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PSI2 2025-2026
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PARTIE A. Notion de valeur singulière

1. Soit X ∈ IRn.

Si AX = 0, alors A>AX = 0, d’où l’inclusion Ker(A) ⊂ Ker(A>A), soit Ker(f) ⊂ Ker(g).

Réciproquement, si A>AX = 0, alors X>A>AX = 0, soit (AX)>AX = 0, soit ‖AX‖2 = 0,
et cela entrâıne AX = 0. On a donc Ker(A>A) ⊂ Ker(A), soit Ker(g) ⊂ Ker(f).

Finalement, Ker(f) = Ker(g) et, comme ce sont deux endomorphismes de IRn, ils ont alors
le même rang par le théorème du rang, soit rg(A>A) = rg(A) = r.

2. Il est immédiat que (A>A)> = A>A et (AA>)> = AA>, ce sont des matrices symétriques.

Si X ∈ Mn,1(IR), on a X>A>AX = ‖AX‖2 ≥ 0, donc A>A ∈ S+n (IR). En rempaçant A
par A>, la matrice symétrique AA> est aussi positive.

3. Par le théorème spectral, on sait que la matrice symétrique réelle A>A est diagonalisable à
l’aide d’une matrice de passage orthogonale, on peut donc écrire A>A = PDP−1 = PDP>,
avec P orthogonale et D = diag(λ1, · · · , λn), où les λi sont les valeurs propres de A>A,
chacune ayant autant d’occurrences sur la diagonale que sa multiplicité.

On peut écrire de même AA> = QD′Q>, avec Q orthogonale et D′ diagonale. Mais l’énoncé

nous rappelle que les matrices A>A et AA> ont le même polynôme caractéristique, donc
les mêmes valeurs propres avec les mêmes multiplicités. On peut donc s’arranger pour avoir
D′ = D. Pour les sceptiques, disons que si l’on diagonalise A>A et AA> indépendamment
avec des matrices de passage orthogonales, bien sûr on ne trouvera pas forcément la même
matrice diagonale puisque les valeurs propres, même si elles sont identiques, ne seront pas
forcément placées dans le même ordre. Puisque les valeurs propres sont réelles, on peut
par exemple s’imposer de les ranger dans l’ordre croissant, on aura ainsi la même réduite
diagonale pour A>A et pour AA>.

4. La matrice diagonale D, semblable à A>A, a le même rang, à savoir r. Or, pour une matrice
diagonale, il est évident que le rang est le nombre de coefficients diagonaux non nuls.

5. Les matrices A>A et (UAV )>UAV = V >A>U>UAV = V −1(A>A)V sont semblables, donc
ont les mêmes valeurs propres (positives), avec les mêmes multiplicités. Les valeurs sin-
gulières de A et de UAV , qui sont les racines carrées des valeurs propres de A>A et de
(UAV )>UAV , sont donc aussi les mêmes.

6. Si A est symétrique réelle, par le théorème spectral, on sait que A est diagonalisable. Notons
α1, · · ·, αn les valeurs propres (non nécessairement distinctes) de A, alors A>A = A2 a pour
valeurs propres α2

1, · · ·, α2
n. Les valeurs singulières de A sont les racines carrées des valeurs

propres de A>A, c’est-à-dire |α1|, · · ·, |αn|.
En conclusion, les valeurs singulières d’une matrice symétrique réelle sont les valeurs
absolues de ses valeurs propres.

PARTIE B. Décomposition en valeurs singulières

7.a. Yaka l’écrire: ‖AX‖2 = (AX)>AX = X>(A>AX) = (X|A>AX).

b. Par le théorème spectral, la matrice A>A étant symétrique réelle, de valeurs propres
σ2
1 , · · ·, σ2

n, il existe une base orthonormale (E1, · · · , En) de IRn telle que A>AEi = σ2
iEi

pour tout i ∈ [[1, n]]. On décompose le vecteur X dans cette base: X =

n∑
i=1

xiEi. On a alors

A>AX =

n∑
i=1

xiσ
2
iEi puis, la base de décomposition étant orthonormale, le produit scalaire

de ces deux vecteurs est la somme des produits deux à deux de leurs coordonnées, soit



‖AX‖2 = (X|A>AX) =

n∑
i=1

x2iσ
2
i .

En majorant chaque σ2
i par σ2

n, on a donc ‖AX‖2 ≤ σ2
n

n∑
i=1

x2i = σ2
n ‖X‖2. On minore de

la même façon: ‖AX‖2 ≥ σ2
1 ‖X‖2. On obtient bien σ1‖X‖ ≤ ‖AX‖ ≤ σn‖X‖.

c. Pour X ∈ IRn \ {0}, on a donc σ1 ≤
‖AX‖
‖X‖

≤ σn. Les réels σ1 et σn sont respectivement un

minorant et un majorant de l’ensemble des quotients
‖AX‖
‖X‖

lorsque X décrit IRn\{0}. Pour

montrer que ce sont le minimum et le maximum, il suffit de vérifier que ces valeurs sont
atteintes. Or, si l’on reprend la base orthonormale (E1, · · · , En) introduite en b., on a, pour
tout i, ‖Ei‖ = 1 et ‖AEi‖2 = (Ei|A>AEi) = (Ei|σ2

iEi) = σ2
i ‖Ei‖2 = σ2

i . En particulier,
‖AE1‖
‖E1‖

= σ1 et
‖AEn‖
‖En‖

= σn.

d. Posons E =

{
‖AX‖
‖X‖

; X ∈ IRn \ {0}
}

. On a E ⊂ [σ1, σn] par le c. ci-dessus.

Par ailleurs, l’application X 7→ AX de IRn vers lui-même est continue, car elle est linéaire
en dimension finie. La norme étant 1-lipschitzienne donc continue, on a ainsi la conti-

nuité de f : X 7→ ‖AX‖
‖X‖

comme application de IRn \ {0} vers IR. L’application “affine”

ψ : [0, 1] → IRn définie par ψ(t) = (1 − t)E1 + tEn est continue et elle est à valeurs dans
IRn \ {0} (en effet, les vecteurs E1 et En étant linéairement indépendants, ψ(t) ne peut
s’annuler que si t et 1 − t sont simultanément nuls, ce qui est impossible). L’application
composée g = f ◦ ψ : [0, 1] → IR est donc continue, et comme g(0) = f(E1) = σ1 et
g(1) = f(En) = σn, elle prend toutes les valeurs comprises entre σ1 et σn d’après le
théorème des valeurs intermédiaires. On a donc E = [σ1, σn].

8. La matrice A>A étant symétrique réelle, elle est diagonalisable et il existe plus précisément
une base orthonormale de IRn constituée de vecteurs propres. Ses valeurs propres étant
λ1 = σ2

1 , · · ·, λn = σ2
n (comptées avec leur multiplicité), on peut trouver une base orthonor-

male B1 = (X1, · · · , Xn) de IRn telle que A>AXi = λiXi pour tout i.

9. Soit (i, j) ∈ [[1, n]]2, on a alors

(Yi|Yj) = Y >i Yj =
1

σiσj
X>i A

>AXj =
1

σiσj
X>i σ

2
jXj =

σj
σi

(Xi|Xj) .

Comme (Xi|Xj) = δi,j , on obtient aussi (Yi|Yj) = δi,j . Donc B2 = (Y1, · · · , Yn) est une
famille orthonormale, elle est donc libre et, comme elle est de cardinal n, c’est aussi une
base orthonormale de IRn.

10. De f(Xi) = AXi = σiYi, on déduit immédiatement que MatB1,B2
(f) = diag(σ1, · · · , σn),

notons D cette matrice diagonale.

11. Les formules de changement de base donnent (faire un diagramme):

A = MatB0,B0
(f) = MatB2,B0

(idIRn) ·MatB1,B2
(f) ·MatB0,B1

(idIRn) ,



soit A = UDV avec U = MatB2,B0(idIRn) = PB0,B2 et V = MatB0,B1(idIRn) = PB1,B0 . Les
matrices U et V sont des matrices de passage entre deux bases orthonormales, ce sont donc
des matrices orthogonales.

12. On calcule M = A>A =

(
125 75
75 125

)
. Donc χM = (X−125)2− (75)2 = (X−200)(X−50).

Les valeurs propres de A>A sont donc 50 et 200, les valeurs singulières de A sont les racines
carrées de ces nombres, soit σ1 = 5

√
2 et σ2 = 10

√
2. La base orthonormale B1 = (X1, X2)

des questions précédentes doit être constituée de vecteurs propres unitaires de M = A>A,
recherchons donc ces derniers.

Comme M − 50I2 =

(
75 75
75 75

)
, un vecteur propre unitaire de M pour la valeur propre 50

est X1 =
1√
2

(
1
−1

)
. Ensuite, Y1 =

1

σ1
AX1 =

1

5
√

2

1√
2

(
−5 −11
10 2

)(
1
−1

)
=

1

5

(
3
4

)
.

Comme M−200I2 =

(
−75 75
75 −75

)
, un vecteur propre unitaire de M pour la valeur propre

200 est X2 =
1√
2

(
1
1

)
. Ensuite, Y2 =

1

σ2
AX2 =

1

10
√

2

1√
2

(
−5 −11
10 2

)(
1
1

)
=

1

5

(
−4
3

)
.

Notons B2 la base orthonormale (Y1, Y2), on vérifie facilement que c’est bien une BON,

on a alors d’après la question 11. la relation A = PB0,B2
·∆·
(
PB0,B1

)>
avec ∆ = diag(σ1, σ2).

Cela donne l’égalité

A =

(
−5 −11
10 2

)
=


3

5
−4

5

4

5

3

5

 (
5
√

2 0
0 10

√
2

) 
1√
2
− 1√

2
1√
2

1√
2

 ,

que le lecteur se fera un plaisir de vérifier!

PROBLÈME 2 d’après Centrale PC 2023

A. Calculs utilisant des séries entières.

1. En posant an =

(
2n
n

)
, on a

an+1

an
=

(2n+ 2)!(
(n+ 1)!

)2 × (n!)2

(2n)!
=

2(2n+ 1)

n+ 1
−→

n→+∞
4, d’où un

rayon de convergence R égal à
1

4
.

Pour x ∈ I = ]−R,R[, posons s(x) =

+∞∑
n=0

anx
n. On vient d’obtenir entre les coefficients an

la relation (n+ 1)an+1 = 2(2n+ 1)an. En multipliant cette relation par xn, et en sommant
ensuite pour n de 0 à l’infini, toutes les séries entières entrant en jeu ayant le même rayon

de convergence R =
1

4
, on obtient

∀x ∈ I
+∞∑
n=0

(n+ 1)an+1x
n = 4

+∞∑
n=0

nanx
n + 2

+∞∑
n=0

anx
n ,



soit s′(x) = 4x s′(x) + 2 s(x), autrement dit la fonction s est solution sur l’intervalle de
convergence I de l’équation différentielle linéaire du premier ordre (E) : (1−4x)y′−2y = 0.

Les solutions de cette équation différentielle sont les fonctions y =
C√

1− 4x
. Avec la

condition initiale s(0) = a0 = 1, on obtient

∀x ∈
]
−1

4
,

1

4

[
s(x) =

1√
1− 4x

.

Remarque. La réponse étant donnée, on peut aussi partir de
1√

1− 4x
= (1 − 4x)

− 1
2

et développer cette expression en série entière en utilisant le développement au programme
de (1 + t)α pour t ∈ ]− 1, 1[.

2. On sait que l’on peut primitiver terme à terme la fonction somme d’une série entière sur son
intervalle de convergence, on a donc

∀x ∈
]
−1

4
,

1

4

[ ∫ x

0

dt√
1− t

=
1−
√

1− 4x

2
=

+∞∑
n=0

(
2n
n

)
xn+1

n+ 1
.

Pour x non nul dans I, il suffit de diviser par x les deux membres de l’égalité obtenue.

3. Le lecteur averti (qui en vaut deux) aura reconnu un produit de Cauchy. En posant ak =

(
2k
k

)
et bk =

1

k + 1

(
2k
k

)
, les séries entières

∑
akx

k et
∑

bkx
k ont pour rayon de convergence

commun R =
1

4
et, si l’on pose cn =

n∑
k=0

bkan−k =

n∑
k=0

1

k + 1

(
2k
k

)(
2n− 2k
n− k

)
, la série

entière produit de Cauchy
∑

cnx
n a un rayon de convergence au moins égal à

1

4
et, pour

tout x ∈ ]−R,R[, on a

f(x) =

+∞∑
n=0

cnx
n =

( +∞∑
k=0

akx
k

) (+∞∑
l=0

blx
l

)
=

1−
√

1− 4x

2x
√

1− 4x
=

1

2x

(
1√

1− 4x
− 1

)
=
s(x)− 1

2x

(en toute rigueur pour x non nul, mais on prolonge par continuité avec la valeur 1 en 0),

en posant s(x) =
1√

1− 4x
comme on l’a déjà fait dans le corrigé de Q1.

4. On redéveloppe le résultat obtenu ci-dessus: pour x ∈
]
−1

4
,

1

4

[
\ {0}, on a

+∞∑
n=0

cnx
n =

1

2x

(
+∞∑
n=0

(
2n
n

)
xn − 1

)
=

1

2

+∞∑
n=1

(
2n
n

)
xn−1 =

+∞∑
n=0

1

2

(
2n+ 2
n+ 1

)
xn ,

l’égalité entre les membres extrêmes étant valable aussi pour x = 0. Par unicité du développement
en série entière, on déduit la relation

∀n ∈ IN cn =

n∑
k=0

bkan−k =

n∑
k=0

1

k + 1

(
2k
k

)(
2n− 2k
n− k

)
=

1

2

(
2n+ 2
n+ 1

)
.



5. Posons un(x) = bnx
n =

(
2n
n

)
xn

n+ 1
pour x ∈ S =

[
−1

4
,

1

4

]
, on a alors, en utilisant la

formule de Stirling,

‖un‖∞,S =
1

4n(n+ 1)

(2n)!

(n!)2
∼

n→+∞

1

n 4n
2
√
πn
(
2n
e

)2n
2πn

(
n
e

)2n =
1√

π n3/2

qui est sommable, ceci prouve la convergence normale sur le segment S = [−R,R] de la série

de fonctions
∑

un. Les fonctions un étant continues, la fonction somme est alors continue

sur S, et notamment continue à gauche au point R =
1

4
, d’où, en utilisant Q2.,

S =

+∞∑
n=0

1

(n+ 1) 4n

(
2n
n

)
= lim
x→
(
1
4

)−
(

1−
√

1− 4x

2x

)
= 2 .

B. Égalisations au jeu de pile ou face infini.

6. On reconnâıt ici la situation appelée “schéma de Bernoulli”, i.e. une répétition de 2n épreuves
de Bernoulli indépendantes avec à chaque épreuve une probabilité de succès (obtenir “face”)
égale à p. La probabilité d’avoir k succès, avec k ∈ [[0, 2n]], lors de cette répétition, est(

2n
k

)
pk q2n−k (on reconnâıt une loi binomiale de paramètres 2n et p si l’on veut formaliser

en termes de variable aléatoire), en particulier

P (An) =

(
2n
n

)
pn qn .

7. Bah c’est évident, il n’y a jamais deux premières fois!

8. On a C =
⊔

n∈IN∗

Bn, donc C est une réunion dénombrable d’événements, c’est aussi un

événement, i.e. C ∈ A. Comme cette réunion est disjointe, il résulte de la propriéte de

σ-additivité d’une probabilité que P (C) =

+∞∑
n=1

P (Bn).

9. Clairement, on a An =

n⊔
k=1

(Bk ∩ An), puis

P (An) =

n∑
k=1

P (Bk ∩ An) =

n∑
k=1

P (Bk) · PBk
(An) =

n∑
k=1

P (Bk) P (An−k) .

En effet, si l’on sait l’événement Bk réalisé (égalisation après 2k lancers), la probabilité
(conditionnelle) d’une nouvelle égalisation après 2(n−k) nouveaux lancers est la même que
la probabilité d’une égalisation après les 2(n−k) premiers lancers, soit PBk

(An) = P (An−k).
Ce raisonnement est valable pour k = n avec la convention A0 = Ω.



10. Pour n = 1, on a B1 = (F1 ∩ F2) t (F1 ∩ F2), donc

P (B1) = 2pq =
2

1

(
0
0

)
(pq)1 ,

la formule est exacte pour n = 1.

Soit n ∈ IN avec n ≥ 2, supposons la formule vraie pour tout rang k ∈ [[1, n − 1]]. Comme
P (A0) = P (Ω) = 1, de la relation obtenue en Q9., on déduit

P (Bn) = P (An)−
n−1∑
k=1

P (Bk) P (An−k)

=

(
2n
n

)
pn qn −

n−1∑
k=1

2

k

(
2k − 2
k − 1

)
pkqk

(
2n− 2k
n− k

)
pn−kqn−k

= (pq)n

[(
2n
n

)
−
n−1∑
k=1

2

k

(
2k − 2
k − 1

) (
2n− 2k
n− k

)]

= (pq)n

[(
2n
n

)
−
n−2∑
k=0

2

k + 1

(
2k
k

) (
2n− 2k − 2
n− k − 1

)]
(*)

= (pq)n

[(
2n
n

)
− 2

n−1∑
k=0

1

k + 1

(
2k
k

) (
2(n− 1)− 2k
(n− 1)− k

)
+

2

n

(
2n− 2
n− 1

)]
(**)

= (pq)n

[(
2n
n

)
−
(

2n
n

)
+

2

n

(
2(n− 1)
n− 1

)]
(***)

=
2

n

(
2n− 2
n− 1

)
(pq)n ,

ce qu’il fallait démontrer. La récurrence est donc achevée.

Quelques commentaires sur le calcul.

(*): translation d’indice

(**): on ajoute et retranche le terme d’indice k = n− 1

(***): on utilise la relation obtenue en Q4. avec n remplacé par n− 1.

11. Si p 6= 1

2
(pièce déséquilibrée), alors pq = p(1− p) < 1

4
(calcul classique, étudier la fonction

p 7→ p(1− p), ou bien utiliser des identités remarquables). Des questions 8. et 2., on déduit
alors que

P (C) =

+∞∑
n=1

2

n

(
2n− 2
n− 1

)
(pq)n = 2pq

+∞∑
n=0

1

n+ 1

(
2n
n

)
(pq)n = 2pq × 1−

√
1− 4pq

2pq
.

La probabilité qu’au moins une égalisation se produise au cours de la partie est donc

P (C) = 1−
√

1− 4pq .



12. Si p =
1

2
(pièce équilibrée), on déduit de Q5. que

P (C) =

+∞∑
n=1

2

n

(
2n− 2
n− 1

) (
1

4

)n
=

2

4

+∞∑
n=0

1

(n+ 1) 4n

(
2n
n

)
=
S

2
= 1 .

Il est presque sûr qu’au moins une égalisation se produira au cours de la partie.

EXERCICE

1. L’intégrale généralisée I étant convergente, on a F (x) =

∫ x

0

f(t) dt − I par la relation de

Chasles et, d’après le théorème fondamental, comme f est continue, F est une primitive de
f sur IR+, i.e. F est de classe C1 et F ′ = f . Il est alors immédiat que lim

x→+∞
F (x) = I−I = 0.

La fonction F est continue sur IR+ et admet une limite finie en +∞, donc elle est bornée
sur IR+. En effet, puisque lim

x→+∞
F (x) = 0, elle est bornée “au voisinage de +∞”, c’est-à-

dire sur un intervalle de la forme [A,+∞[ avec A ∈ IR+. Par ailleurs, sur le segment [0, A],
la fonction continue F est bornée par le théorème des bornes atteintes.

2. Comme F est de classe C1 sur IR+, il suffit d’intégrer par parties, et de tenir compte de
F (0) = −I.

3. La fonction ϕ est définie en 0 et ϕ(0) = I par hypothèse.

Montrons que ϕ(a) est bien défini pour tout a > 0. Puisque F est bornée sur IR+,
lim

M→+∞
e−aM F (M) = 0 et la fonction t 7→ e−at F (t) est intégrable sur IR+, donc

l’intégrale

∫ M

0

e−at f(t) dt admet une limite finie lorsque M tend vers +∞, qui est

I + a

∫ +∞

0

e−at F (t) dt, c’est ce qu’il fallait démontrer.

4. Posons g(a, t) = e−at F (t), l’application partielle a 7→ g(a, t) est alors de classe C∞ sur IR∗+

pour tout t ∈ IR+ avec
∂kg

∂ak
(a, t) = (−1)ktk e−at F (t). Si on fixe A > 0, alors

∀k ∈ IN ∀(a, t) ∈ [A,+∞[×IR+

∣∣∣∂kg
∂ak

(a, t)
∣∣∣ ≤ ‖F‖∞ tk e−At ,

cette fonction de la variable t étant intégrable sur IR+. Par applications répétées du théorème

de dérivation des intégrales à paramètre, on peut affirmer que la fonction t 7→
∫ +∞

0

F (t)e−atdt

est de classe C∞ sur IR∗+. De la relation obtenue en 3., on déduit que ϕ est aussi de classe
C∞ sur IR∗+.

5. De 3., on tire ϕ(a)− ϕ(0) =

∫ +∞

0

e−at F (t) a dt =

∫ +∞

0

e−u F
(u
a

)
du pour a > 0.

Pour u > 0 fixé, on a lim
a→0+

e−u F
(u
a

)
= 0 puisque lim

x→+∞
F (x) = 0.



On a par ailleurs la domination

∀(a, u) ∈ (IR∗+)2
∣∣∣∣e−u F(ua)

∣∣∣∣ ≤ ‖F‖∞ e−u ,

cette fonction de la variable u étant intégrable sur IR+.

Le théorème de convergence dominée à paramètre continu permet donc d’affirmer que

lim
a→0+

∫ +∞

0

e−u F
(u
a

)
du = 0, soit lim

a→0+
ϕ(a) = ϕ(0), et ϕ est donc continue en 0.

Le lecteur aura reconnu une étude de la transformée de Laplace de f . En fait,quitte à
faire une translation de la “variable de Laplace” a, on a montré le résultat suivant : si
f : IR+ → C est continue par morceaux, si pour un réel α donné, l’intégrale généralisée∫ +∞

0

e−αt f(t) dt est convergente, alors la transformée de Laplace de f est définie et

continue sur la demi-droite fermée [α,+∞[, et elle est de classe C∞ sur la demi-droite
ouverte ]α,+∞[.


