P(X = +o00) = 0, ce qui ne change
rien fondamentalement.

Commentaire. Pour simplifier, nous poserons ¢ = 1 — p. Vérfions la cohérence de cette
définition: les nombres aj = p ¢" 1, avec k € IN*, sont bien des réels positifs et on a

400 400 1 1
doa=p) d'=pi—=p =1
k=1 k=0 1 P

D’apres le “commentaire 4” du paragraphe précédent, si p €]0, 1[, il existe bien des variables
aléatoires X dont la loi est G(p).

Interprétation. La loi géométrique G(p) peut étre interprétée comme rang du premier
succes dans une suite illimitée d’épreuves de Bernoulli indépendantes de méme parametre p.
En effet, considérons cette expérience aléatoire (suite infinie de pile ou face, jouer au loto
chaque semaine, ...). Supposons donc qu’a chaque essai, la probabilité de succes est p et,
sans construire explicitement un univers, introduisons les événements

Sk: “la k-ieme tentative conduit & un succes”  (k € IN¥),

et notons X le nombre de tentatives nécessaires pour obtenir un premier succes. Admettons
que X puisse étre considérée comme une variable aléatoire sur un certain espace probabilisé.
On a alors X (Q2) = IN* et, pour tout k& € IN*, on observe que

{X=k}=8 NN Se_1 N S.

Par indépendance des événements Sy, -+, S (dont on peut remplacer certains par leur
complémentaire), on a

k—1
P =k = ([ PG)) - P(S)=d""p.

Donc X ~ G(p). On dira que X est le temps d’attente du premier succes.

Notons que I'indépendance mutuelle des événements Si, - --, Sk est une fagon de traduire
la notion intuitive d’“épreuves de Bernoulli indépendantes”.

En toute rigueur, il faudrait considérer que X (Q) = IN* U {+oco}. En effet, I’événement
{X = 400}, qui traduirait le fait que l'on n’obtient jamais aucun succes lors de cette
répétition infinie d’épreuves, n’est pas a priori impossible. Il est seulement négligeable:
en effet, son complémentaire est 'événement {X < 4oo} = |_| {X = Ek}, dont la
“+o00 “+o00 keIN*
probabilité est P(X < 4o00) = ZP(X =k)= quk_l =1.
k=1 k=1

Un petit calcul. Si une variable aléatoire X suit la loi géométrque G(p), on peut étre
amené a calculer la probabilité de I'événement {X > n} pour n € IN donné. Pour cela,

+oo
on peut bien slr écrire que {X > n} = |_| {X = k}, et en déduire, par additivité
dénombrable, que k=n+1
+oo

+o00 400 . 1
P(X>n)= 3 P(X=k= > pi""=pi"Y ¢ =ps" — =7"
k=n-+1 k=n-+1 j=0 q



(on reconnait un reste de série géométrique, on factorise donc par q" et on fait un décalage
d’indice). Mais il est plus rapide de se souvenir de linterprétation en termes de temps

d’attente d’un succes: 'événement {X > n} signifie alors que les n premiéres tentatives se
n

sont soldées par des échecs. Avec des notations déja introduites ci-dessus, {X > n} = m Sk,
donc par indépendance des épreuves, k=1

P(X>n)=[[PEk)=q"=01-p)".
k=1



