[]1:

[]1:

TD Info 6 - Graphes partie III : Applications a un graphe complexe
Proposition de correction

Contents

1 Introduction : étudier un graphe complexe 1
1.1 Représentation et visualisation d’un graphe complexe 1
1.2 Pagerank)

2 Au travail : étude de la connexité ! 7

1 Introduction : étudier un graphe complexe

1.1 Représentation et visualisation d’un graphe complexe

Le travail qui suit est basé sur les données disponibles a I’adresse suivante
http://evelinag.com/blog/2015/12-15-star-wars-social-network /index.html

Les graphes que nous allons étudier reposent sur 1’étude des scripts (automatisée, heureusement !)
des films Star Wars : en analysant les interactions entre les différents personnages (plus précisément
les discussions auxquelles prennent par les personnages), on peut établir des graphes des interactions
sociales.

Voici 'importation du fichier regroupant ces données, pour le meilleur des épisodes, bien évidem-
ment ’épisode V, L’empire contre-attaque :

with open('starwars-episode-5-interactions-allCharacters.json') as f:
data = json.load(f)
df=pd.DataFrame (data)

data

Ici chaque neeud ou sommet représente un personnage du film. Deux personnages sont reliés par
une aréte s'’ils parlent dans une méme scéne (sauf pour Chewbacca et R2-D2, pour lesquels la seule
présence suffit !). Plus ces personnages ont de scénes de dialogues communes, plus la valeur de
I’aréte est importante. Une valeur est aussi attribuée a chaque personnage, il s’agit simplement du
nombre de sceéne dans lequel il apparait.

Voici par exemple, issu des scripts, les apparitions de quelques personnages dans les différents

OBI-WAN
YODA
EMPEROR o»—.o—&-—-%—o*—o—uw
PADME
R2-D2
ANAKIN et . = O =

C-3P0O

DARTH VADER MM—W—
CHEWBACCA TR L S LS
LUKE Pt Gpro 01 ottt tnres —

LEIA

HAN

L. Episode | Episode || Episode lll Episode IV EpisodeV Episode VI
épisodes :

Pour les plus ambitieux, on peut aussi travailler avec les données pour I’ensemble des 7 premiers
épisodes :

[1: with open('starwars-full-interactions-allCharacters.json') as f:
data = json.load(f)
df=pd.DataFrame(data)

Un premier objectif est de représenter le graphe d’interactions sociale : pour cela, commencons par
définir les structures de données qui nous serons utiles pour la suite.

[12]: # Nombre de personnages
nb_perso = len(datal['nodes'])

Nombre d'arétes
nb_ar = len(datal['links'])

Liste des personnages : associe 4 son numéro le nom de personnage
—correspondant
Liste_perso = []

Dictionnatire des persos : assoctie d un nom de personnage Son NUMETO
Dict_perso = {}

Liste des couleurs associées 4 chaque perso (classés par numéros)
Color = []

Dictionnatire des couleurs : associe d un mom de personnage sa couleur

Dict_color ={}

Liste des tatlles associées & chaque perso (classés par numéros)
Size = []

Dictionnaire des tailles : associe d un mom de personnage sa taille
Dict_size = {}

Dictionnatire des labels : contient, pour les personnages "importants”
(non importants : de couleur grise) le nom du perso assoctié au méme nom !
Labels = {}

Liste des poids associé d chaque arréte (classés par numéros)
Wheight = []

Pour les nceuds :

[13]: for node in datal'nodes']:
Color.append(node['colour'])
Size.append(node['value'l*4) # facteur 4 pour lisibilité
Liste_perso.append(node['name'])
if node['colour'] != '#808080' : # Si le perso n'est pas en gris, il doity
~étre tmportant, on lui donmne un label
Labels[node['name']] = node['name']

for i in range(len(Liste_perso))
Dict_color[Liste_perso[i]] = Color[il
Dict_size[Liste_perso[i]] = Sizel[i]
Dict_perso[Liste_persol[i]l] = i

Créons alors le graphe grace au module NetworkX :

[14]: # Création du graphe
graphe = nx.Graph()

Ajout des sommets :
for node in datal['nodes']:
graphe.add_node(node['name'])

Ajout des arétes :
for link in datal['links']
persol = Liste_perso[link['source']]
perso2 = Liste_perso[link['target']]
weight = link['value']
Wheight .append(weight)
graphe.add_edge(persol, perso2, value = 1 / weight, weight = weight)

Et représentons-le :

[15]: # Représentation graphique d l'aide de Matplotlabd
ratio = 0.8 # ratio de tatlle entre fig et texte (légende et azes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio),dpi = 300)

cmap = plt.cm.Blues

pos = nx.spring_layout(graphe, seed = 0) # positions for all nodes

nx.draw_networkx_nodes(graphe, pos, node_color = Color, node_size = Size)

nx.draw_networkx_edges(graphe, pos, edge_color = Wheight, edge_cmap=cmap,,
-width=2)

nx.draw_networkx_labels(graphe, pos, Labels, font_size=5, font_color="black")

plt.tight_layout ()

plt.axis("off")

plt.show()

[
{ o
LEIA
3 [
HAN -R2-D2
DART(@JADER » ‘ﬂ cca
° C-3p
EME@ROR
[

ANAKIN

YODA

OBIWAN

Sur le graphe ci-dessus, la taille de chaque personnage dépend du nombre de scene dans lequel il
apparalt. L’intensité de la couleur des arétes dépend du nombre de dialogues partagés.

Avec le module Pyvis, on peut obtenir une représentation plus dynamique :

[16]: net = Network(notebook = True)
net.from_nx(graphe)

for edge in net.edges
edge["color"] = 'lightgrey'

for node in net.nodes
perso = node['id']
node["color"] = Dict_color[persol
node["value"] = Dict_size[perso]

[17]:

[17]:

[18]:

display(net.show("graphe_sw.html"))

Warning: When cdn_resources is 'local' jupyter notebook has issues displaying
graphics on chrome/safari. Use cdn_resources='in_line' or cdn_resources='remote'
if you have issues viewing graphics in a notebook.

graphe_sw.html

<IPython.lib.display.IFrame at O0x7f££1c02579d0>

1.2 Pagerank

A partir de ce graphe social, on peut déterminer l'indice pagerank de chaque personnage : en
simplifiant, il s’agit de quantifier la renommée d’un personnage (selon un algorithme qui a fait le
succes de Google) & partir du nombre d’autres personnages dialoguant avec lui. Pour détemriner
cet indice, on utilise simplement la fonction dédiée dans le module NetworkX :

pr = nx.pagerank(graphe)
pr

{'R2-D2': 0.06264059712308684,
'CHEWBACCA': 0.055066054106916104,
"JERJERROD': 0.019856654390356616,
'DARTH VADER': 0.07269021205340688,
'C-3P0': 0.0854188905116645,

'BIB FORTUNA': 0.0295097365774573,
"JABBA': 0.0443736840369331,
'LUKE': 0.13880683222162712,
'BOUSHH': 0.03478054909814104,
'"HAN': 0.0695465482186512,

'LETA': 0.0695465482186512,
'"LANDO': 0.07101762383357935,
'"EMPEROR': 0.027722357115509327,
'"YODA': 0.015365702725152712,
'OBI-WAN': 0.0156365702725152712,
'MON MOTHMA': 0.06212339359339941,
"ADMIRAL ACKBAR': 0.05741135455580205,
'PIETT': 0.019856654390356616,
'WEDGE': 0.0211785473886466,
"ANAKIN': 0.027722357115509327}

Nous alors représenter au nouveau le graphe, mais en considérant, pour la taille des personnages,
cet indice de renommeée (plutoét que le nombre de scéne dans lesquelles il apparait) :

Pr = [prlperso]*500 for perso in pr]

ratio = 0.8 # ratio de tatille entre fig et texte (légende et azes), par défaut 1
plt.figure(figsize=(8+*ratio,5*ratio),dpi = 300)

cmap = plt.cm.Blues

pos = nx.spring_layout(graphe, seed = 0) # positions for all nodes

nx.draw_networkx_nodes(graphe, pos, node_color = Color, node_size = Pr)

nx.draw_networkx_edges(graphe, pos, edge_color = Wheight, edge_cmap=cmap,,;
wwidth=2)

nx.draw_networkx_labels(graphe, pos, Labels, font_size=6, font_color="black")

plt.tight_layout()

plt.axis("off")

plt.show()

ANAKIN p
° DARTH@YADER)
e
X2 LEIA °
\ = -"D“{),“ l/ \
EMP@ROR tgRe K °

[
CcH E\y:co-\

YODA

OBI-WAN

[19]: net = Network(notebook = True)
net.from_nx(graphe)

for edge in net.edges
edge["color"] = 'lightgrey'

for node in net.nodes
perso = node['id']
node["color"] = Dict_color[perso]
node["value"] = prlperso]

display(net.show("graphe_sw.html"))

Warning: When cdn_resources is 'local' jupyter notebook has issues displaying
graphics on chrome/safari. Use cdn_resources='in_line' or cdn_resources='remote'
if you have issues viewing graphics in a notebook.

graphe_sw.html

<IPython.lib.display.IFrame at 0x7ff1c0256990>

Pour comparaison, voici le résultat avec les 7 premiers films :

FooEEEED BRAVO THREE

° &0 o e
JANSON GOLD LEADER. . . L
SEBULBA &y
cLEGG WALD i
Y-, o }
® P [] @ - @
® -
weece @ nep LEADER mices . K
=)
s [
= ® A
wirrdl) ®
® GREEDA Papme AMAKI 3R 3 CAPTAM PANAKA
et @ we
- ®
® quson o ns.c
° S || o N i
® Jess [] CY e
Miy LEX SKAR < e oD BALL
@ e @550,
@ ADMIRAL STATURA ® o s . @
oLz ok T RS T g) A, T A REET . T
® Lo valZe GURar
st] O A AN
B o Rt FREE TAN
8 - [B S Pl [] o
LEA CARTAM ANTRLES, o .s @ AUNE
e | 1 W au W .
omwan acewn oa
- Y
o
" e I ®
CLoNE CamMANDER TevHon
e L ADIMND! ™ ®
e [L4 |
oommE
Lengmre @) f oARTIZOcR
.>rn~ PHASHMA .
o, uomaFeT
KYLOREN BALATIK . .
waz L4
® one commmBEroF et
L] wason, @ 24n30 FETT
SSSSS worn ®

Et on se rend compte que Star Wars est avant tout ’histoire d’Anakin Skywalker, Obi-Wan Kenobi
et C-3PO ..

2 Au travail : étude de la connexité !

On fournit le code ci-dessous permettant de définir le dictionnaire d’adjacence correspondant au
graphe étudié (on ne tient pas compte du poids des arétes) :

[15]: Dict_Sw = {}

for perso in Liste_perso
Dict_SW[perso] = []

for edge in datal['links']
persol = Liste_perso[edge['source']]
perso2 = Liste_persoledge['target']]
Dict_SW[persol] .append(perso2)
Dict_SW[perso2] . append(persol)

On fournit aussi les fonctions utiles suivantes :

[9]: def creer_pile(Q):
"t Créé et retourne une pile vide """
return deque()

def taille(P):
""" Retourne la taille de la pile P """
return len(P)

def est_vide(P):
- Retourne un bool

éen : True si la pile P est vide, False sinon """
return taille(P) == 0

def empiler(P,v):
"t Empile 1'élément v d la fin de la pile P """
P.append (v)

def depiler(P):
nnt Dépile la pile P (supprime le dernier élément empilé dans P) """
if est_vide(P):
raise ValueError("Erreur : pile vide")
else :
P.pop(O)

def sommet(P):
"1 Retourne le sommet de la pile P """
if est_vide(P):
raise ValueError("Erreur : pile vide")
else :
return P[-1]

def creer_file():
nn Créé et retourne une file vide
return deque()

nimnn

def taille(F):
""" Retourne la taille de la file F """
return len(F)

def est_vide(F):
""" Retourne un booléen : True st la file F est wide, False sinon """
return taille(F) ==

def enfiler(F,v):
" Ajoute l'élément v a4 la fin de la file F, v devient le dernier élément,
wcelut tout 4 droite"""

F.append (v)

def defiler(F):
" Enléve l'élément au début de la file F, soit son premier élément, celui,
~tout d gauche"""
if est_vide(F):
raise ValueError("Erreur : file vide")
else :
F.popleft()
return(F)

def début(F):
""" Retourne le début de la file F, soit son premier élément """

if est_vide(F):

raise ValueError("Erreur : file vide")
else

return F[0]

def DFS(Graphe, sommet_dep):
""" Retourne la liste des sommets du graphe Graphe parcouru lors d'uny

wparcours en profondeur, en partant du sommet sommet_dep"""

sommet_vis = sommet_dep # Sommet actuellement visité
Visités = [sommet_vis] # Liste des sommets déjd visités
A _visiter = creer_pile() # Pile des sommets d visiter
for sommet_adj in Graphe[sommet_vis] : # Les sommets 4 visiter sont lesy
~sommets adjacents au sommet actuellement visité
empiler(A_visiter, sommet_adj)

while est_vide(A_visiter) == False

On considére un sommet de la pile encore non vistté
if sommet(A_visiter) in Visités

depiler (A_visiter)
else

sommet_vis = sommet(A_visiter) # sommet wisité

On indique qu'on l'a visité et qu'il n'est plus d visiter :
depiler(A_visiter)
Visités.append(sommet_vis)

On met a jour la pile des sommets a vistiter, 4 partir des voisins,

for sommet_adj in Graphe[sommet_vis]
if sommet_adj not in Visités
empiler (A_visiter, sommet_adj)

return Visités

Question 1 : Vérifier que le graphe est connexe. Pour rappel, un graphe connexe est un graphe
dans lequel chaque sommet peut étre relié a tout autre sommet par une aréte ou une suite d’arétes
: on peut dire qu’un graphe connexe est d’un seul tenant.

Aide : il est pertinent de partir d’un algorithme de parcours du graphe !

Correction : Comme le graphe est non orienté, on peut aisément se convaincre qu’il est connexe
si et seulement si, & partir d’'un sommet quelconque, on obtient, via un parcours (quelconque, en
profondeur ou en largeur), la totalité des sommets du graphe. Essayons ici avec le graphe le plus
complexe, celui des 7 premiers épisodes.

[16]: from random import randint
perso_dep = Liste_perso[randint (0, nb_perso - 1)]

print("Graphe connexe : ", nb_perso == len(DFS(Dict_SW, perso_dep)))

Graphe connexe : False

Le graphe est non connexe, car il existe un personnage esseulé : Gold Five (pilote dans 1’épisode 4,
lors de la bataille de Yavin). Comme celui-ci n’apparait que seul dans son vaisseau, il n’interagit
pas avec les autres personnages, méme s’il leur parle via radio... Enlevons ce personnage, et voyons
si le graphe devient bien connexe :

[17]: Dict_SW.pop("GOLD FIVE")
[(171: [1

[18]: nb_perso -= 1
print ("Graphe connexe : ", nb_perso == len(DFS(Dict_SW, perso_dep)))

Graphe connexe : True

D’apres Wikipédia : Dans la théorie des graphes, une clique est un ensemble de sommets deuz-
a-deux adjacents. Un graphe complet est un graphe dont ’ensemble des sommets est une clique :
chaque sommet est relié¢ directement da tous les autres sommets.

Question 2 : Le graphe étudié est-il complet ? Ecrire une fonction permettant de déterminer les
cliques possible d’un graphe. Quel pourrait étre I'intérét d’une telle recherche dans le graphe des
interactions sociale dans Star Wars ?

Les graphes étudiés ne sont pas complet, en effet, par exemple, Obi-Wan n’a pas d’interactions avec
I’empereur (en tout cas sous ce nom la...) :

[19]: print("OBI WAN" in Dict_SW["EMPEROR"])
False
Ecrivons la fonction demandée, selon 1’algorithme Bron-Kerbosch :

[20]: def cliques(Clique, Candidats, Exclus, Graphe)

if Candidats == [] and Exclus == []
print (Clique)
return Clique

Copy_Cand = Candidats.copy()
for sommet in Copy_Cand : # Candidats est modifiée, on itére sur la copie

Clique_new = Clique + [sommet]

Voisins = Graphe [sommet]
Exclus_new = [ex for ex in Exclus if ex in Voisins]

10

Candidats new = [cd for cd in Candidats if cd in Voisins]
cliques(Clique_new, Candidats_new, Exclus_new, Graphe)

Exclus.append (sommet)
Candidats.remove (sommet)

[21]: Candidats_i = [sommet for sommet in Dict_SW]
cliques([], Candidats_i, [], Dict_SW)

['R2-D2', 'CHEWBACCA', 'BB-8', 'C-3P0', 'LEIA', 'HAN']

['R2-D2', 'CHEWBACCA', 'OBI-WAN', 'C-3P0', 'DARTH VADER', 'LUKE', 'LEIA', 'HAN']
['R2-D2', 'CHEWBACCA', 'C-3P0', 'JABBA', 'LUKE', 'HAN']

['R2-D2', 'CHEWBACCA', 'C-3P0', 'DARTH VADER', 'LUKE', 'LEIA', 'HAN', 'LANDO']
['R2-D2', 'QUI-GON', 'OBI-WAN', 'EMPEROR', 'PADME', 'ANAKIN', 'C-3PO', 'YODA',
'"BAIL ORGANA']

['R2-D2', 'QUI-GON', 'PADME', 'WATTO', 'ANAKIN', 'C-3P0', 'KITSTER']
['R2-D2', 'QUI-GON', 'PADME', 'ANAKIN', 'C-3P0', 'JABBA']

['R2-D2', 'OBI-WAN', 'EMPEROR', 'ANAKIN', 'C-3P0', 'YODA', 'LUKE']

['R2-D2', 'OBI-WAN', 'EMPEROR', 'ANAKIN', 'C-3P0', 'DARTH VADER', 'LUKE']
['R2-D2', 'OBI-WAN', 'PADME', 'ANAKIN', 'C-3P0', 'CAPTAIN TYPHO']

['R2-D2', 'PADME', 'ANAKIN', 'C-3P0', 'OWEN', 'BERU']

['R2-D2', 'ANAKIN', 'C-3P0', 'JABBA', 'LUKE']

['R2-D2', 'ANAKIN', 'C-3P0O', 'OWEN', 'BERU', 'LUKE']

['R2-D2', 'C-3P0', 'BAIL ORGANA', 'CAPTAIN ANTILLES']

['R2-D2', 'C-3P0', 'BERU', 'LUKE', 'LEIA']

['R2-D2', 'C-3P0', 'LUKE', 'BIGGS', 'LEIA']

['CHEWBACCA', 'BB-8', 'C-3P0', 'LEIA', 'HAN', 'POE', 'FINN']

['CHEWBACCA', 'BB-8', 'LEIA', 'HAN', 'FINN', 'REY']

['CHEWBACCA', 'BB-8', 'HAN', 'FINN', 'REY', 'BALA-TIK']

['CHEWBACCA', 'BB-8', 'HAN', 'FINN', 'REY', 'MAZ']

['CHEWBACCA', 'OBI-WAN', 'C-3P0O', 'BOBA FETT', 'DARTH VADER', 'LEIA', 'HAN']
['CHEWBACCA', 'C-3P0', 'BOBA FETT', 'DARTH VADER', 'LEIA', 'HAN', 'LANDO']
['CHEWBACCA', 'C-3P0', 'LEIA', 'HAN', 'RIEEKAN']

['CHEWBACCA', 'LUKE', 'LEIA', 'HAN', 'REY']

['CHEWBACCA', 'HAN', 'POE', 'KYLO REN', 'CAPTAIN PHASMA', 'FINN']
['CHEWBACCA', 'HAN', 'KYLO REN', 'FINN', 'REY']

['BB-8', 'LOR SAN TEKKA', 'POE']

['BB-8', 'UNKAR PLUTT', 'REY']

['QUI-GON', 'NUTE GUNRAY', 'TC-14', 'OBI-WAN']

['QUI-GON', 'NUTE GUNRAY', 'OBI-WAN', 'EMPEROR', 'SIO BIBBLE', 'PADME',
"ANAKIN']

['QUI-GON', 'OBI-WAN', 'EMPEROR', 'CAPTAIN PANAKA', 'SIO BIBBLE', 'JAR JAR',
'"PADME', 'ANAKIN']

['QUI-GON', 'OBI-WAN', 'EMPEROR', 'JAR JAR', 'PADME', 'ANAKIN', 'MACE WINDU',
'"YODA', 'BAIL ORGANA']

['QUI-GON', 'OBI-WAN', 'EMPEROR', 'ANAKIN', 'MACE WINDU', 'KI-ADI-MUNDI',
'"YODA', 'BAIL ORGANA']

11

['QUI-GON', 'OBI-WAN', 'CAPTAIN PANAKA', 'JAR JAR', 'BOSS NASS', 'PADME',
"ANAKIN']

['QUI-GON', 'OBI-WAN', 'CAPTAIN PANAKA', 'JAR JAR', 'RIC OLIE', 'ANAKIN']
['QUI-GON', 'OBI-WAN', 'JAR JAR', 'PADME', 'ANAKIN', 'SHMI']

['QUI-GON', 'EMPEROR', 'JAR JAR', 'VALORUM', 'BAIL ORGANA']

['QUI-GON', 'JAR JAR', 'PADME', 'ANAKIN', 'SEBULBA', 'SHMI', 'JABBA']
['QUI-GON', 'JAR JAR', 'PADME', 'ANAKIN', 'SHMI', 'KITSTER']

['QUI-GON', 'JAR JAR', 'ANAKIN', 'KITSTER', 'WALD']

['QUI-GON', 'PADME', 'ANAKIN', 'JIRA']

['QUI-GON', 'ANAKIN', 'WALD', 'GREEDO']

['QUI-GON', 'ANAKIN', 'MACE WINDU', 'KI-ADI-MUNDI', 'YODA', 'RABE']
['NUTE GUNRAY', 'TC-14', 'DOFINE']

['NUTE GUNRAY', 'OBI-WAN', 'EMPEROR', 'PADME', 'ANAKIN', 'COUNT DOOKU']
['NUTE GUNRAY', 'OBI-WAN', 'PADME', 'ANAKIN', 'COUNT DOOKU', 'SUN RIT',
'"POGGLE']

['NUTE GUNRAY', 'OBI-WAN', 'ANAKIN', 'GENERAL GRIEVOUS']

['NUTE GUNRAY', 'DOFINE', 'TEY HOW']

['NUTE GUNRAY', 'RUNE', 'TEY HOW']

['NUTE GUNRAY', 'RUNE', 'EMPEROR', 'DARTH MAUL']

['NUTE GUNRAY', 'EMPEROR', 'DARTH MAUL', 'GENERAL CEEL']

['PK-4', 'TC-14', 'OBI-WAN']

['OBI-WAN', 'EMPEROR', 'JAR JAR', 'MACE WINDU', 'YODA', 'BAIL ORGANA', 'SENATOR
ASK AAK']

['OBI-WAN', 'EMPEROR', 'PADME', 'ANAKIN', 'MACE WINDU', 'YODA', 'COUNT DOOKU']
['OBI-WAN', 'JAR JAR', 'PADME', 'ANAKIN', 'CAPTAIN TYPHO']

['OBI-WAN', 'ANAKIN', 'MACE WINDU', 'YODA', 'CLONE COMMANDER CODY']
['OBI-WAN', 'ANAKIN', 'ODD BALL']

['OBI-WAN', 'TAUN WE', 'LAMA SU']

['OBI-WAN', 'TAUN WE', 'BOBA FETT', 'JANGO FETT']

['OBI-WAN', 'JANGO FETT', 'COUNT DOOKU']

['OBI-WAN', 'TION MEDON']

['EMPEROR', 'JAR JAR', 'GENERAL CEEL']

['EMPEROR', 'JAR JAR', 'SENATOR ASK AAK', 'ORN FREE TAA']

['JAR JAR', 'TARPALS']

['JAR JAR', 'PADME', 'FODE/BEED', 'JABBA']

['PADME', 'ANAKIN', 'C-3P0', 'OWEN', 'BERU', 'CLIEGG']

['PADME', 'ANAKIN', 'SOLA', 'JOBAL', 'RUWEE']

['PADME', 'C-3P0', 'BAIL ORGANA', 'MON MOTHMA']

['PADME', 'BAIL ORGANA', 'FANG ZAR', 'MON MOTHMA', 'GIDDEAN DANU']

['RIC OLIE', 'ANAKIN', 'BRAVO TWO', 'BRAVO THREE']

['C-3P0', 'JABBA', 'LUKE', 'BIB FORTUNA']

['C-3P0', 'JABBA', 'HAN', 'BOUSHH']

['C-3P0', 'MON MOTHMA', 'LUKE', 'LEIA', 'HAN', 'LANDO', 'ADMIRAL ACKBAR']
['C-3P0', 'LUKE', 'BIGGS', 'LEIA', 'RED LEADER']

['C-3P0', 'LEIA', 'HAN', 'BOUSHH']

['C-3P0', 'LEIA', 'HAN', 'ADMIRAL ACKBAR', 'POE', 'FINN', 'SNAP', 'ADMIRAL
STATURA']

['C-3P0', 'LEIA', 'DERLIN']

12

['GREEDO', 'HAN']

['KI-ADI-MUNDI', 'PLO KOON']

['YODA', 'CLONE COMMANDER GREE']

['BOBA FETT', 'DARTH VADER', 'PIETT']

['DARTH VADER', 'LEIA', 'MOTTI', 'TARKIN']

['DARTH VADER', 'PIETT', '0ZZEL']

['DARTH VADER', 'PIETT', 'NEEDA']

['DARTH VADER', 'JERJERROD']

['LUKE', 'CAMIE', 'BIGGS']

['LUKE', 'BIGGS', 'GOLD LEADER', 'WEDGE', 'RED LEADER']
['LUKE', 'HAN', 'ZEV']

['LUKE', 'DODONNA', 'GOLD LEADER', 'WEDGE']

['LUKE', 'WEDGE', 'LANDO', 'ADMIRAL ACKBAR']
['LUKE', 'RED LEADER', 'RED TEN']

['LUKE', 'DACK']

['WEDGE', 'JANSON']

['LOR SAN TEKKA', 'POE', 'KYLO REN', 'CAPTAIN PHASMA']
['POE', 'SNAP', 'JESS']

['POE', 'YOLO ZIFF', 'ELLO ASTY', 'JESS', 'NIV LEK']
['KYLO REN', 'CAPTAIN PHASMA', 'GENERAL HUX']

['KYLO REN', 'GENERAL HUX', 'LIEUTENANT MITAKA']
['KYLO REN', 'GENERAL HUX', 'SNOKE']

['GENERAL HUX', 'COLONEL DATO0O0']

Cette fonction affiche toutes les cliques possibles. Pour stocker ces résultats, il semble nécessaire
d’utiliser la fonction yield de python :

[22]: def cliques(Clique, Candidats, Exclus, Graphe)

if Candidats == [] and Exclus == []
print (Clique)
yield Clique

Copy_Cand = Candidats.copy()
for sommet in Copy_Cand : # Candidats va étre modifiée, on itére sur une,
~copte
Clique_new = Clique + [sommet]
Voisins = Graphe [sommet]
Exclus_new = [ex for ex in Exclus if ex in Voisins]
Candidats new = [cd for cd in Candidats if cd in Voisins]

for clique in cliques(Clique_new, Candidats_new, Exclus_new, Graphe)
print(clique)

yield clique

Exclus.append (sommet)
Candidats.remove (sommet)

13

[]1:

[24]:

[25] :

[26]

[27]

Candidats_i = [sommet for sommet in Dict_SW]
Cliques = list(cliques([], Candidats_i, [], Dict_SW))

Intéressons nous a la plus grande clique contenant le “gentils”, Luke Skywalker :

1=0
Clique_max_L = []
for clique in Cliques :
if "LUKE" in clique and len(clique) > 1 :

1 = len(clique)
Clique_max_L = clique
print(Clique_max_L)
['R2-D2', 'CHEWBACCA', 'OBI-WAN', 'C-3P0', 'DARTH VADER', 'LUKE', 'LEIA', 'HAN']
La plus grande contenant Dark Vador :
1=0
Clique_max_DV = []

for clique in Cliques :
if "DARTH VADER" in clique and len(clique) > 1 :

1 = len(clique)
Clique_max_DV = clique
print(Clique_max_DV)
['R2-D2', 'CHEWBACCA', 'OBI-WAN', 'C-3P0', 'DARTH VADER', 'LUKE', 'LEIA', 'HAN']

La plus grande contenant un robot :

:11 =0

Clique_max_Robots = []

for clique in Cliques :
if "R2-D2" in clique and "C-3P0" in clique and len(clique) > 1 :

1 = len(clique)
Clique_max_Robots = clique

print (Clique_max_Robots)

['R2-D2', 'QUI-GON', 'OBI-WAN', 'EMPEROR', 'PADME', 'ANAKIN', 'C-3P0', 'YODA',
'"BAIL ORGANA']

La plus grande contenant Yoda :

1|1 =20
Clique_max_Y = []
for clique in Cliques :
if "YODA" in clique and len(clique) > 1 :
1 = len(clique)
Clique_max_Y = clique

14

print(Clique_max_Y)

['R2-D2', 'QUI-GON', 'OBI-WAN', 'EMPEROR', 'PADME', 'ANAKIN', 'C-3P0', 'YODA',
'BAIL ORGANA']

15

	Introduction : étudier un graphe complexe
	Représentation et visualisation d'un graphe complexe
	Pagerank

	Au travail : étude de la connexité !

