
EXERCICES de PROBABILITÉS PSI2 2025-2026

Notion de probabilité. Espaces probabilisés.

1. Un animal erre entre trois points d’eau A, B, C. À l’instant t = 0, il est au point A. Si, à
l’instant n, il est en l’un des trois points A, B ou C, il en part alors et sera à l’instant n+1 de
façon équiprobable en l’un des deux autres points d’eau. Pour n entier naturel, on note an
la probabilité pour que l’animal soit au point A à l’instant n. On définit de même bn et cn.

a. Exprimer an+1, bn+1 et cn+1 en fonction de an, bn et cn.

b. Soit la matrice A =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0

. Montrer qu’elle est diagonalisable et, en moins

d’une minute, trouver une matrice diagonale D et une matrice inversible P telles que
A = PDP−1.

c. Exprimer an, bn, cn en fonction de n.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Si l’on note An l’événement: “à l’instant n, l’animal se trouve au point A”, et de même, Bn
et Cn, on a alors, par la formule des probabilités totales,

P (An+1) = P (An+1|An) P (An) + P (An+1|Bn) P (Bn) + P (An+1|Cn) P (Cn) ,

soit an+1 =
1

2
(bn + cn) et, de même, bn+1 =

1

2
(an + cn) et cn+1 =

1

2
(an + bn).

b. La matrice A est symétrique réelle donc diagonalisable, on note que M = A +
1

2
I3 =

1

2

 1 1 1
1 1 1
1 1 1

 est de rang 1, et que Ker(M) = E0(M) = E− 1
2

(A) est le plan d’équation

cartésienne x + y + z = 0. En utilisant (par exemple) la trace, on voit que 1 est valeur

propre de A, le sous-espace propre associé étant la droite engendrée par le vecteur

 1
1
1

.

On peut par exemple utiliser le fait que, la matrice A étant symétrique réelle, ses sous-
espaces propres sont deux à deux orthogonaux. On déduit facilement que A = PDP−1 avec

D = diag
(
− 1

2
,−1

2
, 1
)

et P =

 1 0 1
−1 1 1
0 −1 1

.

c. On introduit le vecteur-colonne Xn =

 an
bn
cn

. Alors X0 =

 1
0
0

 et, pour tout n entier na-

turel, on a Xn+1 = AXn, d’où classiquement Xn = AnX0. On a P−1 =
1

3

 2 −1 −1
1 1 −2
1 1 1

,

puis An = P Dn P−1 =

xn yn yn
yn xn yn
yn yn xn

, avec xn =
1

3
+

2

3
×
(
− 1

2

n)
et

yn =
1

3
− 1

3
×
(
− 1

2

n)
. Enfin, Xn = AnX0 est la première colonne de An, donc

an =
1

3
+

2

3
×
(
− 1

2

n)
et bn = cn =

1

3
− 1

3
×
(
− 1

2

n)
.



2. On effectue une suite de lancers indépendants d’une pièce de monnaie. La probabilité d’obtenir
“Face” à chaque lancer est p ∈]0, 1[.
Pour tout n ≥ 1, on considère l’événement Un: “on obtient deux Face de suite, pour la
première fois, aux lancers numéros n et n+ 1”, et on pose un = P (Un).

Notons rn la probabilité qu’au cours des n premiers lancers, on ait obtenu au moins une
fois deux Face consécutifs. Exprimer rn en fonction des uk. On considère aussi l’événement

En: “il existe k ∈ [[1, n]] tel que l’on ait obtenu Face aux lancers numéros 2k − 1 et 2k”.

Montrer que P (En) = 1− (1−p2)n. Montrer que P (En) ≤ r2n. En déduire que

+∞∑
n=1

un = 1.

Interpréter.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Pour tout n ∈ IN∗, nous noterons Fn l’événement: “le n-ème lancer donne Face” et Pn = Fn
l’événement contraire, à savoir: “le n-ème lancer donne Pile”. On a donc P (Fn) = p.

Si, pour n ≥ 2, on note Rn l’événement: “au cours des n premiers lancers, on obtient

au moins une fois deux Face consécutifs”, on a Rn =

n−1⊔
k=1

Uk (réunion disjointe). Donc

rn =

n−1∑
k=1

uk. On a ensuite En =

n⋃
k=1

(F2k−1 ∩ F2k), donc En =

n⋂
k=1

(F2k−1 ∪ F2k) =

n⋂
k=1

(
F2k−1 ∩ F2k

)
. Or, P

(
F2k−1 ∩ F2k

)
= 1− p2. Par indépendance, P (En) = (1− p2)n,

puis P (En) = 1− (1− p2)n. En termes d’événements, on a clairement En ⊂ R2n, donc par
croissance d’une probabilité, P (En) ≤ P (R2n) = r2n. On a alors les inégalités 1−(1−p2)n ≤
r2n ≤ 1. Par encadrement, on déduit lim

n→+∞
r2n = 1. La suite (rn) étant croissante (sommes

partielles d’une série à termes positifs), on déduit lim
n→+∞

rn = 1, soit

+∞∑
n=1

un = 1. Il est

donc presque sûr que l’on obtiendra “un jour” deux Face consécutifs.

Remarque. On peut obtenir ce dernier résultat un peu plus simplement. En effet, si l’on
note E l’événement: “on obtient au moins une fois deux Face consécutifs”, alors on a
En ⊂ E pour tout n. Donc P (En) ≤ P (E) ≤ 1 pour tout n. Comme lim

n→+∞
P (En) = 1,

alors P (E) = 1.

3*. Problème de la ruine du joueur. Deux joueurs A et B s’affrontent en des parties
indépendantes. Le joueur A dispose d’une fortune égale à n brouzoufs tandis que le joueur
B dispose de N − n brouzoufs. À chaque tour, le joueur A a la probabilité p ∈]0, 1[ de
l’emporter et le joueur B a la probabilité complémentaire q = 1−p. Le joueur perdant cède
alors un brouzouf au vainqueur. Le jeu continue jusqu’à la ruine d’un des deux joueurs. On
note an la probabilité que le joueur A l’emporte lorsque sa fortune initiale vaut n.

a. Que valent a0 et aN ? Établir la formule de récurrence

∀n ∈ [[1, N − 1]] an = p an+1 + q an−1 .



b. En déduire que la suite (un)1≤n≤N définie par un = an − an−1 est géométrique.

c. Calculer an en distinguant les cas p = q et p 6= q.

d. Montrer que le jeu s’arrête presque sûrement.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. On a a0 = 0 et aN = 1.

Supposons que le joueur A possède une fortune initiale de n brouzoufs. Notons T l’événement:
“le joueur A gagne le premier tour de jeu”, et En l’événement: “le joueur A gagne la partie”.
On a alors, par la formule des probabilités totales, la relation

an = P (En) = P (En|T ) P (T ) + P (En|T ) P (T ) .

Or, P (T ) = p, P (T ) = q, P (En|T ) = an+1 = P (En+1) puisque cela revient à démarrer la
partie avec une fortune initiale de n+1 brouzoufs pour le joueur A, et de même P (En|T ) =
P (En−1) = an−1. On obtient bien la relation

an = p an+1 + q an−1 .

b. La relation obtenue ci-dessus s’écrit aussi p an + q an = p an+1 + q an−1, soit encore

q (an − an−1) = p (an+1 − an), ou encore un+1 =
q

p
un.

c. • Si p = q =
1

2
, alors la suite (un) est constante, ce qui signifie que (an) est une suite

arithmétique. Avec a0 = 0 et aN = 1, on déduit an =
n

N
pour n ∈ [[0, N ]].

• Si p 6= q, i.e. si p 6= 1

2
, on a, pour tout n ∈ [[1, N ]], un =

(q
p

)n−1
u1 =

(q
p

)n−1
a1, puis

an = a0 +

n∑
k=1

(ak − ak−1) =

n∑
k=1

uk = a1

n−1∑
k=0

(q
p

)k
= a1

1−
(
q
p

)n
1− q

p

.

Ensuite la relation aN = 1 fournit a1 =
1− q

p

1−
(
q
p

)N . Finalement,

∀n ∈ [[0, N ]] an =
1−

(
q
p

)n
1−

(
q
p

)N .

d. Un calcul symétrique montre que la probabilité que le joueur B gagne lorsque sa fortune

initiale vaut n est bn =
1−

(
p
q

)n
1−

(
p
q

)N . Un calcul laissé au lecteur montre que an + bN−n = 1,

il est donc presque sûr que l’un des deux joueurs gagne en un temps fini.

4. Soit (An) une suite d’événements sur un espace probabilisé (Ω,A, P ). On pose S =

+∞⋂
n=0

( +∞⋃
k=n

Ak

)
.

a. Montrer que S est un événement, i.e. S ∈ A, et qu’il est réalisé si et seulement si une infinité
des événements An sont réalisés.



b. Dans cette question et la suivante, on considère une suite infinie de lancers indépendants
d’une pièce, la probabilité d’obtenir “Pile” à chaque lancer étant p ∈]0, 1[. Pour tout n ∈ IN,
on considère l’événement An : “au cours des 2n premiers lancers, on obtient autant de Pile
que de Face”. Calculer P (An) pour tout n.

c. Montrer que, pour tout n entier naturel, on a

(
2n
n

)
≤ 4n. En déduire que, si p 6= 1

2
, la

série
∑
n≥0

P (An) converge. Montrer alors que P (S) = 0.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Une tribu est stable par réunion ou intersection finie ou dénombrable, donc S ∈ A.
Soit par ailleurs ω ∈ Ω. On a

ω ∈ S ⇐⇒ ∀n ∈ IN ∃k ≥ n ω ∈ Ak .

Cela signifie que l’ensemble des indices k tels que ω ∈ Ak est une partie de IN non majorée,
ou ce qui revient au même, une partie de IN infinie.

b. On reconnâıt un schéma de Bernoulli (répétition de 2n épreuves de Bernoulli indépendantes)
de paramètres 2n et p, la probabilité d’apparition de n “succès” lors de 2n épreuves est

alors P (An) =

(
2n
n

)
pn(1− p)n, c’est la loi binomiale B(2n, p).

c. L’inégalité

(
2n
n

)
≤ 4n est vraie pour n = 0 (c’est alors une égalité), et on récurre

facilement après avoir vérifié que(
2(n+ 1)
n+ 1

)
(

2n
n

) =
(2n+ 2)!(
(n+ 1)!

)2 (n!)2

(2n)!
=

2(2n+ 1)

n+ 1
≤ 4n+ 4

n+ 1
= 4 .

Si p 6= 1

2
, alors p(1 − p) < 1

4
(étudier les variations de x 7→ x(1 − x) sur [0, 1]), et alors

0 ≤ P (An) ≤
[
4p(1− p)

]n
(majoration par une suite géométrique de raison < 1), donc par

comparaison de séries à termes positifs, la série
∑

P (An) est convergente.

Posons Bn =

+∞⋃
k=n

Ak, alors P (Bn) ≤
+∞∑
k=n

P (Ak) par la propriété de sous-additivité,

mais comme le reste d’ordre n d’une série convergente tend vers zéro lorsque n tend
vers +∞, on en tire que lim

n→+∞
P (Bn) = 0. Enfin, on a S ⊂ Bn pour tout n, donc par

croissance d’une probabilité, 0 ≤ P (S) ≤ P (Bn) pour tout n. Comme lim
n→+∞

P (Bn) = 0,

on déduit que P (S) = 0.

Autrement dit, si la pièce est déséquilibrée (p 6= 1

2
), le jeu sera presque sûrement définitivement

déséquilibré à partir d’un certain moment. J’essaie de m’expliquer plus clairement: par ex-

emple, si p >
1

2
, alors à chaque lancer, il est plus probable d’obtenir “Pile” que “Face”

et, si l’on répète indéfiniment des lancers de cette pièce, il est presque sûr (événement
de probabilité 1) qu’à partir d’un certain moment, on comptabilisera toujours strictement



plus de “Pile” que de “Face” dans les lancers déjà effectués. Bref, si une équipe est vrai-
ment meilleure qu’une autre à un jeu qu’elles répètent indéfiniment, il est presque sûr qu’il
arrivera un moment où les deux équipes n’égaliseront plus, l’avantage restant définitivement
à l’équipe la plus forte.

5*. Soit (An) une suite d’événements mutuellement indépendants. Montrer que la probabilité

qu’aucun des événements An ne soit réalisé est majorée par M = exp
(
−

+∞∑
n=0

P (An)
)

.

On pourra utiliser l’inégalité ∀x ∈ IR 1− x ≤ e−x.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Pour tout n, on a, puisque les An sont aussi mutuellement indépendants,

(*) : P
( n⋂
k=0

Ak

)
=

n∏
k=0

P
(
Ak
)

=

n∏
k=0

(
1− P (Ak)

)
≤

n∏
k=0

e−P (Ak) = exp
(
−

n∑
k=0

P (Ak)
)
.

Par continuité décroissante, puisque

+∞⋂
n=0

An =

+∞⋂
n=0

Bn avec Bn =

n⋂
k=0

Ak, la suite (Bn) étant

décroissante pour l’inclusion, on a donc lim
n→+∞

P
( n⋂
k=0

Ak

)
= P

( +∞⋂
k=0

Ak

)
.

Par ailleurs, lim
n→+∞

exp
(
−

n∑
k=0

P (Ak)
)

= exp
(
−

+∞∑
n=0

P (An)
)

= M par continuité de

l’exponentielle, en convenant que M = 0 si la série
∑

P (Ak) diverge, ce qui est cohérent.

Par passage à la limite dans (*), on obtient alors l’inégalité demandée.

Remarque. On déduit notamment que, si les An sont mutuellement indépendants et si la

série
∑

P (An) diverge, alors il est presque sûr qu’aucun moins un des événements An se

réalise.

Variables aléatoires discrètes.

6. Deux variables aléatoires indépendantes X et Y suivent des lois géométriques G(p) et G(q)
respectivement. Calculer P (X < Y ).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

On décompose {X < Y } =

+∞⊔
k=1

(
{X = k} ∩ {Y > k}

)
. Par σ-additivité de P , puis

indépendance des variables X et Y , on obtient

P (X < Y ) =

+∞∑
k=1

P (X = k)P (Y > k) =

+∞∑
k=1

p(1−p)k−1 (1−q)k = p (1−q)
+∞∑
k=0

(
(1−p)(1−q)

)k
.

Cela donne P (X < Y ) =
p(1− q)

1− (1− p)(1− q)
=

p− pq
p+ q − pq

.



7. Calculer E
( 1

X + 1

)
si X suit la loi de Poisson de paramètre λ > 0.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

C’est juste un petit calcul: la formule du transfert donne E
( 1

X + 1

)
=

+∞∑
k=0

1

k + 1
e−λ

λk

k!

sous réserve que cette série converge. On peut aussi dire que le calcul est toujours possible

dans [0,+∞] puisque tous les termes sont positifs. Mais le terme général e−λ
λk

(k + 1)!
est, à

un décalage d’indice près, celui d’une série exponentielle, d’où la convergence, soit
1

X + 1
est d’espérance finie et

E
( 1

X + 1

)
= e−λ

+∞∑
k=0

λk

(k + 1)!
=
e−λ

λ

+∞∑
k=0

λk+1

(k + 1)!
=
e−λ

λ

+∞∑
k=1

λk

k!
=

1− e−λ

λ
.

8. Deux variables aléatoires indépendantes X et Y suivent des lois géométriques G(p) et G(q)

respectivement. Quelle est la probabilité que la matrice A =

(
X 1
0 Y

)
soit diagonalisable ?

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

On note d’abord que la matrice aléatoire A(ω) =

(
X(ω) 1

0 Y (ω)

)
est diagonalisable si

et seulement si X(ω) 6= Y (ω): en effet, elle est triangulaire donc, si X(ω) 6= Y (ω), elle
admet deux valeurs propres distinctes, ce qui entrâıne sa diagonalisabilité, tandis que si
X(ω) = Y (ω), elle a une seule valeur propre et elle n’est pas scalaire donc elle n’est
pas diagonalisable. L’événement {A est diagonalisable} cöıncide donc avec l’événement
{X 6= Y }. Il est plus facile de travailler sur l’événement contraire, puisque

{X = Y } =

+∞⊔
k=1

(
{X = k} ∩ {Y = k}

)
,

Par incompatibilité puis indépendance, on déduit

P (X = Y ) =

+∞∑
k=1

P
(
X = k et Y = k)

=

+∞∑
k=1

P (X = k) P (Y = k)

= pq

+∞∑
k=1

(1− p)k−1(1− q)k−1

= pq

+∞∑
k=0

(
(1− p)(1− q)

)k
=

pq

1− (1− p)(1− q)
.



Enfin, P
(
{A est diagonalisable}

)
= 1− P (X = Y ) =

p+ q − 2pq

p+ q − pq
.

9. Soit N ∈ IN∗. Soit p ∈]0, 1[. On pose q = 1−p. On considère N variables aléatoires X1, · · ·, XN

définies sur un même espace probabilisé (Ω,A, P ), mutuellement indépendantes et de même
loi géométrique de paramètre p.

a. Soit i ∈ [[1, N ]], soit n ∈ IN∗. Déterminer P (Xi ≤ n), puis P (Xi > n).

b. On considère la variable aléatoire Y définie par Y = min
1≤i≤N

Xi, c’est-à-dire

∀ω ∈ Ω Y (ω) = min
{
X1(ω), · · · , XN (ω)

}
.

Soit n ∈ IN∗, calculer P (Y > n). En déduire P (Y ≤ n), puis P (Y = n).

c. Reconnâıtre la loi de Y . En déduire E(Y ).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. On a P (Xi = k) = q pk−1 pour k ∈ IN∗, donc

P (Xi ≤ n) =

n∑
k=1

P (Xi = k) =

n∑
k=1

pqk−1 = p

n−1∑
k=0

qk = p
1− qn

1− q
= 1− qn .

Par événement contraire, P (Xi > n) = 1− P (Xi ≤ n) = qn = (1− p)n.

b. Si ω ∈ Ω, on a Y (ω) > n ⇐⇒ min
{
X1(ω), · · · , XN (ω)

}
> n ⇐⇒ ∀i ∈ [[1, N ]] Xi(ω) > n,

donc {Y > n} =

N⋂
i=1

{Xi > N} et, par indépendance des variables Xi,

P (Y > n) =

N∏
i=1

P (Xi > n) = (qn)N = qnN .

Par événement contraire de nouveau, P (Y ≤ n) = 1− P (Y > n) = 1− qnN , puis

P (Y = n) = P (Y > n− 1)− P (Y > n) = q(n−1)N − qnN = q(n−1)N (1− qN ) .

c. On a Y (Ω) = IN∗ et, pour tout n ∈ IN∗, P (Y = n) = (1 − qN ) (qN )n−1, on reconnâıt une

loi géométrique de paramètre 1− qN . Donc, d’après le cours, E(Y ) =
1

1− qN
.

10. Lors d’une rencontre d’athlétisme, la barre est montée d’un cran après chaque saut réussi par
le concurrent. La compétition s’arrête pour le sauteur au premier saut raté. Pour le saut
numéro n, l’athlète a une chance sur n de passer la barre. On note X le rang du dernier
saut réussi.

Quelle est la loi de X? Montrer que X2 est d’espérance finie, calculer l’espérance et la
variance de X.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

11. On considère un détecteur de particules ayant une probabilité de détection de chaque par-
ticule ègale à p ∈]0, 1[. On note N et S les variables aléatoires qui comptent respectivement
le nombre de particules arrivant sur le capteur et le nombre de particules détectées. On
suppose que N suit une loi de Poisson de paramètre λ.



a. Soient s et n entiers naturels. Calculer P (S = s|N = n), puis P (S = s,N = n). En déduire
la loi de S.

b. Sans calcul, donner la loi de N − S.

c. Les variables S et N − S sont-elles indépendantes ?

d. Les variables N et S sont-elles indépendantes ?

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. La loi conditionnelle de S sachant N = n est binomiale de paramètres n et p, autrement dit

∀(s, n) ∈ IN2 P
(
S = s |N = n

)
=


(
n
s

)
ps(1− p)n−s si 0 ≤ s ≤ n

0 si s > n

.

Par la formule des probabilités composées,

P
(
S = s , N = n

)
= P (N = n) P

(
S = s |N = n

)
=

 e−λ
λn

n!

(
n
s

)
ps(1− p)n−s si 0 ≤ s ≤ n

0 si s > n

Enfin, par la formule des probabilités totales, en posant q = 1− p pour abréger,

P (S = s) =

+∞∑
n=s

P
(
S = s , N = n

)
=

+∞∑
n=s

e−λ
λn

n!

(
n
s

)
psqn−s

=
e−λ λs ps

s!

+∞∑
k=0

λk qk

k!
(avec k = n− s)

=
e−λ λs ps

s!
eλq = e−λp

(λp)s

s!
.

La variable S suit donc la loi de Poisson P(λp).

b. La variable N − S représente le nombre de particules ayant échappé à la détection. Or,
la probabilité de non-détection d’une particule arrivant sur le capteur est q = 1 − p. En
quelque sorte, les succès deviennent des échecs et inversement. Il suffit donc d’échanger p
et q pour avoir la loi de la variable N − S, c’est donc P(λq).

c. Si k et l sont deux entiers naturels, on a

P
(
S = k,N − S = l

)
= P

(
S = k,N = k + l

)
= e−λ

λk+l

(k + l)!

(
k + l
k

)
pkql ,

tandis que

P (S = k) P (N − S = l) = e−λp
(λp)k

k!
e−λq

(λq)l

l!
= e−λ

λk+l pk ql

k! l!
.



On constate que les deux expressions sont égales, les variables S et N − S sont donc
indépendantes.

d. Les variables S et N ne sont pas indépendantes, par exemple car P
(
S = 2, N = 1

)
= 0,

alors que P (S = 2) et P (N = 1) sont tous les deux non nuls.

12. Une urne contient trois boules numérotées 1, 2, 3. On tire avec remise une boule dans cette
urne, on note X le nombre de tirages nécessaires pour voir apparâıtre les trois numéros. On
note A le rang d’apparition du premier 1, B celui du premier 2, C celui du premier 3.

a. Exprimer l’événement {X > n} en fonction de A, B et C. Calculer P (X > n) pour n ∈ IN∗.

b. Calculer P (X = n), puis

+∞∑
n=1

P (X = n). Interpréter.

c. La variable X est-elle d’espérance finie ? Si oui, calculer E(X).

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

a. Notons que X(Ω) = [[3,+∞[[. L’événement {X > n} se réalise lorsqu’au moins une des trois
boules n’est pas apparue lors des n premiers tirages, donc

{X > n} = {A > n} ∪ {B > n} ∪ {C > n} .

Posons E = {A > n}, F = {B > n}, G = {C > n}. Il est connu que P (E ∪ F ) =
P (E) + P (F )− P (E ∩ F ). En itérant, on obtient

P (E ∪ F ∪ G) = P
(
(E ∪ F ) ∪ G

)
= P (E ∪ F ) + P (G)− P

(
(E ∪ F ) ∩ G

)
= P (E) + P (F )− P (E ∩ F ) + P (G)− P

(
(E ∩ G) ∪ (F ∩ G)

)
= P (E) + P (F ) + P (G)− P (E ∩ F )− P (F ∩ G)− P (G ∩ E) + P (E ∩ F ∩ G) .

Pour démontrer cette relation, cas particulier de la “formule de Poincaré”, dite aussi
“formule du crible” (hors programme), on a utilisé notamment la distributivité de l’intersection
par rapport à a réunion: (E ∪ F ) ∩ G = (E ∩ G) ∪ (F ∩ G), et l’égalité évidente
(E ∩ G) ∩ (F ∩ G) = E ∩ F ∩ G.

Ici, les événements E, F , G ont tous trois pour probabilité
(2

3

)n
, les événements E ∩ F ,

F ∩ G et G ∩ E ont tous trois pour probabilité
(1

3

)n
, enfin E ∩ F ∩ G = ∅. Finalement,

∀n ≥ 3 P (X > n) = P (E ∪ F ∪ G) = 3×
(2

3

)n
− 3×

(1

3

)n
=

2n − 1

3n−1
.

Notons que cela reste cohérent pour n = 1 et n = 2 puisque P (X > 1) = P (X > 2) = 1.

b. Pour n ≥ 3, on a

P (X = n) = P (X > n− 1)− P (X > n) =
2n−1 − 1

3n−2
− 2n − 1

3n−1
=

2n−1 − 2

3n−1
.

On peut calculer “bêtement” la somme de la série (ce sont des séries géométriques), mais
on peut aussi utiliser le télescopage:



+∞∑
n=1

P (X = n) =

+∞∑
n=3

(
P (X > n− 1)−P (X > n)

)
= P (X > 2)− lim

n→+∞
P (X > n) = 1− 0 = 1 ,

ce qui rassure toujours! De façon presque sûre, on finira par voir apparâıtre les trois boules.

c. Comme X est une variable aléatoire à valeurs dans IN, il suffit de considérer la série∑
n≥1

P (X ≥ n), qui est aussi, par décalage,
∑
n≥0

P (X ≥ n − 1), soit encore
∑
n≥0

P (X > n).

On a alors une combinaison linéaire de deux séries géométriques de raisons
2

3
et

1

3
, d’où la

convergence, ce qui montre que X ∈ L1(Ω), puis

E(X) =

+∞∑
n=0

P (X > n) = 1 + 1 + 1 +

+∞∑
n=3

[
3×

(2

3

)n
− 3×

(1

3

)n]
= 3 +

3× 8

27

1− 2

3

+
3× 1

27

1− 1

3

=
11

2
.


