EXERCICES de PROBABILITES PSI2 2025-2026

Notion de probabilité. Espaces probabilisés.

1. Un animal erre entre trois points d’eau A, B, C. A linstant t = 0, il est au point A. Si, a

I'instant n, il est en 'un des trois points A, B ou C, il en part alors et sera a l'instant n+1 de
fagon équiprobable en I'un des deux autres points d’eau. Pour n entier naturel, on note a,,
la probabilité pour que ’animal soit au point A a I'instant n. On définit de méme b, et c,,.

a. Exprimer a,41, bpt1 €t ¢,41 en fonction de a,, b, et c,.

b.

0 1/2 1/2
Soit la matrice A = | 1/2 0 1/2 |. Montrer qu’elle est diagonalisable et, en moins
1/2 1/2 0

d’une minute, trouver une matrice diagonale D et une matrice inversible P telles que
A=PDP".

c. Exprimer a,, b,, ¢, en fonction de n.

a. Si 'on note A,, I’événement: “a l'instant n, 'animal se trouve au point A”, et de méme, B,

et C),, on a alors, par la formule des probabilités totales,
P(An+1) = P(An+1|An) P(An) + P(An+1|Bn) P(Bn) + P(An+1|0n) P(Cn) )

1 1 1
SOit Gpy1 = §(bn + ¢,) et, de méme, b, 11 = §(an +cn) et cpyr = i(an +by).

1
. La matrice A est symétrique réelle donc diagonalisable, on note que M = A + 5[3 =

1 1 1
— |11 1 1] estderang 1, et que Ker(M) = Eo(M) = E_%(A) est le plan d’équation
1 1 1
cartésienne  + y + z = 0. En utilisant (par exemple) la trace, on voit que 1 est valeur
1
propre de A, le sous-espace propre associé étant la droite engendrée par le vecteur | 1
1
On peut par exemple utiliser le fait que, la matrice A étant symélrique réelle, ses sous-
espaces propres sont deur & deuz orthogonauz. On déduit facilement que A = PDP~! avec
1 1 1 0 1
D:diag(—i,—§,1> et P=[-1 1 1
0 -1 1
an 1

c. On introduit le vecteur-colonne X,, = | b, |. Alors Xg = [ 0 | et, pour tout n entier na-

Cn 0
1 2 -1 -1
turel, on a X,,41 = AX,,, d’ot classiquement X, = A"Xy.Ona P '=—- |1 1 -2 |,
1 1 1
Tn Yn Yn 1 9 1"
puis A" = P D" P! = |y, m, yn |, avec wn=§+§x(——>et
Yn Yn Tn

). Enfin, X,, = A" X est la premiére colonne de A", donc
2
3

(F) w measb (D)




2. On effectue une suite de lancers indépendants d’une piece de monnaie. La probabilité d’obtenir

“Face” & chaque lancer est p €]0, 1].
Pour tout n > 1, on considere I’événement U,: “on obtient deux Face de suite, pour la
premiere fois, aux lancers numéros n et n + 1”7, et on pose u,, = P(U,).

Notons r,, la probabilité qu’au cours des n premiers lancers, on ait obtenu au moins une
fois deux Face consécutifs. Exprimer r,, en fonction des ug. On considere aussi I’événement

E,: “il existe k € [1,n] tel que on ait obtenu Face aux lancers numéros 2k — 1 et 2k”.
—+o0

Montrer que P(E,) = 1— (1 —p*)". Montrer que P(E,,) < 73,. En déduire que Z u, = 1.

Interpréter. n=1

Pour tout n € IN*, nous noterons F,, I’événement: “le n-éme lancer donne Face” et P, = F,,
lévénement contraire, a savoir: “le n-éme lancer donne Pile”. On a donc P(F,) = p.

Si, pour n > 2, on note R, ’événement: “au cours des m premiers lancers, on obtient

n—1
au moins une fois deux Face consécutifs”, on a R, = |_| Ui (réunion disjointe). Donc
k=1
n—1 n n
Ty = Zuk. On a ensuite E,, = U(ng,l N Fy), done E,, = m(ng,l U Fy) =
k=1 k=1 k=1

n

ﬂ (ng_l N F2k>. Or, P(ng_l N ng) = 1 —p?. Par indépendance, P(E,) = (1 —p?)",
k=1
puis P(E,) =1— (1 —p?)". En termes d’événements, on a clairement F,, C Ry,, donc par
croissance d'une probabilité, P(E,) < P(Ray) = r2,. On a alors les inégalités 1—(1—p*)" <

ron, < 1. Par encadrement, on déduit 111}3 ron, = 1. La suite (r,) étant croissante (sommes
n—-+0oo
+oo
partielles d’une série & termes positifs), on déduit lim r, = 1, soit Zun = 1. Il est
n—+oo ot

donc presque stur que ’on obtiendra “un jour” deux Face consécutifs.

Remarque. On peut obtenir ce dernier résultat un peu plus simplement. En effet, si I'on
note E I’événement: “on obtient au moins une fois deux Face consécutifs”, alors on a
E, C E pour tout n. Donc P(E,) < P(E) <1 pour tout n. Comme lim P(E,) =1,

n——+oo
alors P(E) = 1.

3*.

Probléme de la ruine du joueur. Deux joueurs A et B s’affrontent en des parties
indépendantes. Le joueur A dispose d’une fortune égale a n brouzoufs tandis que le joueur
B dispose de N — n brouzoufs. A chaque tour, le joueur A a la probabilité p €]0,1[ de
I’emporter et le joueur B a la probabilité complémentaire ¢ = 1 — p. Le joueur perdant cede
alors un brouzouf au vainqueur. Le jeu continue jusqu’a la ruine d’un des deux joueurs. On
note a, la probabilité que le joueur A I'emporte lorsque sa fortune initiale vaut n.

a. Que valent ag et ay ? Etablir la formule de récurrence

Vn e [1,N —1] Gp =P an+1 +qGn_1 -



b. En déduire que la suite (uy)1<n<n définie par w, = a, — a,—1 est géométrique.
c. Calculer a,, en distinguant les cas p = q et p # q.

d. Montrer que le jeu s’arréte presque surement.

a.Onaagy=0etay =1.

Supposons que le joueur A posséde une fortune initiale de n brouzoufs. Notons T' I’événement:
“le joueur A gagne le premier tour de jeu”, et E,, 'événement: “le joueur A gagne la partie”.
On a alors, par la formule des probabilités totales, la relation

an = P(Ey) = P(En|T) P(T) + P(En|T) P(T) -

Or, P(T) = p, P(T) = q, P(E,|T) = an41 = P(E,;1) puisque cela revient a démarrer la
partie avec une fortune initiale de n+ 1 brouzoufs pour le joueur A, et de méme P(E,|T) =
P(E,—1) = ap—1. On obtient bien la relation

Ap = P An41 + qap—1 .
b. La relation obtenue ci-dessus s’écrit aussi p a,, + ¢ @, = p Gn41 + q Gp—1, soit encore
q(an —an_1) =p(ant1 — an), OU encore Upi1 = Z; Uy,

. 1 . Lo .
c.eSip=gq= 3 alors la suite (u,) est constante, ce qui signifie que (a,) est une suite

n
arithmétique. Avec ag = 0 et ay = 1, on déduit a,, = W pour n € [o, NJ.

1 q n—1 q n—1
e Sip#gq,ie. sip#é,on a, pour tout n € [1, N|, u, = (;0) up = (5) a1, puis

n n n—1 q E 1— (g)n
an:ao—f—Z(ak—ak,l):Zuk:al Z(i) :allipﬂ'
k=1 k=1 k=0 p — P

1_4
p

1=(3)

Ensuite la relation ay = 1 fournit aq, = - Finalement,

1
Vn € [0, N] an =
1

d. Un calcul symétrique montre que la probabilité que le joueur B gagne lorsque sa fortune
1 _ (B)n
Y S
_ ()N

q
il est donc presque siir que I'un des deux joueurs gagne en un temps fini.

initiale vaut n est b,, = . Un calcul laissé au lecteur montre que a,, +by_, = 1,

“+o0 “+o0
4. Soit (A,) une suite d’événements sur un espace probabilisé (€2, A, P). On pose S = ﬂ ( U Ak).
n=0 k=n

a. Montrer que S est un événement, i.e. S € A, et qu’il est réalisé si et seulement si une infinité
des événements A,, sont réalisés.



. Dans cette question et la suivante, on considére une suite infinie de lancers indépendants
d’une piéce, la probabilité d’obtenir “Pile” & chaque lancer étant p €]0, 1[. Pour tout n € IN,
on considere I’événement A,, : “au cours des 2n premiers lancers, on obtient autant de Pile
que de Face”. Calculer P(A,) pour tout n. om 1

. Montrer que, pour tout n entier naturel, on a < N > < 4". En déduire que, si p # 3 la

série Z P(A,,) converge. Montrer alors que P(S) = 0.
n>0

. Une tribu est stable par réunion ou intersection finie ou dénombrable, donc S € A.
Soit par ailleurs w € €. On a

weS < VYnelN Jk>n weA;.

Cela signifie que I’ensemble des indices k tels que w € Ay est une partie de IN non majorée,
ou ce qui revient au méme, une partie de IN infinie.

. On reconnait un schéma de Bernoulli (répétition de 2n épreuves de Bernoulli indépendantes)
de parametres 2n et p, la probabilité d’apparition de n “succes” lors de 2n épreuves est

alors P(A,) = <2:) p" (1 —p)", c’est la loi binomiale B(2n, p).

. L’inégalité ( N < 4™ est vraie pour n = 0 (c’est alors une égalité), et on récurre
facilement apres avoir vérifié que

2(n+1)
( n+1 ) (2n+2)! (n!)? 2(2n+1)<4n+474

(2n) (n+1))2@n)! nt+l = ntl

1 1
Sip # 5 alors p(1 — p) < 1 (étudier les variations de « — z(1 — x) sur [0, 1]), et alors
0< P4, < [4p(1 — p)]n (majoration par une suite géométrique de raison < 1), donc par
comparaison de séries a termes positifs, la série Z P(A,) est convergente.

—+oo —+oo
Posons B, = U Ay, alors P(B,) < ZP(Ak) par la propriété de sous-additivité,

k=n k=n
mais comme le reste d’ordre n d’une série convergente tend vers zéro lorsque n tend

vers +00, on en tire que lirf P(B,) = 0. Enfin, on a S C B,, pour tout n, donc par
n—-+0o0
croissance d’une probabilité, 0 < P(S) < P(B,) pour tout n. Comme lirf P(B,) =0,
n——+00
on déduit que P(S) = 0.

1
Autrement dit, si la piece est déséquilibrée (p # 5), le jeu sera presque stirement définitivement
déséquilibré a partir d’un certain moment. J’essaie de m’expliquer plus clairement: par ex-
emple, si p > ok alors a chaque lancer, il est plus probable d’obtenir “Pile” que “Face”

et, si lon répete indéfiniment des lancers de cette piece, il est presque str (événement
de probabilité 1) qu’a partir d’un certain moment, on comptabilisera toujours strictement



plus de “Pile” que de “Face” dans les lancers déja effectués. Bref, si une équipe est vrai-
ment meilleure qu’'une autre a un jeu qu’elles répetent indéfiniment, il est presque sir qu’il
arrivera un moment ou les deux équipes n’égaliseront plus, 'avantage restant définitivement
a I’équipe la plus forte.

5*. Soit (A4,) une suite d’événements mutuellement indépendants. Montrer que la probabilité

qu’aucun des événements A,, ne soit réalisé est majorée par M = exp ( — Z P(An)).
—x

On pourra utiliser l'inégalité YVx € IR 1 —x <e

Pour tout n, on a, puisque les A,, sont aussi mutuellement indépendants,

n

(*) : P(ﬁfk) HP (4 ) H( —P(Ak))gﬁe_P(Ak):exp(— P(Ak)).

k=0 k=0 k=0
“+ o0 “+o00 n
Par continuité décroissante, puisque ﬂ A, = ﬂ B,, avec B,, = ﬂ Ay, la suite (B,,) étant
n=0 n=0 k=0

n —+oo
décroissante pour l'inclusion, on a donc  lim P( ﬂ ka‘) = P( ﬂ E)

n—-+4oo

+o00
Par ailleurs, hm exp( ZP (Ag) ) = exp ( — ZP(A,J) = M par continuité de
n=0

I’exponentielle, en convenant que M = 0 si la série Z P(Ayg) diverge, ce qui est cohérent.
Par passage a la limite dans (*), on obtient alors I'inégalité demandée.

Remarque. On déduit notamment que, si les A,, sont mutuellement indépendants et si la
série Z P(A,,) diverge, alors il est presque sir qu’aucun moins un des événements A,, se
réalise.

Variables aléatoires discrétes.

6. Deux variables aléatoires indépendantes X et Y suivent des lois géométriques G(p) et G(q)
respectivement. Calculer P(X <Y).

On décompose {X <Y} = | |({X =k} N {Y > k}). Par g-additivité de P, puis

k=1
indépendance des variables X et Y, on obtient
k
P(X <Y) ZP P(Y > k) Zpl PP (1-gf =p(1-9 > (1-p)(1-9q)

pl-q) _ p—prq
—(1=-p)(1-q) pt+a-pq

Cela donne P(X <Y) = 1



7. Calculer E( si X suit la loi de Poisson de parametre A > 0.

7)o % it o i de Poison de paranitee ) >

A
C’est juste un petit calcul: la formule du transfert donne E(X n 1) Z Pl _AH

sous réserve que cette série converge. On peut aussi dire que le calcul est tougours possible
k

dans [0, +00] puisque tous les termes sont positifs. Mais le terme général e~ (k 1) est, a
1
un décalage d’indice pres, celui d’une série exponentielle, d’ou la convergence, soit X1
est d’espérance finie et
_a Foo —A Foo -
B S S
X+1 k: +1 )\ ki +1 A Pt k! A

8. Deux variables aléatoires indépendantes X et Y suivent des lois géométriques G(p) et G(q)

. . . X 1 oo .
respectivement. Quelle est la probabilité que la matrice A = ( 0y soit diagonalisable 7

On note d’abord que la matrice aléatoire A(w) = ( v (w)) est diagonalisable si

et seulement si X(w) # Y (w): en effet, elle est triangulaire donc, si X (w) # Y (w), elle
admet deux valeurs propres distinctes, ce qui entraine sa diagonalisabilité, tandis que si
X(w) = Y(w), elle a une seule valeur propre et elle n’est pas scalaire donc elle n’est
pas diagonalisable. L’événement {A est diagonalisable} coincide donc avec 1’événement
{X #Y}. 1l est plus facile de travailler sur I’événement contraire, puisque

+oo

(X=vy=]({x =k n (v =k}),
k=1
Par incompatibilité puis indépendance, on déduit

PX=Y) = fP(X:ketY:k)

- iOP(X:k) P(Y = k)
k:1+oo

= g Z(l —p) (1 — g

= pq Z (1=p)(1—q)"

pq
I-(1-p)(1—-q)°




-2
Enfin, P({A est diagonalisable}) =1 - P(X =Y) = w
p+q—pq

9. Soit N € IN*. Soit p €]0,1[. On pose ¢ = 1 —p. On considére N variables aléatoires X1, - -+, X
définies sur un méme espace probabilisé (€2, A, P), mutuellement indépendantes et de méme
loi géométrique de parametre p.
a. Soit ¢ € [1, N, soit n € IN*. Déterminer P(X; < n), puis P(X; > n).
b. On consideére la variable aléatoire Y définie par Y = . 2ni<nN X;, c’est-a-dire
Yw € Q Y (w) = min { X/ (w ,--~_7}(N(w)} .
Soit n € IN*, calculer P(Y > n). En déduire P(Y < n), puis P(Y =n).
c. Reconnaitre la loi de Y. En déduire E(Y).
a.Ona P(X; =k) = qp" ! pour k € IN*, donc
1—q"
1—gq

n

n n n—1
P(X;<n)=> P(Xi=k)=> pd"'=p> ¢ =p =1-g¢
k=1 k=1 k=0
Par événement contraire, P(X; >n)=1—-P(X; <n)=¢"=(1-p)".

b.SiweQ onaY(w)>n < min{X;w), -, Xyw)} >n < Vie[l,N] X;(w)>n,
N
donc {Y > n} = (]{X7 > N} et, par indépendance des variables X,
i=1 N
PY >n)=[[P(X;>n) = ()" =¢"" .
i=1

Par événement contraire de nouveau, P(Y <n) =1—P(Y >n) =1 — ¢"V, puis
P(Y =n)=P{Y >n—1)—P(Y >n)=q¢m IV _ "N = ((n=DNq _ ¢V
c. On a Y(Q) = IN* et, pour tout n € IN*, P(Y =n) = (1 — ¢") (¢™)" ", on reconnait une
1

loi géométrique de parametre 1 — ¢”. Donc, d’apres le cours, EY)= 1 ~-
—q

10. Lors d’une rencontre d’athlétisme, la barre est montée d’un cran apres chaque saut réussi par
le concurrent. La compétition s’arréte pour le sauteur au premier saut raté. Pour le saut
numéro n, l'athlete a une chance sur n de passer la barre. On note X le rang du dernier
saut réussi.

Quelle est la loi de X? Montrer que X? est d’espérance finie, calculer espérance et la
variance de X.

11. On considére un détecteur de particules ayant une probabilité de détection de chaque par-
ticule égale & p €]0, 1[. On note N et S les variables aléatoires qui comptent respectivement
le nombre de particules arrivant sur le capteur et le nombre de particules détectées. On
suppose que N suit une loi de Poisson de parametre A.



a. Soient s et n entiers naturels. Calculer P(S = s|N = n), puis P(S = s, N = n). En déduire
la loi de S.

b. Sans calcul, donner la loi de N — S.
c. Les variables S et N — S sont-elles indépendantes ?
d. Les variables NV et S sont-elles indépendantes 7

a. La loi conditionnelle de S sachant N = n est binomiale de parametres n et p, autrement dit

n
31_ n—s Si0<8<n
VY(s,n) € IN? P(S=s|N=n)= (s)p( p) <s<n

0 si s>n
Par la formule des probabilités composées,
P(S=s,N=n) = P(N=n)P(S=s|N=n)
A
-2 s n—s :
_ e m(g)p(lp) si0<s<n
0 si s>n

Enfin, par la formule des probabilités totales, en posant ¢ = 1 — p pour abréger,
+oo
P(S=s) = ZP(SZS, N =n)

+oo
A" (n
_ - s n—s
= > (1)
n=s
e~ X \S P +oo 2k qk

s! k!
k=0

—A \S S s
€ A p e)\q — e—Ap (Ap) )
s! s!

La variable S suit donc la loi de Poisson P(Ap).

b. La variable N — S représente le nombre de particules ayant échappé a la détection. Or,
la probabilité de non-détection d’une particule arrivant sur le capteur est ¢ = 1 — p. En
quelque sorte, les succés deviennent des échecs et inversement. 1l suffit donc d’échanger p
et ¢ pour avoir la loi de la variable N — S, c¢’est donc P(Aq).

c. Si k et [ sont deux entiers naturels, on a

AR k+1
- e B B o k1
P(S=kN=-S=I)=P(S=kN=k+l)=e (k+l)!( k )pq’

tandis que

B )\pk B )\ql B )\k+lpkql
P(S=k)P(N-S=1l)=¢e )\p(k!) e )‘q(“) =e Aik!l!



On constate que les deux expressions sont égales, les variables S et N — S sont donc
indépendantes.

d. Les variables S et N ne sont pas indépendantes, par exemple car P(S =2 N = 1) =0,
alors que P(S =2) et P(N = 1) sont tous les deux non nuls.

12. Une urne contient trois boules numérotées 1, 2, 3. On tire avec remise une boule dans cette
urne, on note X le nombre de tirages nécessaires pour voir apparaitre les trois numéros. On
note A le rang d’apparition du premier 1, B celui du premier 2, C' celui du premier 3.

a. Exprimer ’événement {X > n} en fonction de A, B et C. Calculer P(X > n) pour n € IN™.
b. Calculer P(X = n), puis Z P(X ). Interpréter.

c. La variable X est-elle d’espérance finie ? Si oui, calculer E(X).

a. Notons que X () = [3, +oof. L’événement {X > n} se réalise lorsqu’au moins une des trois
boules n’est pas apparue lors des n premiers tirages, donc

{X>n}={A>n} U{B>n} U{C>n}.

Posons E = {A > n}, F = {B > n}, G = {C > n}. Il est connu que P(E U F) =
P(E)+ P(F)— P(E N F). En itérant, on obtient

P(EUFUG) = P((EUF)UQG)
P(E U F)+P(G)-P((E U F) N G)
= PE)+P(F)-P(ENF)+PG)-P(ENG) U(FNG)
P(EY+P(F)+ P(G)—-P(ENF)—PFNG)—P(GNEY+P(ENFNAQG).

Pour démontrer cette relation, cas particulier de la “formule de Poincaré”, dite aussi
“formule du crible” (hors programme), on a utilisé notamment la distributivité de 'intersection
par rapport & a réunion: (E U F) N G=(E N G) U (F N G), et I'égalité évidente
(ENGNnFEFNG=EnFnQG.

2\ "
Ici, les événements E, F, G ont tous trois pour probabilité (5) , les événements £ N F,

T\"
F N Get G N E ont tous trois pour probabilité (5) ,enfin E N F N G = 0. Finalement,

2\" I\ 2" -1
Notons que cela reste cohérent pour n =1 et n = 2 puisque P(X > 1) = P(X > 2) =1.
b. Pour n > 3, on a

-l 1 2n—1 2n7l_2
PX=n)=PX>n—-1)—P(X >n) = T
On peut calculer “bétement” la somme de la série (ce sont des séries géométriques), mais
on peut aussi utiliser le télescopage:




+oo +o0
ZP(X:n):Z(P(X>n—1)—P(X>n)) —P(X>2)— lim P(X>n)=1-0=1,
n=1

n—-4oo
n=3

ce qui rassure toujours! De fagon presque siire, on finira par voir apparaitre les trois boules.
c. Comme X est une variable aléatoire a valeurs dans IN, il suffit de considérer la série

ZP(X > n), qui est aussi, par décalage, Z P(X > n — 1), soit encore Z P(X > n).
n>1 n>0 n>0

. o . . . 2 1
On a alors une combinaison linéaire de deux séries géométriques de raisons - et =, d’otui la

convergence, ce qui montre que X € L*(Q), puis

8 1

+00 +oo n n IX —= 3X =
E(X):ZP(X>n):1+1+1+Z[3x(§) —3x(;) } —3+ 1 2L+ : 2 :%.

n=0 n=3 _ — -

3 3



