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PROBLEME 1 librement inspiré de Centrale PSI 2009
PARTIE A. Notion de valeur singuliére
1. Soit X € R".

Si AX =0, alors AT AX = 0, d’ott I'inclusion Ker(A) C Ker(AT A), soit Ker(f) C Ker(g).
Réciproquement, si AT AX =0, alors X T AT AX =0, soit (AX)T AX = 0, soit |AX||* =0,
et cela entraine AX = 0. On a donc Ker(AT A) C Ker(A), soit Ker(g) C Ker(f).

Finalement, Ker(f) = Ker(g) et, comme ce sont deux endomorphismes de IR", ils ont alors
le méme rang par le théoreme du rang, soit rg(AT A) = rg(A) = 7.

2. Tl est immédiat que (AT A)T = ATA et (AAT)T = AAT, ce sont des matrices symétriques.
Si X € M, 1(R),ona X'"ATAX = ||[AX|> > 0, donc AT A € S;7(IR). En rempagant A
par AT, la matrice symétrique AAT est aussi positive.

3. Par le théoréme spectral, on sait que la matrice symétrique réelle AT A est diagonalisable &
I’aide d’une matrice de passage orthogonale, on peut donc écrire AT A = PDP~! = PDPT,
avec P orthogonale et D = diag(\i,---,\n), oit les \; sont les valeurs propres de AT A,
chacune ayant autant d’occurrences sur la diagonale que sa multiplicité.

On peut écrire de méme AAT = QD'QT, avec Q orthogonale et D’ diagonale. Mais I’énoncé

nous rappelle que les matrices AT A et AAT ont le méme polynéme caractéristique, donc
les mémes valeurs propres avec les mémes multiplicités. On peut donc s’arranger pour avoir
D' = D. Pour les sceptiques, disons que si l'on diagonalise AT A et AA" indépendamment
avec des matrices de passage orthogonales, bien sur on ne trouvera pas forcément la méme
matrice diagonale puisque les valeurs propres, méme si elles sont identiques, ne seront pas
forcément placées dans le méme ordre. Puisque les valeurs propres sont réelles, on peut
par exemple s’imposer de les ranger dans [’ordre croissant, on aura ainsi la méme réduite
diagonale pour AT A et pour AAT.

4. La matrice diagonale D, semblable & AT A, a le méme rang, & savoir 7. Or, pour une matrice
diagonale, il est évident que le rang est le nombre de coefficients diagonaux non nuls.

5. Les matrices AT A et (UAV)"UAV = VIATUTUAV = V=1 (AT A)V sont semblables, donc
ont les mémes valeurs propres (positives), avec les mémes multiplicités. Les valeurs sin-
gulitres de A et de UAV, qui sont les racines carrées des valeurs propres de AT A et de
(UAV)TUAV, sont donc aussi les mémes.

6. Si A est symétrique réelle, par le théoreme spectral, on sait que A est diagonalisable. Notons

a1, - -, ay, les valeurs propres (non nécessairement distinctes) de A, alors AT A = A? a pour
valeurs propres a?, N ai‘ Les valeurs singuliéres de A sont les racines carrées des valeurs
propres de AT A, c’est-a-dire |ay], - - -, |an].

En conclusion, les valeurs singulieres d’une matrice symétrique réelle sont les valeurs
absolues de ses valeurs propres.
PARTIE B. Décomposition en valeurs singuliéres
JAX||? = (AX)TAX = X T(ATAX) = (X|ATAX).
b. Par le théoréme spectral, la matrice AT A étant symétrique réelle, de valeurs propres
0%, -+, 02, il existe une base orthonormale (Ej,---, E,) de R"™ telle que AT AE; = 02F;
n

7.a. Yaka I’écrire:

n’

pour tout 7 € [1,n]. On décompose le vecteur X dans cette base: X = Z z;E;. On a alors
B i=1

ATAX = Z :riaizEZ- puis, la base de décomposition étant orthonormale, le produit scalaire
i=1

de ces deux vecteurs est la somme des produits deux a deux de leurs coordonnées, soit



JAX[? = (X|ATAX) = 3 a?

2
;0.
i=1

K3

n
En majorant chaque o7 par o2, on a donc ||AX|? < o2 fo = 02 || X||?. On minore de
i=1

la méme fagon: [|AX > > o? | X|?. On obtient bien o] X|| < |AX|| < o, ||X]-

c. Pour X € R"\ {0}, on a donc g1 < lAX] < o,. Les réels oy et o,, sont respectivement un
X1l
minorant et un majorant de I’ensemble des quotients |||1|4 ;(HH lorsque X décrit IR™\{0}. Pour
montrer que ce sont le minimum et le maximum, il suffit de vérifier que ces valeurs sont
atteintes. Or, si 'on reprend la base orthonormale (Ey, - -, E,,) introduite en b., on a, pour
tout 4, | Ei|| = 1 et ||AE;||? = (EBi|AT AE;) = (BE|0?E;) = 0?||Ei||* = o?. En particulier,
AR _ AR
1]l ' [P -
d. Posons £ = {HﬁXXHl ; X e R™\ {0}} On a & C [o1,0,] par le c. ci-dessus.

Par ailleurs, 'application X — AX de IR" vers lui-méme est continue, car elle est linéaire
en dimension finie. La norme étant 1-lipschitzienne donc continue, on a ainsi la conti-

AX
nuité de f : X — |||X|||
¥ :[0,1] = IR™ définie par ¢(t) = (1 — t)E; + tE,, est continue et elle est a valeurs dans
R™ \ {0} (en effet, les vecteurs E; et E, étant linéairement indépendants, t(t) ne peut
s’annuler que si ¢t et 1 — ¢ sont simultanément nuls, ce qui est impossible). L’application
composée g = fo1 : [0,1] — IR est donc continue, et comme ¢g(0) = f(F;) = o1 et
g(1) = f(En) = o, elle prend toutes les valeurs comprises entre o1 et o, d’apres le
théoréme des valeurs intermédiaires. On a donc &€ = [07, 0,).

comme application de IR™ \ {0} vers IR. L’application “affine”

8. La matrice A" A étant symétrique réelle, elle est diagonalisable et il existe plus précisément
une base orthonormale de IR™ constituée de vecteurs propres. Ses valeurs propres étant
AL = Jf, A = 0721 (comptées avec leur multiplicité), on peut trouver une base orthonor-
male By = (X1, -+, X,,) de R" telle que ATAX,; = \; X, pour tout i.

9. Soit (i,4) € [1,n]?, on a alors

1 1 o;

X ATAX; = X, o3 X; = 2(Xi|X;) .
003 003 g;

Comme (X;|X;) = 4, ;, on obtient aussi (Y;|Y;) = 6; ;. Donc By = (Y1,---,Y,) est une
famille orthonormale, elle est donc libre et, comme elle est de cardinal n, c’est aussi une
base orthonormale de IR".

10. De f(X;) = AX; = 0,Y;, on déduit immédiatement que Matg, 5,(f) = diag(o1,---,0n),
notons D cette matrice diagonale.

(YilY;) =Y;"Y; =

11. Les formules de changement de base donnent (faire un diagramme):

A= MatBo’Bo (f) = MatBQ,Bo (id]R") ) MatBl,BQ (f) ) MatBo,Bl (ld]R") )



soit A=UDV avec U = Matg, p,(idr~) = Pg, B, et V = Matg, 5, (idr~) = Pz, 5,- Les
matrices U et V sont des matrices de passage entre deux bases orthonormales, ce sont donc
des matrices orthogonales.

125 75
75 125

Les valeurs propres de A" A sont donc 50 et 200, les valeurs singulicres de A sont les racines
carrées de ces nombres, soit o1 = 5v2 et 05 = 10v/2. La base orthonormale B; = (X1, X5)
des questions précédentes doit étre constituée de vecteurs propres unitaires de M = AT A,
recherchons donc ces derniers.

Comme M — 501, = ;g ;g

1 1 . 1 1 1 /-5 -11 1 1/3
estXl—\/§<_1).Ensu1te7Y1—JlAX1_5\/5\/5(10 9 )(_1)_5<4>.

75 75
Comme M —200I, = ( 75 7
1

1 . 1 1 1 -5 -11 1 1 /-4

Notons Bs la base orthonormale (Y7,Y3), on vérifie facilement que c’est bien une BON,

12. On calcule M = ATA = ( ) Donc xr = (X —125)2 — (75)% = (X —200)(X — 50).

, un vecteur propre unitaire de M pour la valeur propre 50

, un vecteur propre unitaire de M pour la valeur propre

on a alors d’apres la question 11. la relation A = Pg, g,-A- (Ps,,8, ) T avec A = diag(o1,09).
Cela donne 'égalité

3 4 1 1

A:<—5 —11)2 5 5 (5\/5 0 ) V22
10 2 4 3 0 1ov2) | 1 1 [

5 5 V2 V2

que le lecteur se fera un plaisir de vérifier!

PROBLEME 2 d’aprés Centrale PC 2028

A. Calculs utilisant des séries entiéres.
n 2 2)! N2 2(2 1
1.Enposauntan<2n),onaa+1 (2n + )QX(n)': (2n+1) — 4, d’ot1 un
n an ((n + 1)!) (2n)! n+1 n—+o0

1
rayon de convergence R égal a 1
+oo
Pour z € I =] — R, R|[, posons s(z) = Z a,z". On vient d’obtenir entre les coefficients a,,
n=0
la relation (n+1)a,+1 = 2(2n+ 1)a,. En multipliant cette relation par ", et en sommant
ensuite pour n de 0 a l'infini, toutes les séries entieres entrant en jeu ayant le méme rayon

1 .
de convergence R = T on obtient
—+oo +oo +oo

Veel Z(n + Dayi12™ =4 Znanx” +2 Z anz" |

n=0 n=0 n=0



soit §'(z) = 4z §'(x) + 2 s(x), autrement dit la fonction s est solution sur I'intervalle de
convergence I de 'équation différentielle linéaire du premier ordre (E) : (1—4xz)y’ —2y = 0.

Les solutions de cette équation différentielle sont les fonctions y

= ————. Avec la
v1—A4zx
condition initiale s(0) = ap = 1, on obtient
11 1
Vee|—=, = s(x) = — .

:| 4’4 |: ( ) V 1—4x 7%

Remarque. La réponse étant donnée, on peut aussi partir de —— = (1 — 4x

q p p p Nier ( )

et développer cette expression en série entiere en utilisant le développement au programme
de (1 +¢)* pour t €] —1,1].

2. On sait que 'on peut primitiver terme a terme la fonction somme d’une série entiére sur son
intervalle de convergence, on a donc

vee] L1 /w dt 1-1—4r *Z“’ on\ z"t!
:Z: —_ — = = .
4’4 0 V1—t 2 —\n /) n+l

Pour = non nul dans I, il suffit de diviser par = les deux membres de 1’égalité obtenue.

k
L (2 les séries entieres Z apx” et Z brpa® ont pour rayon de convergence
E+1 \ k)’

1 n n 1 _
commun R = 1 et, si 'on pose ¢, = kz_obkan,k = kz_:om <2kk) <QZ B 2k), la série

1
entiere produit de Cauchy Z cp,x™ a un rayon de convergence au moins égal & — et, pour
tout x €| — R, R[, on a

. . . 2k
3. Le lecteur averti (qui en vaut deux) aura reconnu un produit de Cauchy. En posant aj, = ( )

et bk:

+oo +o00 400
B n . N 1-yi—dz 1 1N s@)—1
1@ =3 o = (Lot ) (L) - =g =5 (e 1) - %

(en toute rigueur pour x non nul, mais on prolonge par continuité avec la valeur 1 en 0),

en posant s(x) = A comme on I'a déja fait dans le corrigé de Q1.
—4dx

11
4. On redéveloppe le résultat obtenu ci-dessus: pour z € } — [\ {0}, on a

4’4
+oco +oo +oo +oo
oo (S ()7 3 E () -S3 ()

I’égalité entre les membres extrémes étant valable aussi pour z = 0. Par unicité du développement
en série entiere, on déduit la relation

s o~ L 26\ (2n—-2k\ 1 (2n+2
Wn e N cn_kzzobkank_};“l(k)( )_< )

n—=k 2\ n+1



" 11
5. Posons u,(z) = byz" = (2:) nLH pour z € S = {—4,4}, on a alors, en utilisant la
formule de Stirling,
1 (2n) 12y ()"
4n(n+ 1) (n!)? n—too n4n an(ﬁ)% -~ J/an3/?

[unlloo,s =

qui est sommable, ceci prouve la convergence normale sur le segment S = [— R, R] de la série
de fonctions g u,. Les fonctions u,, étant continues, la fonction somme est alors continue

1
sur S, et notamment continue a gauche au point R = 7 d’oti, en utilisant Q2.,

Sty () y ()

B. Egalisations au jeu de pile ou face infini.

6. On reconnait ici la situation appelée “schéma de Bernoulli”, i.e. une répétition de 2n épreuves
de Bernoulli indépendantes avec & chaque épreuve une probabilité de succes (obtenir “face”)
égale & p. La probabilité d’avoir k succes, avec k € [0,2n], lors de cette répétition, est

2 _ R o . R . .
( n) pkgPnk (on reconnait une loi binomiale de parameétres 2n et p si 'on veut formaliser

k

en termes de variable aléatoire), en particulier

P(An) = (2n> pq".

n
7. Bah c’est évident, il n’y a jamais deux premieres fois!

8 Ona C = |_| B,,, donc C est une réunion dénombrable d’événements, c’est aussi un

nelN*
événement, i.e. C € A. Comme cette réunion est disjointe, il résulte de la propriéte de

+oo
o-additivité d’une probabilité que P(C) = Z P(By,).
n n=1
9. Clairement, on a A, = |_| (Bx N A,), puis
k=1

P(A,) =Y P(By N A,) =Y P(Bi)-Pp,(A) =Y P(By) P(An_y) .

k=1 k=1 k=1
En effet, si 'on sait ’événement By, réalisé (égalisation apres 2k lancers), la probabilité
(conditionnelle) d’une nouvelle égalisation apres 2(n — k) nouveaux lancers est la méme que
la probabilité d’une égalisation apres les 2(n—k) premiers lancers, soit Pp, (A,) = P(An—k).

Ce raisonnement est valable pour k = n avec la convention Ag = Q.



10. Pour n=1,0on a By = ([}, N F)U(F N F), donc

P(B1) = 2pq = % (8) (ra)*

la formule est exacte pour n = 1.

Soit n € IN avec n > 2, supposons la formule vraie pour tout rang k € [1,n — 1]. Comme
P(Ag) = P(Q) =1, de la relation obtenue en Q9., on déduit

P(B,) = P(A,) =Y P(Bi) P(Ay )

2n n n 3 12 2]€—2 k k 2n—2k‘ n—k n—k
(n>pq—zk(k_l)pq R I

- o [(0)-S7 () ()

o ()5 () ()
e [(M) S () Com B ()] e
e[ ()]

2 (2n—2 "
= <n_1) (rg)"
ce qu’il fallait démontrer. La récurrence est donc achevée.
Quelques commentaires sur le calcul.
(*): translation d’indice
(**): on ajoute et retranche le terme d’indice k =n — 1

(*¥**): on utilise la relation obtenue en Q4. avec n remplacé par n — 1.

1 1
11. Sip # 3 (piece déséquilibrée), alors pg = p(1 —p) < 1 (calcul classique, étudier la fonction

p+— p(1—p), ou bien utiliser des identités remarquables). Des questions 8. et 2., on déduit

alors que
+oo +oo
2 (2n—2 1 2n 1—+/1—4pq
PC - - n:2 n:2 _—
(©) n§_1n<n_1>(pq) pqngzonJrl <n)(pQ) pq < 29

La probabilité qu’au moins une égalisation se produise au cours de la partie est donc

P(C)=1—+/1—4pq.



12. Si p = = (piece équilibrée), on déduit de Q5. que

0= 52 (370) () -3 Bt (2) -5+

n=1 n=0

N |

Il est presque str qu’au moins une égalisation se produira au cours de la partie.

EXERCICE

x
1. L’intégrale généralisée I étant convergente, on a F(z) = / f(t) dt — I par la relation de

Chasles et, d’apres le théoreme fondamental, comme f est continue, F' est une primitive de
fsurR,,ie. F est de classe C! et F/ = f. 1l est alors immédiat que lirf Fx)=1I-TI=0.
xr—r+00
La fonction F est continue sur IR et admet une limite finie en +o00, donc elle est bornée
sur Ry. En effet, puisque 1ilf F(xz) =0, elle est bornée “au voisinage de +00”, c’est-a-
Tr—+00
dire sur un intervalle de la forme [A, +oo[ avec A € R. Par ailleurs, sur le segment [0, A],
la fonction continue F' est bornée par le théoréme des bornes atteintes.

2. Comme F est de classe C' sur IRy, il suffit d’intégrer par parties, et de tenir compte de
F(0)=—1I.

3. La fonction ¢ est définie en 0 et ¢(0) = I par hypothese.

Montrons que ¢(a) est bien défini pour tout a > 0. Puisque F' est bornée sur R,

lim e *™ F(M) = 0 et la fonction t ~ e~ F(t) est intégrable sur IR, donc
M —+o00

M
Iintégrale / e f(t) dt admet une limite finie lorsque M tend vers 4oo, qui est
0

+oo
I+a / e~ F(t)dt, c’est ce qu’il fallait démontrer.
0

4. Posons g(a,t) = e~ F(t), Papplication partielle a — g(a,t) est alors de classe C> sur IR’}

ak
pour tout t € IR avec aTL;(Z(a,t) = (=1)*t* e7* F(t). Si on fixe A > 0, alors

VkeIN Y(a,t) € [A, +oo[x Ry ‘g—fﬁ(a,t)‘ < || Floo t*F =4t
cette fonction de la variable ¢ étant intégrable sur IR . Par applications répétées du théoreme
de dérivation des intégrales & parametre, on peut affirmer que la fonction ¢ — / o F(t)e *dt
est de classe C*° sur IR, De la relation obtenue en 3., on déduit que ¢ est a?lSSi de classe
C* sur RY,.

+oo +oo
5. De 3., on tire ¢(a) — p(0) = / e F(t)adt = / e " F(%) du pour a > 0.
0 0

Pour u >0 fixé, on a lim e™* F(g) =0 puisque lim F(z)=0.
a—0t a T—+00



On a par ailleurs la domination

V(a,u) € (IR*+)2

F ()

cette fonction de la variable u étant intégrable sur IR .

S Flloce™

Le théoreme de convergence dominée a parametre continu permet donc d’affirmer que
—+oo

lim e " F(E) du = 0, soit lim+ p(a) = ¢(0), et  est donc continue en 0.
a a—0

a—0*t Jo

Le lecteur aura reconnu une étude de la transformée de Laplace de f. En fait,quitte a
faire une translation de la “variable de Laplace” a, on a montré le résultat suivant : si
f IRy — C est continue par morceauz, si pour un réel a donné, l'intégrale généralisée

—+oo
/ e " f(t) dt est convergente, alors la transformée de Laplace de f est définie et
0

continue sur la demi-droite fermée o, +o00o[, et elle est de classe C*° sur la demi-droite
ouverte |a, +00].



