
TD Info 6 - Graphes partie II
Parcours de graphes

Contents
1 Rappels sur les piles et files 1

1.1 Qu’est-ce qu’une file et une pile ? . 1
1.2 Créer et utiliser des piles et files . 2

2 Parcours d’un graphe “simple” 3
2.1 Parcours en profondeur . 5
2.2 Parcours en largeur . 9
2.3 Résumé : . 11

3 Une application fameuse : l’algorithme de Dijkstra 12

1 Rappels sur les piles et files
1.1 Qu’est-ce qu’une file et une pile ?
Une file est un ensemble de données qui ne peut être modifié qu’en ajoutant un élément à une
extrémité, ou en retirant un à l’autre extrémité : c’est le principe du premier arrivé, premier sorti
ou FIFO en anglais : First In, First Out.

Exemples : Toutes les files d’attentes, dans le cas de gens civilisés… Il existe aussi de nombreuses
files d’attentes “virtuelles” en informatique (par exemple file d’attentes d’instructions avant traite-
ment par le processeurs, file d’attente de parcoursup, …). Ces structures de données sont aussi
intéressantes dans le cadre de la gestion des stocks et denrées périssables.

Une pile est un ensemble de données qui ne peut être modifié qu’en ajoutant ou retirant un élément.
Ces opérations de modifications ne peuvent avoir lieu qu’à la même extremité de la pile : c’est le
principe du dernier arrivé, premier sorti ou LIFO en anglais : Last In, First Out.

Exemples :

• Pile de Caddies au supermarché : les caddies sont rangés les uns derrières les autres. On
retire un caddie par la même extremité que celle où on viendra reposer son caddie. Ainsi le
caddie qu’on peut sortir est uniquement le dernier inséré !

• Les tours de Hanoï :

1

Il est ici seulement possible d’ajouter ou de retirer un disque au sommet de chaque tour, qu’on
pourrait nommer pile.

Une pile ou une file est une notion théorique, qui possède de multiples réalisations pratiques. Il
est possible de les utiliser dans un grand nombre de langage informatique. Pour simplifier, dans la
suite, nous étudierons seulement les piles (la manipulation des files repose sur une logique proche,
elle pourra être déduite de celle des files).

Nous utiliserons les structures python deque, qui sont une généralisation des piles et des files (deque
se prononce “dèque” et est l’abréviation de l’anglais double-ended queue) : il est possible d’ajouter et
retirer des éléments par les deux bouts des deques. Ces opérations sont très efficaces, car les deques
sont optimisés pour (plus qu’une liste, qui peut changer de taille, mais de façon plus couteuse en
temps d’execution….en contrepartie de ses nombreuses autres fonctions !)

On utilisera pour ces structure deque les méthodes append, pop et len en employant la même
syntaxe qu’avec les listes.

1.2 Créer et utiliser des piles et files
Voic les fonctions justes nécessaires pour utiliser créer et utiliser les piles, en s’appuyant sur des
deque :

[2]: def creer_pile():
""" Créé et retourne une pile vide """
return deque()

def taille(P):
""" Retourne la taille de la pile P """
return len(P)

def est_vide(P):
""" Retourne un booléen : True si la pile P est vide, False sinon """
return taille(P) == 0

def empiler(P,v):
""" Empile l'élément v à la fin de la pile P """
P.append(v)

2

def depiler(P):
""" Dépile la pile P (supprime le dernier élément empilé dans P) """
if est_vide(P):

raise ValueError("Erreur : pile vide")
else :

P.pop()

def sommet(P):
""" Retourne le sommet de la pile P """
if est_vide(P):

raise ValueError("Erreur : pile vide")
else :

return P[-1]

De même pour les files :

[3]: def creer_file():
""" Créé et retourne une file vide """
return deque()

def taille(F):
""" Retourne la taille de la file F """
return len(F)

def est_vide(F):
""" Retourne un booléen : True si la file F est vide, False sinon """
return taille(F) == 0

def enfiler(F,v):
""" Ajoute l'élément v à la fin de la file F, v devient le dernier élément,␣

↪celui tout à droite"""
F.append(v)

def defiler(F):
""" Enlève l'élément au début de la file F, soit son premier élément, celui␣

↪tout à gauche"""
if est_vide(F):

raise ValueError("Erreur : file vide")
else :

F.popleft()
return(F)

def début(F):
""" Retourne le début de la file F, soit son premier élément """
if est_vide(F):

raise ValueError("Erreur : file vide")
else :

3

return F[0]

2 Parcours d’un graphe “simple”
On considère le problème suivant : un héros pénètre dans un enchainement labyrinthique de salles,
dans lequel il doit combattre le monstre et ramener le trésor. La cartographie de ces salles est
représentée ci-dessous :

Afin de trouver puis vaincre le monstre, et être sûr de trouver le trésor, le héros va devoir parcourir
les salles, peut-être de façon exhaustive, en partant de la salle D. Pour cela, aidons-le ! Nous allons
représenter cette cartographie par un graphe, dans lequel les sommets sont les salles, et les arêtes
les couloirs permettant de passer d’une salle à l’autre.

Question 1 : Écrire le dictionnaire d’adjacence Lab du graphe qui représente la situation des salles
cartographiées. On choisira de respecter l’ordre alphabétique les sommets adjacents.

[4]: Lab = dict()
Lab['A'] = ['B', 'D']
Lab['B'] = ['A', 'C', 'E']
Lab['C'] = ['B', 'G']
Lab['D'] = ['A', 'E']
Lab['E'] = ['B', 'D', 'I']
Lab['F'] = ['G']
Lab['G'] = ['C', 'F', 'H', 'J']
Lab['H'] = ['G']
Lab['I'] = ['E', 'J']
Lab['J'] = ['I', 'G']

Utilisons alors la fonction de la partie précédente pour représenter ce graphe :

4

[5]: def dict_to_graph(dict_graphe):
"""Construit et affiche une graphe non orienté et non pondéré en networkx à␣

↪partir du dictionnaire d'adjacence du format :
dict_graphe = {'Sommet': liste des sommets adjacents}"""

Création du graphe
graphe = nx.Graph()

Ajout des noeuds :
for sommet in dict_graphe :

graphe.add_node(sommet)

Ajout des arêtes :
for sommet in dict_graphe :

for sommet_adj in dict_graphe[sommet] :
graphe.add_edge(sommet, sommet_adj)

nx.draw(graphe, node_size=800, edge_color='red',␣
↪with_labels=True,font_weight='bold')

plt.show()

[6]: dict_to_graph(Lab)

Un algorithme de parcours de graphe est un algorithme consistant à explorer les sommets
d’un graphe de proche en proche à partir d’un sommet initial. On va en distinguer deux
principaux : le parcours en profondeur et le parcours en largeur.

Un chemin est un ensemble d’arrête reliant deux sommets d’un graphe.

Les algorithmes de parcours n’ont généralement pas un but propre : ils servent comme outil pour
étudier une propriété globale du graphe, comme l’existence de chemin entre deux sommets, la
détection de présence de cycle, etc.

5

2.1 Parcours en profondeur
Commençons avec un premier parcours de graphe : celui en profondeur. Le principe de cet
algorithme repose sur une méthode intuitive, commune pour ne pas se perdre dans un lieu inconnu
(ou un labyrinthe), en explorant de façon systématique :

• à partir du premier sommet, on essaie un chemin, avec une méthode systématique (par ex-
emple, pour notre héros, toujours prendre le couloirs à gauche à chaque nouvelle visite de
salle);

• si on se retrouve coincé (cul-de-sac), on fait demi-tour jusqu’à revenir au dernier sommet
rencontré menant à une partie non encore explorée;

• quand il ne reste plus de sommet menant à une partie non encore explorée, le parcours du
lieu est terminé : tout a été découvert !

Dans le cas de graphe avec au moins un cycle (comme celui de notre héros), si on retombe sur un
sommet déjà visité (à cause d’un tel cycle), on choisit un autre chemin encore non exploré, pour
éviter de tourner infiniement en rond !

Question 2 : Donner la liste de l’ordre des sommets visités par le héros en appliquant la méthode
précédente du parcours en profondeur. Faire de même si on choisit de choisir de façon systématique
le couloir de droite.

Liste des sommets visités en choisissant systématiquement le couloir de gauche : D -> A -> B ->
C -> G -> H -> J -> I -> E -> F

Liste des sommets visités en choisissant systématiquement le couloir de droite : D -> E -> I -> J
-> G -> H -> C -> B -> A -> F

On nomme un tel parcours un parcours en profondeur (ou DFS pour Deep First Search en
anglais) car on explore chaque chemin jusqu’à son extrémité finale, dans toute sa profondeur.

Implémentons de un tel parcours en profondeur en python : pour cela, il va falloir une structure de
donnée permettant de stocker les sommets à visiter. Le fait de parcourir en profondeur (de toujours
avancer dans le graphe sans avoir exploré tous les sommets adjacents des premiers sommets visités)
se retrouvera dans l’usage de piles : en effet, on commence à explorer les voisins du dernier sommet
visité, le dernier empilé.

Dans notre code du DFS, nous utiliserons deux structures de données :

• Une liste des sommmets déjà visités, Visités. A la fin du parcours, elle doit contenir chaque
sommet du graphe une seule fois.

• Une pile des sommets qu’il va falloir visiter, A_visiter. A chaque visite d’un nouveau
sommet, on le dépilera de cette pile, et on empilera ses voisins (non déjà visités) dans cette
pile.

Question 3 : Dans cette “procédure”, comment choisie-t-on le prochain sommet à visiter ? Con-
struire, à l’aide de cette procédure, la liste Visités et la pile A_visiter pour chaque étape, en
considérant notre graphe Lab. On rapelle que les sommets voisins ont été rentrés, dans le diction-
naire Lab, dans l’ordre alphabétique.

Le prochain sommet à visiter est le sommet de la pile, le dernier sommet à avoir été empilé.

6

Départ : Visités = [D] / A_visiter = [A, E]

Première itération (à la fin) : Visités = [D, E] / A_visiter = [A, B, I]

Deuxième itération : Visités = [D, E, I] / A_visiter = [A, B, J]

Deuxième itération : Visités = [D, E, I, J] / A_visiter = [A, B, G]

Troisième itération : Visités = [D, E, I, J, G] / A_visiter = [A, B, C, F, H]

Quatrième itération : Visités = [D, E, I, J, G, H] / A_visiter = [A, B, C, F]

Cinquième itération : Visités = [D, E, I, J, G, H, F] / A_visiter = [A, B, C]

Sixième itération : Visités = [D, E, I, J, G, H, F, C] / A_visiter = [A, B, B]

Septième itération : Visités = [D, E, I, J, G, H, F, C, B] / A_visiter = [A, B]

Huitième itération : Visités = [D, E, I, J, G, H, F, C, B] / A_visiter = [A]

Neuvième itération : Visités = [D, E, I, J, G, H, F, C, B, A] / A_visiter = []

Question 3 : Compléter le code suivant permettant de retourner la liste de l’ordre du parcours
en profondeur d’un graphe. Expliquer la ligne contenantif sommet(A_visiter) in Visités.

[7]: def DFS(Graphe, sommet_dep):
""" Retourne la liste des sommets du graphe Graphe (dictionnaire␣

↪d'adjacence)
parcouru lors d'un parcours en profondeur, en partant du sommet␣

↪sommet_dep"""

sommet_vis = sommet_dep # Sommet actuellement visité
Visités = [sommet_vis] # Liste des sommets déjà visités

A_visiter = creer_pile() # Pile des sommets à visiter
for sommet_adj in Graphe[sommet_vis] : # Les sommets à visiter sont les␣

↪sommets adjacents au sommet actuellement visité
empiler(A_visiter, sommet_adj)

while est_vide(A_visiter) == False :

On considère un sommet de la pile encore non visité :
if sommet(A_visiter) in Visités :

depiler(A_visiter)
else :

sommet_vis = sommet(A_visiter) # sommet visité

On indique qu'on l'a visité et qu'il n'est plus à visiter :
depiler(A_visiter)
Visités.append(sommet_vis)

On met à jour la pile des sommets à visiter, à partir des voisins␣
↪:

7

for sommet_adj in Graphe[sommet_vis] :
if sommet_adj not in Visités:

empiler(A_visiter, sommet_adj)

return Visités

Version un peu plus élégante :

[8]: def DFS(Graphe, sommet_dep):
""" Retourne la liste des sommets du graphe Graphe (dictionnaire␣

↪d'adjacence)
parcouru lors d'un parcours en profondeur, en partant du sommet␣

↪sommet_dep"""

Visités = [] # Liste des sommets déjà visités

A_visiter = creer_pile() # Pile des sommets à visiter
empiler(A_visiter, sommet_dep) # Premier sommet à visiter : celui de départ␣

↪!

while est_vide(A_visiter) == False :

On considère un sommet de la pile encore non visité :
if sommet(A_visiter) in Visités :

depiler(A_visiter)
else :

sommet_vis = sommet(A_visiter) # sommet visité

On indique qu'on l'a visité et qu'il n'est plus à visiter :
depiler(A_visiter)
Visités.append(sommet_vis)

On met à jour la pile des sommets à visiter, à partir des voisins␣
↪:

for sommet_adj in Graphe[sommet_vis] :
if sommet_adj not in Visités :

empiler(A_visiter, sommet_adj)

return Visités

Testons :

[9]: DFS(Lab, 'D')

[9]: ['D', 'E', 'I', 'J', 'G', 'H', 'F', 'C', 'B', 'A']

Question facultative : La méthode étant systématique et faisant appel à une pile, il est possible
d’écrire un algorithme de parcours en profondeur de façon récursive. Compléter le code suivant
dans ce but :

8

[10]: def DFS_rec(Graphe, sommet_dep) :
""" Retourne la liste des sommets du graphe Graphe parcouru lors d'un␣

↪parcours en profondeur, en partant du sommet sommet_dep, de façon␣
↪récursive"""

Exploration récursive à partir d'un sommet :
def explorer(Graphe, sommet_vis) :

for sommet_adj in Graphe[sommet_vis] :
On va explorer tous les sommets adjacents non déjà visités :
if sommet_adj not in Visités:

Visités.append(sommet_adj) # on visite sommet_adj
explorer(Graphe, sommet_adj) # on explore les voisins de␣

↪sommet_adj

Visités = [sommet_dep]

explorer(Graphe, sommet_dep)

return Visités

[11]: DFS_rec(Lab, 'D')

[11]: ['D', 'A', 'B', 'C', 'G', 'F', 'H', 'J', 'I', 'E']

Remarques :

• Pas de pile ici, mais la récursivité inclus une pile d’éxécution !

• Les algorithmes présentés ici ne sont pas les plus “courants” pour le DFS, car ils n’utilisent
que deux catégories pour classer les sommets (“A visiter” et “Visités”) au lieu de 3 pour les
algorithmes les plus “classiques”, qui sont généralement utilisés pour d’autres usages.

• dans tous les algorithmes, on peut remplacer if sommet_adj not in Visités par if
sommet_adj not in Visités or A_visiter : le parcours sera différent, mais tout aussi
valable et toujours un BFS !

2.2 Parcours en largeur
Notre héros, sachant que le monstre se trouve surement “au fond” de la carte, adopte alors une
attitude plus prudente : plutôt que de chercher à progresser le plus rapidement possible “en pro-
fondeur”, donc vers le monstre, va dorénavant chercher à explorer un maximum la carte, accumuler
de la confiance et repousser la rencontre possiblement fatale le plus tard possible. Nous allons donc
l’aider à parcourir différement la carte : on fera alors un parcours en largeur (ou BFS pour
Breadth First Search en anglais).

Voici la procédure à suivre pour parcourir en largeur en explorant de façon systématique :

• à partir du premier sommet, on visite tous les sommets voisins, de façon systématique
(par exemple, pour notré héros, en commençant par la salle la plus à gauche et en finissant
par la plus à droite); avant d’aller plus loin;

9

• on poursuit alors l’exploration à partir du premier de ces voisins : on visite alors les voisins
de ce voisin, s’ils n’ont pas déjà été visités;

• on revient alors au deuxième voisin du sommet initial, et on poursuit l’exploration par ses
voisins, et ainsi de suite, jusqu’à ce qu’il n’y ait plus de sommets à visiter.

Dans cette procédure, l’ordre de visite est déterminé par la “distance” au sommet initial : on
va commencer à explorer les voisins des premiers sommets visités. Il s’agit donc d’une procédure
pouvant s’appuyer sur des files : les sommets enfilés en premiers seront les premiers à être explorés.

Question 5 : Donner la liste de l’ordre des sommets visités par le héros en appliquant la méthode
précédente du parcours en largeur, en commençant par la salle la plus à gauche et en finissant par
la plus à droite, puis l’inverse :

Liste des sommets visités en commençant par la salle la plus à gauche et en finissant par la plus à
droite : D -> A -> E -> B -> I -> C -> J -> G -> H -> F

Liste des sommets visités en commençant par la salle la plus à droite et en finissant par la plus à
gauche : D -> E -> A -> I -> B -> J -> C -> G -> H -> F

Dans notre code du BFS, nous utiliserons deux structures de données :

• Une liste des sommmets déjà visités, Visités. A la fin du parcours, elle doit contenir chaque
sommet du graphe une seule fois.

• Une file des sommets qu’il va falloir visiter, A_visiter. A chaque visite d’un nouveau
sommet, on le défilera de cette file, et on enfilera ses voisins (non déjà visités) dans cette file.

Question 6 : Dans cette “procédure”, comment choisie-t-on le prochain sommet à visiter ? Con-
struire, à l’aide de cette procédure, la liste Visités et la file A_visiter pour chaque étape, en
considérant notre graphe Lab. On rapelle que les sommets voisins ont été rentrés, dans le diction-
naire Lab, dans l’ordre alphabétique.

Le prochain sommet à visiter est le début de la file, le premier sommet à avoir été enfilé.

Départ : Visités = [D] / A_visiter = [A, E]

Première itération (à la fin) : Visités = [D, A] / A_visiter = [E, B]

Deuxième itération : Visités = [D, A, E] / A_visiter = [B, B, I]

Deuxième itération : Visités = [D, A, E, B] / A_visiter = [B, I, C]

Troisième itération : Visités = [D, A, E, B] / A_visiter = [I, C]

Quatrième itération : Visités = [D, A, E, B, I] / A_visiter = [C, J]

Cinquième itération : Visités = [D, A, E, B, I, C] / A_visiter = [J, G]

Sixième itération : Visités = [D, A, E, B, I, C, J] / A_visiter = [G, G]

Septième itération : Visités = [D, A, E, B, I, C, J, G] / A_visiter = [G, F, H]

Huitième itération : Visités = [D, A, E, B, I, C, J, G] / A_visiter = [F, H]

Neuvième itération : Visités = [D, A, E, B, I, C, J, G, F] / A_visiter = [H]

Dixième itération : Visités = [D, A, E, B, I, C, J, G, F, H] / A_visiter = []

10

Question 7 : Adapter le code (itératif) du parcours en profondeur pour effectuer un parcours en
largeur.

Aide : Même si l’ordre des parcours est très différent, les procédures diffèrent en réalité très peu :
le seul changement réside dans le choix de la prochaine salle à explorer parmis celles stockées dans
la strucure dédiée. Pour un parcours en profondeur, on prend la dernière ajoutée, alors que pour le
parcours en largeur, on prend la première : ce ne sont pas les mêmes strucures (pile pour le DFS,
file pour le BFS)

[12]: def BFS(Graphe, sommet_dep):
""" Retourne la liste des sommets du graphe Graphe parcouru lors d'un␣

↪parcours en largeur, en partant du sommet sommet_dep"""

sommet_vis = sommet_dep # Sommet actuellement visité
Visités = [sommet_vis] # Liste des sommets déjà visités

A_visiter = creer_file() # File des sommets à visiter
for sommet_adj in Graphe[sommet_vis] : # Les sommets à visiter sont les␣

↪sommets adjacents au sommet actuellement visité
enfiler(A_visiter, sommet_adj)

while est_vide(A_visiter) == False :

On considère un sommet de la pile encore non visité :
if début(A_visiter) in Visités :

defiler(A_visiter)
else :

sommet_vis = début(A_visiter)

On indique qu'on l'a visité :
defiler(A_visiter)
Visités.append(sommet_vis)

On met à jour la pile des sommets à visiter, à partir des voisins␣
↪:

for sommet_adj in Graphe[sommet_vis] :
if sommet_adj not in Visités:

enfiler(A_visiter, sommet_adj)

return Visités

[13]: BFS(Lab, 'D')

[13]: ['D', 'A', 'E', 'B', 'I', 'C', 'J', 'G', 'F', 'H']

11

2.3 Résumé :
Dans quels cas utiliser un parcours plutôt qu’un autre ? Il ne faut pas oublier que ces procédures
de parcours sont rarement utilisées pour elles-mêmes, mais plutôt comme support d’un algorithme
permettant de détemriner une autre propriété du graphe : par exemple, existe-t-il un cycle dans le
graphe ? Est-il connexe ? Quel est le plus court chemin pour aller d’un certain sommet à un autre
?

Le parcours en profondeur choisit un chemin, va au bout de ce chemin, puis revient sur ses pas et
fait pareil pour tous les chemins possibles dans le graphe donné. L’objectif du DFS est de faire des
recherches complètes ou bien du retour sur trace (backtracking). On explore un chemin à la fois,
dans les moindres recoins pour être sûr d’épuiser toutes les possibilités par chemin.

Le parcours en largeur est utilisé pour explorer un graphe rapidement dans la largeur, couche par
couche, niveau par niveau. Chaque itération va augmenter la distance par rapport au nœud de
départ. Un des objectifs avec le BFS est de déterminer rapidement si un chemin existe entre deux
points. On peut ainsi éliminer rapidement un chemin s’il part dans la mauvaise direction. Il peut
aussi déterminer le nombre de niveaux qui sépare ces deux points. Cet algorithme va explorer,
niveau par niveau dans tous les chemins en même temps, au lieu de se concentrer profondément
chemin par chemin comme le DFS.

D’une façon plus générale, les algorithmes cherchant une optimisation de chemin reposent sur le
BFS, alors que ceux sur la recherche de propriétés (existence cycle, etc) reposent sur le DFS.

3 Une application fameuse : l’algorithme de Dijkstra
D’après la fiche Wikipédia : En théorie des graphes, l’algorithme de Dijkstra sert à résoudre le
problème du plus court chemin. Il permet, par exemple, de déterminer un plus court chemin pour
se rendre d’une ville à une autre connaissant le réseau routier d’une région. Plus précisément, il
calcule des plus courts chemins à partir d’une source vers tous les autres sommets dans un graphe
orienté pondéré par des réels positifs. On peut aussi l’utiliser pour calculer un plus court chemin
entre un sommet de départ et un sommet d’arrivée. L’algorithme porte le nom de son inventeur,
l’informaticien néerlandais Edsger Dijkstra, et a été publié en 1953.

Question 8 : A votre avis, l’aglorithme de Dijkstra repose plutôt sur un parcours en profondeur
ou en largeur ?

Revenons à notre graphe pondéré de la partie précédente :

[20]: # Création du graphe
graphe_train_pond = nx.Graph()

Ajout de noeuds :
graphe_train_pond.add_node("Lille")
graphe_train_pond.add_node("Paris")
graphe_train_pond.add_node("Marseille")
graphe_train_pond.add_node("Lyon")
graphe_train_pond.add_node("Bordeaux")
graphe_train_pond.add_node("Grenoble")
graphe_train_pond.add_node("Nantes")

12

graphe_train_pond.add_node("Toulouse")

Ajout d'arêtes (pondération : durée du trajet en minutes dasn l'argument␣
↪'weight') :

graphe_train_pond.add_edge("Lille","Paris", value = 1/62, weight = 62)
graphe_train_pond.add_edge("Nantes","Paris", value = 1/129, weight = 129)
graphe_train_pond.add_edge("Bordeaux","Paris", value = 1/129, weight = 129)
graphe_train_pond.add_edge("Lyon","Paris", value = 1/114, weight = 114)
graphe_train_pond.add_edge("Bordeaux","Nantes", value = 1/253, weight = 253)
graphe_train_pond.add_edge("Bordeaux","Toulouse", value = 1/129, weight = 129)
graphe_train_pond.add_edge("Marseille","Toulouse", value = 1/228, weight = 228)
graphe_train_pond.add_edge("Marseille","Lyon", value = 1/104, weight = 104)
graphe_train_pond.add_edge("Grenoble","Lyon", value = 1/83, weight = 83)
graphe_train_pond.add_edge("Grenoble","Paris", value = 1/183, weight = 183)

Représentation graphique à l'aide de Matplotlib, en affichant les␣
↪pondérations sur chaque arête :

pos=nx.spring_layout(graphe_train_pond) # pos = nx.nx_agraph.graphviz_layout(G)
nx.draw_networkx(graphe_train_pond,pos)
labels = nx.get_edge_attributes(graphe_train_pond,'weight')
nx.draw_networkx_edge_labels(graphe_train_pond,pos,edge_labels=labels)
plt.show()

Testons la recherche du plus court chemin (en terme de durée de parcours), à l’aide de l’agorithme
de Dijkstra (disponible dans NetworkX) :

[23]: nx.dijkstra_path(graphe_train_pond, 'Lille', 'Toulouse', weight='weight')

[23]: ['Lille', 'Paris', 'Bordeaux', 'Toulouse']

13

[29]: nx.dijkstra_path(graphe_train_pond, 'Marseille', 'Bordeaux', weight='weight')

[29]: ['Marseille', 'Lyon', 'Paris', 'Bordeaux']

Pour tester de nombreux parcours de graphes : http://mpechaud.fr/scripts/parcours/index.html

14

	Rappels sur les piles et files
	Qu'est-ce qu'une file et une pile ?
	Créer et utiliser des piles et files

	Parcours d'un graphe ``simple''
	Parcours en profondeur
	Parcours en largeur
	Résumé :

	Une application fameuse : l'algorithme de Dijkstra

