
TD Modélisation 4 : Phénomènes de diffusion

Préambule python :

[1]: import matplotlib.pyplot as plt
from math import sqrt, cos, sin, exp, pi
import numpy as np
from random import randint

1 Transfert thermique dans un mur
D’après les épreuves de modélisation CCINP 2015 et 2023 (débuts). ## Étude analytique du
régime stationnaire On étudie les transferts thermiques dans le mur d’une maison (voir figure ci-
dessous), considéré comme un isolant de section S et d’épaisseur e. La température à l’intérieur de
la maison est notée 𝑇𝑖𝑛𝑡, et celle à l’extérieur 𝑇𝑒𝑥𝑡.

Le mur a une épaisseur 𝐿 = 𝑒 = 40𝑐𝑚. Les propriétés physiques du mur sont constantes :

• conductivité thermique 𝜆 = 1, 65𝑊.𝑚−1.𝐾−1

• capacité thermique massique à pression constante 𝑐𝑝 = 1000𝐽.𝑘𝑔−1.𝐾−1

• masse volumique 𝜌 = 2150𝑘𝑔.𝑚−3.

On note 𝑇 (𝑥, 𝑡) la température dans le mur en fonction du temps. Dans le mur (pour 0 ≤ 𝑥 ≤ 𝑒),
la température suit la loi de diffusion thermique :

𝜌𝑐𝑝
𝜕𝑇
𝜕𝑡 = 𝜆𝜕2𝑇

𝜕𝑥2

Dans la suite, on se place en régime stationnaire.

Question 1 : A quelle condition peut-on supposer que la température ne dépend pas des coordon-
nées y et z ?

Correction 1 : Lorsque les dimensions transversales (selon y et z) du mur sont grandes devant
l’épaisseur e du mur, on peut négliger les effets de bords, il y a invariance par translation selon 𝑦
et 𝑧, et ainsi on se ramène à un problème unidimensionnel selon l’axe des 𝑥 : 𝑇 (𝑥, 𝑦, 𝑧) = 𝑇 (𝑥).
Question 2 : Réécrire l’équation 𝜌𝑐𝑝

𝜕𝑇
𝜕𝑡 = 𝜆𝜕2𝑇

𝜕𝑥2 en régime stationnaire. Justifier que la tempéra-
ture dans l’isolant est de la forme 𝑇 (𝑥) = 𝐴𝑥 + 𝐵.

Correction 2 : En régime stationnaire 𝜕𝑇
𝜕𝑡 = 0 → 𝜕2𝑇

𝜕𝑥2 = 0 et donc 𝑇 (𝑥) = 𝐴𝑥 + 𝐵.

Question 3 : En déduire l’expression de la température 𝑇 (𝑥) en fonction des données du problème.

1

Correction 3 : En utilisant que 𝑇 (0) = 𝑇𝑖𝑛𝑡 et 𝑇 (𝑒) = 𝑇𝑒𝑥𝑡, on en déduit que 𝐴 = 𝑇𝑒𝑥𝑡−𝑇𝑖𝑛𝑡
𝑒 et

𝐵 = 𝑇𝑖𝑛𝑡 et donc finalement :
𝑇 (𝑥) = (𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛𝑡)

𝑥
𝑒 + 𝑇𝑖𝑛𝑡

On rappelle les expressions :

• de la loi de Fourier : ⃗𝑗𝑡ℎ(𝑥) = −𝜆d𝑇
d𝑥 ⃗𝑒𝑥

• du flux thermique : Φ = ∬ ⃗𝑗𝑡ℎ(𝑥).d ⃗𝑆
• de la résistance thermique : 𝑅𝑡ℎ = 𝑇𝑖𝑛𝑡−𝑇𝑒𝑥𝑡

Φ

Question 4 : Proposer une interprétation physique de la résistance thermique. Montrer que
𝑅𝑡ℎ = 𝑒

𝜆𝑆 .

Correction 4 : Interprétation physique : citer (et expliquer rapidement) l’analogie élec-
trique/thermique).

Avec la loi 𝑇 (𝑥), on obtient :

⃗𝑗𝑡ℎ(𝑥) = −𝜆d𝑇
d𝑥 ⃗𝑒𝑥 = −𝜆𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛𝑡

𝑒 ⃗𝑒𝑥

On a alors :
Φ = ∬ ⃗𝑗𝑡ℎ(𝑥).d ⃗𝑆 = −𝜆𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛𝑡

𝑒 ⃗𝑒𝑥. ∬ d ⃗𝑆

Avec d ⃗𝑆 = d𝑆 ⃗𝑒𝑥, on obtient :

Φ = −𝜆𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛𝑡
𝑒 ∬ d𝑆 = −𝜆𝑇𝑒𝑥𝑡 − 𝑇𝑖𝑛𝑡

𝑒 𝑆

Finalement :
𝑅𝑡ℎ = 𝑇𝑖𝑛𝑡 − 𝑇𝑒𝑥𝑡

Φ = 𝑒
𝜆𝑆

Question 5 : Déterminer l’épaisseur 𝑒 du mur isolant permettant d’obtenir, pour une surface
𝑆 = 2, 0𝑚2, une résistance thermique 𝑅𝑡ℎ = 0, 12𝐾.𝑊 −1.

Correction 5 : 𝑒 = 40𝑐𝑚

1.1 Étude numérique du régime transitoire : version 2023
On cherche à résoudre numériquement l’équation aux dérivées partielles :

𝜕𝑇
𝜕𝑡 = 𝑘𝑡ℎ

𝜕2𝑇
𝜕𝑥2

avec 𝑘𝑡ℎ = 𝜆
𝜌𝑐𝑃

la constante de diffusivité thermique.

Pour ce faire, on discrétise le temps et l’espace de la façon suivante :

• le temps est discrétisé en 𝑁𝑡 dates comprises entre 0 et 𝑡𝑚𝑎𝑥, la durée de la simulation. Ces
dates sont séparées du pas temporel d𝑡 = 𝑡𝑚𝑎𝑥/(𝑁𝑡−1) et chacune d’entre elle s’écrit 𝑡𝑛 = 𝑛d𝑡
avec 𝑛 ∈ [[0, 𝑁𝑡 − 1]]. Ainsi, 𝑡0 = 0 et 𝑡𝑁𝑡−1 = 𝑡𝑚𝑎𝑥.

2

• l’espace est discrétisé en 𝑁𝑥 valeurs comprises entre 0 et 𝑒 = 𝐿, séparées du pas spatial d𝑥.
On note 𝑖 ∈ [[0, 𝑁𝑥 − 1]] l’indice repérant le numéro de l’un des 𝑁𝑥 points et 𝑥𝑖 ∈ [0, 𝐿] la
position du point correspondant. Ainsi, 𝑥0 = 0 et 𝑡𝑁𝑥−1 = 𝐿.

Question 6 : Donner l’expression de d𝑥 en fonction de 𝐿 et de 𝑁𝑥.

Correction 6 : d𝑥 = 𝐿
𝑁𝑥−1

La paramétrisation précédente permet de noter 𝑇 𝑛
𝑖 = 𝑇 (𝑥𝑖, 𝑡𝑛) la température échantillonnée.

L’énoncé de 2023 donne les formules de discrétisation pour 𝜕𝑇
𝜕𝑥 et 𝜕𝑇

𝜕𝑡 , puis demande d’en déduire
celle pour 𝜕2𝑇

𝜕𝑥2 . Réalisons nous-même ce travail, dans l’esprit de l’énoncé de 2015.

Question 7a : A l’aide d’un développement limité de la fonction 𝑥 → 𝑇 (𝑥, 𝑡), donner une expres-
sion de 𝑇 (𝑥 + d𝑥, 𝑡) à l’ordre 3 (𝑜(d𝑥3)) en fonction de T et de ses dérivées partielles par rapport
à 𝑥 évaluées en (𝑥, 𝑡). De même, donner une expression de 𝑇 (𝑥 − d, 𝑡) à l’ordre 3.

Correction 7a : 𝑇 (𝑥 + d𝑥, 𝑡) = 𝑇 (𝑥, 𝑡) + d𝑥𝜕𝑇
𝜕𝑥 (𝑥, 𝑡) + (d𝑥)2

2
𝜕2𝑇
𝜕𝑥2 (𝑥, 𝑡) + (d𝑥)3

6
𝜕3𝑇
𝜕𝑥3 (𝑥, 𝑡) + 𝑜(d𝑥3)

𝑇 (𝑥 − d𝑥, 𝑡) = 𝑇 (𝑥, 𝑡) − d𝑥𝜕𝑇
𝜕𝑥 (𝑥, 𝑡) + (d𝑥)2

2
𝜕2𝑇
𝜕𝑥2 (𝑥, 𝑡) − (d𝑥)3

6
𝜕3𝑇
𝜕𝑥3 (𝑥, 𝑡) + 𝑜(d𝑥3)

Question 7b : En déduire une expression approchée à l’ordre 1 (𝑜(d𝑥)) de 𝜕2𝑇
𝜕𝑥2 (𝑥, 𝑡) (dérivée

partielle spatiale seconde de 𝑇 évaluée au point 𝑥 à l’instant 𝑡) en fonction de 𝑇 (𝑥+d𝑥, 𝑡),𝑇 (𝑥−d𝑥, 𝑡),
𝑇 (𝑥, 𝑡) et d𝑥.

Correction 7b : Grâce aux deux expressions précédentes qu’on somme, on obtient : 𝜕2𝑇
𝜕𝑥2 (𝑥, 𝑡) =

𝑇 (𝑥+d𝑥,𝑡)+𝑇 (𝑥−d𝑥,𝑡)−2𝑇 (𝑥,𝑡)
(d𝑥)2 + 𝑜(d𝑥)

Question 7c : Déduire de la question précédente une expression approchée de 𝜕2𝑇
𝜕𝑥2 ∣

𝑥𝑖,𝑡𝑛
(dérivée

partielle spatiale seconde de 𝑇 évaluée en 𝑥𝑖 à l’instant 𝑡𝑛) en fonction de 𝑇 𝑛
𝑖 , 𝑇 𝑛

𝑖+1, 𝑇 𝑛
𝑖−1 et d𝑥.

Correction 7c : On remplace dans l’expression précédente 𝑇 (𝑥𝑖, 𝑡𝑛) par 𝑇 𝑛
𝑖 , alors 𝑇 (𝑥𝑖 + d𝑥, 𝑡) =

𝑇 (𝑥𝑖+1, 𝑡) = 𝑇 𝑛
𝑖+1 et on obtient : 𝜕2𝑇

𝜕𝑥2 ∣
𝑥𝑖,𝑡𝑛

≃ 𝑇 𝑛
𝑖+1+𝑇 𝑛

𝑖−1−2𝑇 𝑛
𝑖

(d𝑥)2

La dérivée partielle temporelle de l’équation de diffusion est maintenant approchée grâce à un
développement limité.

Question 7d : A l’aide d’un développement limité de la fonction 𝑡 → 𝑇 (𝑥, 𝑡), donner une expression
de 𝑇 (𝑥, 𝑡+d𝑡) à l’ordre 1 (𝑜(d𝑡)) en fonction de 𝑇 et de sa dérivée partielle par rapport à 𝑡 évaluées
en (𝑥, 𝑡).
Correction 7d : 𝑇 (𝑥, 𝑡 + d𝑡) = 𝑇 (𝑥, 𝑡) + d𝑡𝜕𝑇

𝜕𝑡 (𝑥, 𝑡) + 𝑜(d𝑡)
Question 7e : En déduire une valeur approchée de 𝜕𝑇

𝜕𝑡 (𝑥, 𝑡) (dérivée partielle par rapport au temps
de 𝑇 évaluée au point 𝑥 à l’instant 𝑡) à l’ordre 0 (𝑜(1)) en fonction de 𝑇 (𝑥, 𝑡 + d𝑡), 𝑇 (𝑥, 𝑡) et d𝑡.
Correction 7e : 𝜕𝑇

𝜕𝑡 (𝑥, 𝑡) = 𝑇 (𝑥,𝑡+d𝑡)−𝑇 (𝑥,𝑡)
d𝑡 + 𝑜(1)

Question 7f : Donner une expression de 𝜕𝑇
𝜕𝑡 ∣𝑥𝑖,𝑡𝑛

(dérivée partielle par rapport au temps de 𝑇
évaluée en 𝑥𝑖 à l’instant 𝑡𝑛) en fonction de 𝑇 𝑛

𝑖 , 𝑇 𝑛+1
𝑖 et d𝑡, avec 𝑇 𝑛+1

𝑖 = 𝑇 (𝑥𝑖, 𝑡𝑛 + d𝑡).

Correction 7f : 𝜕𝑇
𝜕𝑡 ∣𝑥𝑖,𝑡𝑛

≃ 𝑇 𝑛+1
𝑖 −𝑇 𝑛

𝑖
d𝑡

L’équation de diffusion est valable en chaque point d’abscisse 𝑥𝑖 et à chaque instant 𝑡𝑛.

3

Question 7g : Écrire la forme approchée de cette équation au point 𝑖 et à l’instant 𝑛 en approchant
𝜕2𝑇
𝜕𝑥2 ∣

𝑥𝑖,𝑡𝑛
avec la formule obtenue à la question 6, et en approchant 𝜕𝑇

𝜕𝑡 ∣𝑥𝑖,𝑡𝑛
avec la formule obtenue

à la question précédente.

Correction 7g : 𝑇 𝑛+1
𝑖 −𝑇 𝑛

𝑖
d𝑡 ≃ 𝑘𝑡ℎ

𝑇 𝑛
𝑖+1+𝑇 𝑛

𝑖−1−2𝑇 𝑛
𝑖

(d𝑥)2

Question 8 : Montrer que l’équation obtenue à la question précédente peut s’écrire sous la forme
:

𝑇 𝑛+1
𝑖 = 𝐾(𝑇 𝑛

𝑖−1 + 𝑇 𝑛
𝑖+1) + (1 − 2𝐾)𝑇 𝑛

𝑖

en précisant l’expression du paramètre 𝐾 en fonction de d𝑥, d𝑡 et 𝑘𝑡ℎ.

Correction 8 : 𝐾 = 𝑘𝑡ℎ
d𝑡

(d𝑥)2

Cette dernière équation est appelée schéma numérique explicite. Si on connaît la température en
tous les points 𝑥1, 𝑥2, …, 𝑥𝑁+1, 𝑥𝑁 à l’instant 𝑡𝑛, on peut calculer grâce à elle la température en
tous les points à l’instant ultérieur 𝑡𝑛+1.

On suppose tout d’abord que le mur est à la température extérieur : 𝑇 (𝑥, 𝑡 < 0) = 𝑇𝑒𝑥𝑡 = 5, 0°𝐶.

A la date 𝑡 = 0, on impose les conditions aux limites :

{ 𝑇 (0, 𝑡 ≥ 0) = 𝑇𝑖𝑛𝑡 = 20°𝐶
𝑇 (𝐿, 𝑡 ≥ 0) = 𝑇𝑒𝑥𝑡 = 5, 0°𝐶

Le code python ci-dessous implémente ce schéma numérique pour calculer les échantillons de tem-
pérature. Dans les questions qui suivent, on cherche à compléter les passages manquants du code,
repérés par des “@@@”.

[]: import numpy as np

Caractéristique du mur
rho = 2150 # masse volumique [kg/m^3]
Lambda = 1.65 # conductivité thermique [W/m/K]
cp = 1e3 # capacité thermqieu massique [J/K/kg]
kth = Lambda / (rho * cp) # diffusivité thermique [m^2/s]
L = 4e-1 # épaisseur du mur [m]

Conditions aux limites
Tint = 20 # température intérieur [°C]
Text = 5.0 # température extérieur [°C]

Paramètres de la simulation
tmax = 72000 # durée de la simulation [s] (ici 20h)
Nt = 3456 # discrétisation temporelle (Nt dates)
Nx = 60 # discrétisation spatiale (Nx points)

Discrétisation spatio-temporelle
dt = tmax / (Nt - 1) # pas temporel [s]
dx = @@@ # pas spatial [m] # Q9

4

Constante du schéma numérique
K = @@@ # Q10

Initialisation de la température
T = Text * np.ones((Nx, Nt)) # tableau des températures T(x,t) [°C]
@@@ # Q11

Calcul de la température
for n in range(0, Nt-1): # boucle temporelle

for i in range(1, @@@): # boucle spatiale # Q12
T[i, n + 1] = @@@ # Q13

Question 9 : A l’aide de la question 6, donner l’instruction permettant de définir le pas spatial
dx en fonction des variables L et Nx.

Question 10 : A l’aide de la question 8, donner l’instruction permettant de définir la constante K
du schéma numérique en fonction des variables kth, dx et dt.

Question 11 : Dans la partie Initialisation des températures, la première ligne permet
d’initialiser une matrice des températures de 𝑁𝑥 lignes et 𝑁𝑡 colonnes à une valeur initiale identique
𝑇𝑒𝑥𝑡. Proposer un code à la ligne suivante pour assurer la condition aux limites 𝑇 (𝑥 = 0, 𝑡) = 𝑇𝑖𝑛𝑡.

Question 12/13 : On rappelle que la dernière valeur fournie par l’instruction range(1, Nx) est
Nx -1, l’intervalle de la fonction range étant semi-ouvert. En examinant le schéma numérique,
compléter la boucle spatiale. Implémenter ensuite le schéma numérique à l’intérieur des deux
boucles.

Correction 9/10/11/12 :

[48]: import numpy as np

Caractéristique du mur
rho = 2150 # masse volumique [kg/m^3]
Lambda = 1.65 # conductivité thermique [W/m/K]
cp = 1e3 # capacité thermqieu massique [J/K/kg]
kth = Lambda / (rho * cp) # diffusivité thermique [m^2/s]
L = 4e-1 # épaisseur du mur [m]

Conditions aux limites
Tint = 20 # température intérieur [°C]
Text = 5.0 # température extérieur [°C]

Paramètres de la simulation
tmax = 72000 # durée de la simulation [s] (ici 20h)
Nt = 5000 # discrétisation temporelle (Nt dates)
Nx = 60 # discrétisation spatiale (Nx points)

Discrétisation spatio-temporelle
dt = tmax / (Nt - 1) # pas temporel [s]

5

dx = L / (Nx - 1) # pas spatial [m] # Q9

Constante du schéma numérique
K = kth * dt / dx**2 # Q10

Initialisation de la température
T = Text * np.ones((Nx, Nt)) # tableau des températures T(x,t) [°C]
for n in range(Nt): # Q11

T[0, n] = Tint
Ou plus efficace : T[0, :] = Tint

Calcul de la température
for n in range(0, Nt - 1): # boucle temporelle

for i in range(1, Nx - 1): # boucle spatiale # Q12
T[i, n + 1] = K * (T[i-1, n] + T[i+1, n]) + (1 - 2*K) * T[i, n]# Q13

Une partie non mentionnée du code a permis de tracer la température dans le mur aux dates 𝑡1, 𝑡2
et 𝑡3 (on a limité ici 𝑁𝑥 à 5).

Question 14 : A l’aide de ce graphe, classer les dates 𝑡1, 𝑡2 et 𝑡3 de façon croissante.

Question 15 : Compte tenu de la question 2, justifier que le régime permanent est pratiquement
atteint.

Correction 14/15 : 𝑡3 < 𝑡1 < 𝑡2 car plus le temps “avance”, plus on se rapproche du régime
permanent pourlequel la température est une fonction affine du temps (graphe : droite allant de
𝑇𝑖𝑛𝑡 à 𝑇𝑒𝑥𝑡). D’aillleurs, au temps 𝑡2, on remarque que le graphe est quasiment une droite : le
régime transitoire est quasiment fini, le régime permanent est pratiquement atteint.

La suite de l’énoncé traite d’autres domaines (plus de diffusion). On peut cependant ici tester la
“bonne” exécution de notre code :

[57]: X = np.linspace(0, L, Nx) # Création des Nx points d'abscisse

plt.figure()
for i in range(10): # création de 10 graphes régulièrement espacés dans le temps

plt.plot(X,T[:, i*(Nt-1)//9],label ='t = '+str(round(i*(Nt-1)*dt/
↪(9*3600),1))+' h')

plt.xlabel('x (m)')
plt.ylabel('T (°C)')
plt.legend()
plt.show()

6

On trouve bien un graphe similaire (mais bien plus précis !) à celui proposé à la question 14.

1.2 Étude numérique du régime transitoire : version 2015
Dans la version précédente (2023), la condition initiale considérait le mur à la température ex-
térieure. Cela revient au problème d’une maison dans laquelle le chauffage a été longtemps éteint :
après un régime transitoire, toute la maison (murs compris) sont donc à la température extérieur
𝑇𝑒𝑥𝑡 = 5, 0°𝐶. On allume alors le chauffage à 𝑡 = 0 : on considère que l’air est immédiatement à
la température intérieure désirée 𝑇𝑖𝑛𝑡 = 20°𝐶, alors que les murs sont pour l’instant encore à la
température extérieure.

Dans cette autre version, la température à l’intérieur de la maison est constante dans le temps et
égale à 𝑇𝑖𝑛𝑡 = 20°𝐶. Aux temps négatifs (𝑡 < 0, la température extérieure est égale à 𝑇 1

𝑒𝑥𝑡 = 10°𝐶.
A 𝑡 = 0, elle chute brusquement à 𝑇 2

𝑒𝑥𝑡 = −10°𝐶 et elle reste égale à cette valeur aux temps positifs
(𝑡 > 0). On souhaite étudier l’évolution du profil de température dans le mur au cours du temps.

Cela revient à considérer le problème du passage jour/nuit, pendant lequel la température extérieure
chute. On considère ici que ce changement de température extérieur est immédiat.

Question 16 : On considère deux instants :

• pour un instant particulier négatif 𝑡1 < 0,

• pour un instant particulier positif 𝑡2 > 0, très longtemps après la variation de température

7

extérieure, quand le régime permanent est de nouveau établi dans le mur.

Quelle est la nature des profils 𝑇 (𝑥) obtenus (en régime permanent) à ces deux instants ? Tracer
à la main les deux profils sur un même graphique.

Correction 16 : En régime stationnaire, le profil suit celui d’une fonction affine. En rouge pour
𝑡 < 0, et en bleu ciel pour 𝑡 → +∞ et dans d’autres couleurs pour les cas intérmédiaires.

Question 17 : Sur le même graphique, tracer à la main qualitativement les profils intermédiaires
à différents instants entre la variation brutale de la température extérieure (𝑡 = 0) et l’instant 𝑡2
où le régime est de nouveau permanent.

Correction 17 : Juste après le changement brutal, la température n’a significativement varié
qu’au voisinage de e (tracé en bleu foncé). Après un temps suffisamment long le changement de
température se fait ressentir dans toute l’épaisseur du mur (tracé vert). On peut utiliser le temps
caractéristique d’évolution 𝐿 ≃ √𝑘𝑡ℎ𝜏 de la température sur une longueur 𝐿, avec 𝑘𝑡ℎ = 𝜆

𝜌𝑐𝑝
coefficient de diffusion thermique :

• 𝜏 = 10𝑠 donne 𝐿 ≃ 3𝑚𝑚
• 𝜏 = 500𝑠 donne 𝐿 ≃ 2𝑐𝑚

Pour résoudre numériquement le nouveau régime transitoire, les conditions initiale et aux limites
s’écrivent :

⎧{
⎨{⎩

𝑇 (0, 𝑡) = 𝑇𝑖𝑛𝑡 ∀𝑡 > 0
𝑇 (𝑒, 𝑡) = 𝑇 2

𝑒𝑥𝑡 ∀𝑡 > 0
𝑇 (𝑥, 0) = 𝑎.𝑥 + 𝑏 ∀𝑥 ∈ [0, 𝑒]

Question 18 : Exprimer 𝑎 et 𝑏 en fonction de 𝑇𝑖𝑛𝑡, 𝑇 1
𝑒𝑥𝑡 et 𝑒.

Correction 18 : Voir question 3 : 𝑎 = 𝑇 1
𝑒𝑥𝑡−𝑇𝑖𝑛𝑡

𝑒 et 𝑏 = 𝑇𝑖𝑛𝑡.

Question 19 : Compléter le code ci-dessous pour effectuer la simulation numérique donnant la
matrice des températures.

[24]: # Conditions aux limites
Tint = 20 # température intérieur [°C]
Text1 = 10 # température extérieur pour t < 0 [°C]
Text2 = -10 # température extérieur pour t >= 0 [°C]

Initialisation de la température
T = np.zeros((Nx, Nt)) # tableau des températures T(x,t)␣

↪[°C] initialisé à 0
a, b = (Text1 - Tint) / L, Tint # respect de la condition initiale␣

↪en t = 0
X = np.linspace(0, L, Nx)
T[:, 0] = a * X +b
T[0, :] = Tint # respect de la condition à la␣

↪limite en x = 0
T[Nx - 1, :] = Text2 # respect de la condition à la␣

↪limite en x = e

8

Calcul de la température
for n in range(0, Nt-1): # boucle temporelle

for i in range(1, Nx-1): # boucle spatiale
T[i, n + 1] = K * (T[i-1, n] + T[i+1, n]) + (1 - 2*K) * T[i, n]

On souhaite arrêter le calcul lorsque la température ne varie presque plus dans le temps. Dans ce
but, on évaluera la norme 2 de 𝑇 𝑛 − 𝑇 𝑛−1 à chaque itération. On donne la définition de la norme
2 d’un vecteur 𝑉 :

||𝑉 | |2 = √
𝑛

∑
𝑖=1

𝑉 2
𝑖

avec 𝑉 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑉1
𝑉2
⋮

𝑉𝑛−1
𝑉𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

.

Question 20: Ecrire une fonction calc_norme qui calcule la norme 2 d’un vecteur.

Correction 20:

[25]: def calc_norme(V):
return sqrt(sum([vi**2 for vi in V]))

Ou, sans tricher :
def calc_norme(V):

s = 0
for elem in V:

s += elem**2
return sqrt(s)

Test :

[26]: B=[1,2,3]
print(calc_norme(B)**2)

14.0

Question 21: Modifier le code de la question 17 pour interrompre la simulation numérique lorsque
la la norme 2 du vecteur 𝑇𝑛 − 𝑇𝑛−1 deviendra inférieure à 5.10−3 (on considère alors que la régime
permanent est atteint) ou lorsque le nombre d’itérations atteindra la valeur Nt (prévoir les deux
cas). Utiliser, pour cela, la fonction calc_norme définie à la question précédente.

Correction 21:

[58]: # Conditions aux limites
Tint = 20 # température intérieur [°C]
Text1 = 10 # température extérieur pour t < 0 [°C]
Text2 = -10 # température extérieur pour t >= 0 [°C]

9

Initialisation de la température
T = np.zeros((Nx, Nt)) # tableau des températures T(x,t)␣

↪[°C] initialisé à 0
a, b = (Text1 - Tint) / L, Tint # respect de la condition initiale␣

↪en t = 0
X = np.linspace(0, L, Nx)
T[:, 0] = a * X +b
T[0, :] = Tint # respect de la condition à la␣

↪limite en x = 0
T[Nx - 1, :] = Text2 # respect de la condition à la␣

↪limite en x = e

Calcul de la température

Première itération temporelle, afin d'avoir deux vecteurs de température␣
↪successifs :

n = 0
for i in range(1, Nx-1): # boucle spatiale

T[i, n + 1] = K * (T[i-1, n] + T[i+1, n]) + (1 - 2*K) * T[i, n]

while n < Nt-2 and calc_norme(T[:, n+1] - T[:, n]) > 5e-3: # boucle␣
↪temporelle

n += 1
for i in range(1, Nx-1): # boucle spatiale

T[i, n + 1] = K * (T[i-1, n] + T[i+1, n]) + (1 - 2*K) * T[i, n]

print("Le nombre d'itération temporel est de : "+str(n+2)+"/"+str(Nt))

Le nombre d'itération temporel est de : 3293/5000

Question 22 : Écrire un script permettant de tracer sur un même graphique le profil de tempéra-
ture en fonction de 𝑥 pour 10 temps régulièrement espacés. Faire afficher le temps en heures au
bout duquel le régime permanent est établi.

Correction 22:

[63]: X = np.linspace(0, L, Nx) # Création des Nx points d'abscisse

temps=n*dt
h=temps//3600
m,s=(temps%3600)//60,(temps%3600)%60

plt.figure()
plt.title("Schéma explicite, régime permanent atteint en {0}h {1}mn {2}s".

↪format(int(h),int(m),int(s)))
for i in range(10): # création de 10 graphes régulièrement espacés dans le temps

plt.plot(X,T[:, i*(n-1)//9],label ='t = '+str(round(i*(n-1)*dt/
↪(9*3600),1))+' h')

10

plt.xlabel('x (m)')
plt.ylabel('T (°C)')
plt.legend()
plt.show()

Ces questions sont une version adaptée (simplifiée) du début de l’énoncé CCINP 2015. La suite de
l’énoncé poursuit sur le même problème, avec des méthodes plus complexes…

1.3 Transfert thermique dans un oeuf
D’après Oral Centrale Physique 2.

1.4 Théorie et solution numérique
On s’intéresse à la cuisson d’un œuf de poule. Celui-ci est constitué d’une coquille calcaire contenant
principalement deux zones distinctes : l’une périphérique appelée « blanc » (albumen) et l’autre
centrale appelée « jaune » (vitellus). Ces deux zones sont fluides avant cuisson.

On modélise un œuf par une sphère de rayon R, avec une répartition à symétrie sphérique du blanc

11

et du jaune. L’équation de diffusion s’écrit :

𝜕𝑇 (𝑟, 𝑡)
𝜕𝑡 = 𝐷Δ𝑇 (𝑟, 𝑡)

avec 𝐷 diffusivité et Δ laplacien.

Question 1 : Montrer que, compte-tenu de la symétrique sphérique du problème, l’équation de
diffusion s’écrit :

𝜕𝑇 (𝑟, 𝑡)
𝜕𝑡 = 𝐷 1

𝑟2
𝜕
𝜕𝑟 (𝑟2 𝜕𝑇 (𝑟, 𝑡)

𝜕𝑟)

Aide : on rapelle que, en sphérique :

Δ𝑓 = 𝜕2𝑓
𝜕𝑟2 + 2

𝑟
𝜕𝑓
𝜕𝑟 + 1

𝑟2
𝜕2𝑓
𝜕𝜃2 + 1

𝑟2 tan 𝜃
𝜕𝑓
𝜕𝜃 + 1

𝑟2 sin2 𝜃
𝜕2𝑓
𝜕𝜑2

Correction 1 : D’après la symétrie du problème (invariance par rotation selon 𝜃 et 𝜑), la tem-
pérature 𝑇 (𝑟, 𝜃, 𝜑, 𝑡) ne dépend que de 𝑡 et 𝑟 : 𝑇 (𝑟, 𝜃, 𝜑, 𝑡) = 𝑇 (𝑟, 𝑡) . On a donc :

Δ𝑇 (𝑟, 𝑡) = 𝜕2𝑇
𝜕𝑟2 + 2

𝑟
𝜕𝑇
𝜕𝑟 = 1

𝑟2
𝜕
𝜕𝑟 (𝑟2 𝜕𝑇

𝜕𝑟)

L’équation de diffusion 𝐷Δ𝑇 = 𝜕𝑇
𝜕𝑡 avec 𝐷 coefficient de diffusion s’écrit ainsi comme demandé.

On souhaite maintenant modéliser numériquement l’évolution au cours du temps du profil de tem-
pérature au sein de l’œuf. On utilise pour cela la méthode d’Euler pour discrétiser l’équation
précédente.

Le principe adopté est le suivant : le profil de température initial T (r, t = 0) au sein de l’œuf est
connu. On pose comme variable intermédiaire : Θ(𝑟, 𝑡) = 𝜕𝑇 (𝑟,𝑡)

𝜕𝑟 .

Question 2 : Ecrire le système d’équation différentiel d’ordre 1 faisant intervenir les fonctions
𝑇 (𝑟, 𝑡) et Θ(𝑟, 𝑡).
Correction 2 :

{ Θ(𝑟, 𝑡) = 𝜕𝑇 (𝑟,𝑡)
𝜕𝑟

𝜕𝑇 (𝑟,𝑡)
𝜕𝑡 = 𝐷 1

𝑟2
𝜕
𝜕𝑟 (𝑟2Θ(𝑟, 𝑡))

On note 𝜏𝑒 et 𝑙𝑒 les périodes d’échantillonnage (ou « pas ») temporelle et spatiale de la résolution
numérique.

Question 3 : Montrer, à l’aide d’un D.L. à l’ordre 1 en 𝑙𝑒 de 𝑇 (𝑟 − 𝑙𝑒, 𝑡), qu’on a Θ(𝑟, 𝑡) =
𝑇 (𝑟,𝑡)−𝑇 (𝑟−𝑙𝑒,𝑡)

𝑙𝑒
+ 𝑜(1)

Correction 3 : 𝑇 (𝑟−𝑙𝑒, 𝑡) = 𝑇 (𝑟, 𝑡)−𝑙𝑒 𝜕𝑇 (𝑟,𝑡)
𝜕𝑟 +𝑜(𝑙𝑒) et ainsi 𝑇 (𝑟, 𝑡)−𝑇 (𝑟−𝑙𝑒, 𝑡) = 𝑙𝑒 𝜕𝑇 (𝑟,𝑡)

𝜕𝑟 +𝑜(𝑙𝑒) =
𝑙𝑒Θ(𝑟, 𝑡) + 𝑜(𝑙𝑒) et on obtient ainsi le résultat demandé.

Question 4 : Montrer, à l’aide d’un D.L. à l’ordre 1 en 𝑙𝑒 de 𝑓(𝑟 + 𝑙𝑒, 𝑡) = (𝑟 + 𝑙𝑒)2Θ(𝑟 + 𝑙𝑒, 𝑡),
que 𝜕𝑟2Θ(𝑟,𝑡)

𝜕𝑟 = (𝑟+𝑙𝑒)2Θ(𝑟+𝑙𝑒,𝑡)−𝑟2Θ(𝑟,𝑡)
𝑙𝑒

+ 𝑜(1)

Correction 4 : 𝑓(𝑟 + 𝑙𝑒, 𝑡) = (𝑟 + 𝑙𝑒)2Θ(𝑟 + 𝑙𝑒, 𝑡) = 𝑓(𝑟, 𝑡) + 𝑙𝑒 𝜕𝑓(𝑟,𝑡)
𝜕𝑟 + 𝑜(𝑙𝑒) = 𝑟2Θ(𝑟, 𝑡) +

𝑙𝑒 𝜕𝑟2Θ(𝑟,𝑡)
𝜕𝑟 + 𝑜(𝑙𝑒) et donc (𝑟 + 𝑙𝑒)2Θ(𝑟 + 𝑙𝑒, 𝑡) − 𝑟2Θ(𝑟, 𝑡) = 𝑙𝑒 𝜕𝑟2Θ(𝑟,𝑡)

𝜕𝑟 + 𝑜(𝑙𝑒), et ainsi on trouve le
résultat demandé.

12

On note 𝑇 𝑘
𝑖 la température 𝑇 (𝑟𝑘, 𝑡𝑖), évaluée au point d’abscisse 𝑟𝑘 = 𝑘 × 𝑙𝑒 à l’instant 𝑡𝑖 = 𝑖 × 𝜏𝑒,

et Θ𝑘
𝑖 = Θ(𝑟𝑘, 𝑡𝑖).

Question 5 : En déduire alors, via la méthode d’Euler, le schéma numérique suivant :

{ Θ𝑘
𝑖 = 𝑇 𝑘

𝑖 −𝑇 𝑘−1
𝑖

𝑙𝑒

𝑇 𝑘
𝑖+1 = 𝑇 𝑘

𝑖 + 𝐷𝜏𝑒
(𝑘𝑙𝑒)2

((𝑘+1)𝑙𝑒)2Θ𝑘+1
𝑖 −(𝑘𝑙𝑒)2Θ𝑘

𝑖
𝑙𝑒

Correction 5 : Il “suffit” de ré-écire les deux équations obtenus à la question 2, en se servant des
deux D.L. précédemment établis.

Dans la suite, on modifie légerement ce schéma par celui-ci, équivalent du point de vue mathéma-
tique, et évitant de diviser par 0 :

{ Θ𝑘
𝑖 = 𝑇 𝑘

𝑖 −𝑇 𝑘−1
𝑖

𝑙𝑒

𝑇 𝑘
𝑖+1 = 𝑇 𝑘

𝑖 + 𝐷𝜏𝑒
((𝑘+1)𝑙𝑒)2

((𝑘+1)𝑙𝑒)2Θ𝑘+1
𝑖 −(𝑘𝑙𝑒)2Θ𝑘

𝑖
𝑙𝑒

On cherche à tracer des graphiques successifs sur l’évolution temporelle de la température en fonc-
tion de l’espace. Pour cela, on considérera deux listes Temp et Theta stockant les valeurs de la
température et de Θ au niveau des N+1 points d’espace.

Question 6 : Ecrire un script python définissant le rayon de l’oeuf 𝑅 = 2 𝑐𝑚, et permettant, à
partir de N = 100, de calculer le pas d’espace le, la liste des positions de l’espace r (contenant les
N+1 points entre 0 et R), et créant la liste Temp, pour l’instant initial. A l’instant initial, on a tout
juste plongé l’oeuf dans l’eau bouillante : la température initiale sera prise égale à 20°C, sauf à la
surface de l’oeuf.

Correction 6 :

[8]: N = 100
R = 2e-2
r = np.linspace(0,R,N+1)
le = R/N
Temp = N*[293] + [373]

Question 7 : Ecrire un scirpt python définissant les autres données du problème : 𝐷 =
1, 4.10−7 𝑚2.𝑠−1 le coefficient de diffusion, 𝑛+1 = 10001 le nombre de points temporels à considérer,
et 𝜏𝑒 le pas temporel, sachant que la durée totale de l’expérience sera 𝑇 = 15 𝑚𝑖𝑛
Correction 7 :

[9]: D = 1.4e-7
n = 10000
T = 15 * 60
taue = T / n

Question 8 : Ecrire le script mettant à jour la liste Theta pour le temps 𝑖, et la liste Temp pour
le temps 𝑖 + 1, sachant qu’on déjà les listes Theta pour le temps 𝑖 − 1 et Temp pour le temps 𝑖. La
température extérieure sera en permanence celle de l’eau bouillante, et on admet qu’on a à tout
instant Theta[0]=0.

13

Correction 8 :

[10]: Theta=[0] # theta au centre

for k in range(N) :
Theta.append((Temp[k+1]-Temp[k])/le) # calcul de theta en k+1 à l'instant i

Temp[k] += D*taue/
↪((k+1)*le)**2*(((k+1)*le)**2*Theta[k+1]-(k*le)**2*Theta[k])/le # calcul de␣
↪temp en k à l'instant i+1

Temp[N] = 373 #la dernière valeur reste inchangée (100°C)

Question 9 : Insérer ce script dans une boucle permettant d’effectuer tous les pas de temps. On
ajoutera une commande permettant de tracer, sur un même graphique, 10 courbes représentant le
profil de température à des temps réparties régulièrement entre le début et la fin de la cuissson.

Correction 9 :

[13]: N = 100
R = 2e-2
r = np.linspace(0,R,N+1)
le = R/N
Temp = N*[293] + [373]
D = 1.4e-7
n = 10000
T = 15 * 60
taue = T / n

ratio = 1.2 # ratio de taille entre fig et texte (légende et axes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)
for i in range(n): # on calcul pour chaque pas de temps

Theta=[0] # theta au centre

for k in range(N) :
Theta.append((Temp[k+1]-Temp[k])/le) # calcul de theta en k+1 à␣

↪l'instant i
Temp[k] += D*taue/

↪((k+1)*le)**2*(((k+1)*le)**2*Theta[k+1]-(k*le)**2*Theta[k])/le # calcul de␣
↪temp en k à l'instant i+1

Temp[N] = 373 #la dernière valeur reste inchangée (100°C)

9 premiers plot (T en degrés, pour une meilleure lisibilité)
if i*10%n == 0:

plt.plot(r,[Temp[p]-273 for p in range(N+1)],label = "T après␣
↪"+str(int(i*taue))+"s")

14

Dernier graphe
plt.plot(r,[Temp[p]-273 for p in range(N+1)],label = "T après␣

↪"+str(int(i*taue))+"s")

plt.xlabel('$r \ \mathrm{(m)}$')
plt.ylabel('$T \ \mathrm{(°C)}$')
plt.legend()
plt.show()

On donne quelques informations sur la cuisson d’un oeuf :

• Debut de coagulation de l’ovalbumine (protéines des blancs) à 62°C, et formation d’un gel
très ferme à 70°C.

• Début de l’épaississement à 65°C par coagulation des protéines du jaune (ovovitelline), perte
de fluidité à 70°C, coagulation totale à 85°C.

Question 10 : Estimer le temps pour obtenir un oeuf dur.

Correction 10 : D’après le graphique précédent, la température semble atteindre les 85°C à coeur
aux alantours des 800s. Vérifions le :

[12]: T = 800
taue = T / n
Temp = N*[293] + [373]

15

ratio = 1.2 # ratio de taille entre fig et texte (légende et axes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)
for i in range(n): # on calcul pour chaque pas de temps

Theta=[0] # theta au centre

for k in range(N) :
Theta.append((Temp[k+1]-Temp[k])/le) # calcul de theta en k+1 à␣

↪l'instant i
Temp[k] += D*taue/

↪((k+1)*le)**2*(((k+1)*le)**2*Theta[k+1]-(k*le)**2*Theta[k])/le # calcul de␣
↪temp en k à l'instant i+1

Temp[N] = 373 #la dernière valeur reste inchangée (100°C)

9 premiers plot (T en degrés, pour une meilleure lisibilité)
if i*10%n == 0:

plt.plot(r,[Temp[p]-273 for p in range(N+1)],label = "T après␣
↪"+str(int(i*taue))+"s")

Dernier graphe
plt.plot(r,[Temp[p]-273 for p in range(N+1)],label = "T après␣

↪"+str(int(i*taue))+"s")

plt.plot(r,[85 for k in range(N+1)],label = "85°C ")

plt.xlabel('$r \ \mathrm{(m)}$')
plt.ylabel('$T \ \mathrm{(°C)}$')
plt.legend()
plt.show()

16

De façon plus précise, 720s, soit 12 min semblent suffirent. Usuellement, on parle plutôt de 9 min
pour un oeuf dur…

1.5 Pour aller plus loin : jaune et blanc
On considère que la répartition du jaune dans un oeuf vérifie 𝛼 ≃ 0, 8.

Question 11 : Par tatonnement, en modifiant la valeur de T, déterminer la durée necessaire pour
que l’oeuf soit “à la coque”.

Correction 11 : Pour un oeuf à la coque, il faut que la majeure partie du jaune se trouve en
dessous des 65°C, et la majeure partie du blanc au dessus de 70°C (sachant que le jaune se trouve
jusqu’à 1,6 cm du centre). Sur le graphe précédent, on remarque que pour T = 160s, l’oeuf est déjà
trop cuit. Regardons avec plus de précision :

[14]: T = 130
taue = T / n
Temp = N*[293] + [373]

ratio = 1.2 # ratio de taille entre fig et texte (légende et axes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)
for i in range(n): # on calcul pour chaque pas de temps

Theta=[0] # theta au centre

for k in range(N) :

17

Theta.append((Temp[k+1]-Temp[k])/le) # calcul de theta en k+1 à␣
↪l'instant i

Temp[k] += D*taue/
↪((k+1)*le)**2*(((k+1)*le)**2*Theta[k+1]-(k*le)**2*Theta[k])/le # calcul de␣
↪temp en k à l'instant i+1

Temp[N] = 373 #la dernière valeur reste inchangée (100°C)

if i*20%n == 0 and i*taue > 100:
plt.plot(r,[Temp[p]-273 for p in range(N+1)],label = "T après␣

↪"+str(int(i*taue))+"s")

Dernier graphe
plt.plot(r,[Temp[p]-273 for p in range(N+1)],label = "T après␣

↪"+str(int(i*taue))+"s")

Ligne horizontale "à la bonne température"
plt.plot(r,[67.5 for k in range(N+1)],label = "67,5°C ")

Ligne verticale de séparation blanc/jaune
plt.axvline(x=1.6e-2,color='black')

plt.xlabel('$r \ \mathrm{(m)}$')
plt.ylabel('$T \ \mathrm{(°C)}$')
plt.legend()
plt.show()

18

Le temps nécessaire est donc compris entre 110 et 117s (alors qu’on parle plutôt de 3 min…).

L’oeuf dit “parfait”, servi dans certains restaurants, s’obtient à l’aide d’une cuisson à 64,5 °C.

Question 12 : Déterminer l’ordre de grandeur de la durée nécessaire pour que l’oeuf soit “parfait”.

Correction 12 : On impose ici une température extérieur de cuisson de 64,5 °C, et on estime le
temps nécessaire pour qu’elle soit atteinte partout, même au centre de l’oeuf :

[15]: T = 15 * 60
taue = T / n
Temp = N*[293] + [273+64.5]

ratio = 1.2 # ratio de taille entre fig et texte (légende et axes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)
for i in range(n): # on calcul pour chaque pas de temps

Theta=[0] # theta au centre

for k in range(N) :
Theta.append((Temp[k+1]-Temp[k])/le) # calcul de theta en k+1 à␣

↪l'instant i
Temp[k] += D*taue/

↪((k+1)*le)**2*(((k+1)*le)**2*Theta[k+1]-(k*le)**2*Theta[k])/le # calcul de␣
↪temp en k à l'instant i+1

19

Temp[N] = 273+64.5 #la dernière valeur reste inchangée (100°C)

9 premiers plot (T en degrés, pour une meilleure lisibilité)
if i*10%n == 0 and i*taue > 500:

plt.plot(r,[Temp[p]-273 for p in range(N+1)],label = "T après␣
↪"+str(int(i*taue))+"s")

Dernier graphe
plt.plot(r,[Temp[p]-273 for p in range(N+1)],label = "T après␣

↪"+str(int(i*taue))+"s")

plt.xlabel('$r \ \mathrm{(m)}$')
plt.ylabel('$T \ \mathrm{(°C)}$')
plt.legend()
plt.show()

Bien evidemment, cela n’est pas possible avant un temps infini. Estimons le temps necessaire pour
qua la température au centre soit d’au moins 95% de celle à atteindre, soit 61,3°C :

[16]: T = 23 * 60
taue = T / n
Temp = N*[293] + [273+64.5]

ratio = 1.2 # ratio de taille entre fig et texte (légende et axes), par défaut 1

20

plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)
for i in range(n): # on calcul pour chaque pas de temps

Theta=[0] # theta au centre

for k in range(N) :
Theta.append((Temp[k+1]-Temp[k])/le) # calcul de theta en k+1 à␣

↪l'instant i
Temp[k] += D*taue/

↪((k+1)*le)**2*(((k+1)*le)**2*Theta[k+1]-(k*le)**2*Theta[k])/le # calcul de␣
↪temp en k à l'instant i+1

Temp[N] = 273+64.5 #la dernière valeur reste inchangée (100°C)

9 premiers plot (T en degrés, pour une meilleure lisibilité)
if i*20%n == 0 and i*taue > 800:

plt.plot(r,[Temp[p]-273 for p in range(N+1)],label = "T après␣
↪"+str(int(i*taue))+"s")

Dernier graphe
plt.plot(r,[Temp[p]-273 for p in range(N+1)],label = "T après␣

↪"+str(int(i*taue))+"s")

Ligne horizontale "à 95% de la bonne température"
plt.plot(r,[61.3 for k in range(N+1)],label = "61,3°C ")

plt.xlabel('$r \ \mathrm{(m)}$')
plt.ylabel('$T \ \mathrm{(°C)}$')
plt.legend()
plt.show()

21

17min semblent donc être suffisantes !

En réalité le blanc et le jaune n’ont pas tout à fait la même conductivité thermique, elle est même
dans un rapport double. On peut trouver que pour le blanc 𝐷𝑏 = 1, 7 × 10−7𝑚2.𝑠−1 et que pour le
jaune 𝐷𝑗 = 1, 0 × 10−7𝑚2.𝑠−1.

Question 13 : Modifier le programme pour tenir compte de cette différence, et estimer à nouveau
le temps de cuisson d’un oeuf.

2 Troisième partie : Diffusion de particules
2.1 Modèle de la marche aléatoire
Pour modéliser la diffusion de particules, on utilise un modèle discret : une molécule se trouve à
l’instant 𝑡 dans une cellule, et peut, à l’instant 𝑡 + 𝜏 , se trouver dans une cellule voisine.

Dans un premier temps, on se place dans le cas unidimensionnel : la particule se déplace sur selon
l’axe 𝑥, et ne peut se trouver, par discrétisation, qu’aux positionx 𝑥𝑖, 𝑖 ∈ ℤ. On repère chacune de
ces positions par l’entier relatif 𝑖. On choisit comme origine O, la position initiale de la particule.

Une particule située en 𝑖 à l’instant 𝑡, a une chance sur deux (probabilité 0, 5) de se retrouver en
𝑖−1 à l’instant 𝑡+𝜏 , et l’autre chance sur deux (probabilité 0, 5) de se retrouver en 𝑖+1 à l’instant
𝑡 + 𝜏 : c’est ce qu’on nomme une marche aléatoire, c’est-à-dire qu’on effectue des pas dans une
direction aléatoire !

Question 1 : Ecrire une fonction ma1d(tf,n) qui retourne la liste 𝑇 des temps à chaque pas et
celle des positions 𝐿 d’une particule, jusqu’à l’instant 𝑡𝑓 . La particule est initialement (à 𝑡𝑖 = 0) en

22

O, et a effectué une marche aléatoire de 𝑛+1 pas. On utilisera la fonction randint(a,b), générant
un entier aléatoirement compris entre a et b (compris).

[17]: def ma1d(tf,n):
tau = tf / n
ti = 0 # temps initial
i = 0 # position initiale
L, T = [i], [ti]
for k in range(n):

r = randint(0,1) # tirage aléatoire
d = 2*(r-0.5) # déplacement (soit -1, soit 1)
i += d # nouvelle position
ti += tau
L.append(i)
T.append(ti)

return T, L

Traçons alors différentes trajectoires :

[18]: n = 200
tf = 10

ratio = 1.2 # ratio de taille entre fig et texte (légende et axes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)
plt.title("Différentes trajectoires de marches aléatoires 1d (n=200)")

for i in range(10):
T, L = ma1d(tf,n)
plt.plot(T,L)

plt.show()

23

Faisons quelques statistiques sur ces marches : nous allons nous interesser à la position moyenne
atteinte après un certain temps. Pour cela, nous fera des moyennes sur 𝑁 marches différentes.

Question 2 : Ecrire la fonction M1dpos(tf,n,N) qui retourne la liste des 𝑛 + 1 temps 𝑇 et la liste
des 𝑛 + 1 positions moyennes 𝑀 à chaque pas, en moyennant sur 𝑁 marches alétoires.

[19]: def M1dpos(tf,n,N):
M=[0 for i in range(n+1)]
for j in range(N) :

T, L = ma1d(tf,n) # on réalise une marche
for i in range(1,n+1):

M[i] += L[i]/N # on ajoute la psotion à chaque instant dans la␣
↪liste M, divisé par N pour faire la moyenne

return T, M

Traçons ces positions moyennes en fonction du temps :

[20]: N = 100000
T, M = M1dpos(tf,n,1000)
ratio = 1.2 # ratio de taille entre fig et texte (légende et axes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)
plt.title("Position moyenne en fonction du temps")
plt.plot(M,T)
plt.show()

24

Diantre ! La position moyenne est vraiment très proche de l’origine, quelquesoit le temps consid-
éré…alors qu’on observait précédemment des trajectoires qui s’éloignaient de cette même origine
!

Question 3 : Expliquer ce phénomène !

Correction : A chaque pas, on a la même probabilité d’aller à droite ou à gauche, il est donc
normal qu’en moyenne, on reste au milieu, donc proche de l’origine. Autrement dit, si on observe
une marche (soit une succession de pas) qui, au bout d’un temps 𝑇 , se retrouve en 𝑖, il existe, avec
la même probabilité, la marche symétrique qui se retrouve en −𝑖 au même instant 𝑇 : en moyenne,
à chaque instant 𝑇 , on se trouve au milieu, à l’origine.

Pour tenir compte de la symétrie de ces marches, nous allons calculer, à la place de la position
moyenne, la distance moyenne à l’origine

Question 4 : Ecrire une fonction M1ddist(tf,n,N) qui retourne la liste des 𝑛 + 1 temps 𝑇 et
la liste des 𝑛 + 1 distances moyennes à l’origine 𝐷 à chaque pas, en moyennant sur 𝑁 marches
alétoires.

[21]: def M1ddist(tf,n,N):
D=[0 for i in range(n+1)]
for j in range(N) :

T, L = ma1d(tf,n) # on réalise une marche
for i in range(1,n+1):

D[i] += abs(L[i])/N # on ajoute la distance à l'origine à chaque␣
↪instant dans la liste M, divisé par N pour faire la moyenne

25

return T, D

Voyons cela :

[22]: T, D = M1ddist(tf,n,1000)
ratio = 1.2 # ratio de taille entre fig et texte (légende et axes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)
plt.title("Distance moyenne à l'origine en fonction du temps")
plt.plot(T,D)
plt.show()

Question 5 : Commenter le graphe précédemment obtenu : mathématiquement, comment semble
évoluer la distance moyenne à l’origine en fonction du temps ? A quel phénomène cela fait-il penser
?

Correction : On semble avoir 𝐷 ∝
√

𝑇 . Vérifions :

[23]: D2 = [elem**2 for elem in D]
ratio = 1.2 # ratio de taille entre fig et texte (légende et axes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)
plt.title("Distance moyenne à l'origine au carré en fonction du temps")
plt.plot(T,D2)
plt.show()

26

La proportionnalité entre la distance moyenne à l’origine au carré et le temps semble donc être
vérifiée. Cette relation est typique des phénomènes de diffusion. Vérifions cela théoriquement…

Question 6 : On note 𝑝(𝑥𝑖, 𝑡) la probabilité de se trouver en 𝑥𝑖 à l’instant 𝑡. Exprimer 𝑝(𝑥𝑖, 𝑡 + 𝜏)
en fonction de 𝑝(𝑥𝑖−1, 𝑡) et 𝑝(𝑥𝑖+1, 𝑡).
Pour se trouver en 𝑥𝑖 à l’instant 𝑡, il fallait soit se trouver en 𝑥𝑖−1 à l’instant précédent (en 𝑡), soit
en 𝑥𝑖+1. Cependant, dans chacune de ces positions, il faut faire “le bon pas” pour arriver en 𝑥𝑖 :
ce “bon pas” a pour probabilité 1/2. On a donc :

𝑝(𝑥𝑖, 𝑡 + 𝜏) = 1
2𝑝(𝑥𝑖−1, 𝑡) + 1

2𝑝(𝑥𝑖+1, 𝑡)

Question 7 : On note d𝑥 = 𝑥𝑖+1 − 𝑥𝑖 la longueur d’un pas, et d𝑡 = 𝜏 la durée d’un pas, et on pose
𝑥 = 𝑥𝑖. Ré-écrire l’équation précédente à l’aide de 𝑥, 𝑡, d𝑡 et d𝑥. Utiliser alors des développements
de Taylor pour montrer que 𝑝(𝑥, 𝑡) obéit à une équation de diffusion, et donner l’expression du
coefficient de diffusion.

On a :
𝑝(𝑥, 𝑡 + d𝑡) = 1

2𝑝(𝑥 − d𝑥, 𝑡) + 1
2𝑝(𝑥 + d𝑥, 𝑡)

On utilise alors des développements de Taylor à l’ordre 2 en spatial :

𝑝(𝑥 − d𝑥, 𝑡) = 𝑝(𝑥, 𝑡) − d𝑥𝜕𝑝
𝜕𝑥(𝑥, 𝑡) + d𝑥2

2
𝜕2𝑝
𝜕𝑥2 (𝑥, 𝑡) + 𝒪(d𝑥3)

𝑝(𝑥 + d𝑥, 𝑡) = 𝑝(𝑥, 𝑡) + d𝑥𝜕𝑝
𝜕𝑥(𝑥, 𝑡) + d𝑥2

2
𝜕2𝑝
𝜕𝑥2 (𝑥, 𝑡) + 𝒪(d𝑥3)

27

Et un développement à l’ordre 1 en temporel :

𝑝(𝑥, 𝑡 + d) = 𝑝(𝑥, 𝑡) + d𝑡𝜕𝑝
𝜕𝑡 (𝑥, 𝑡) + 𝒪(d𝑡2)

Finalement, on obtient l’équation de diffusion suivante :

𝜕𝑝
𝜕𝑡 (𝑥, 𝑡) = 𝐷𝑑𝑖𝑓𝑓

𝜕2𝑝
𝜕𝑥2 (𝑥, 𝑡) avec 𝐷𝑑𝑖𝑓𝑓 = d𝑥2

2d𝑡2

On a donc vu que pour lorsque la longueur et la durée des pas tendent vers 0, on retrouve un
espace “continu”, et le mouvement de cette marche suit une loi de diffusion. Vérifions d’autres
caractéristiques de cette loi de diffusion.

Retournons au cas discret : nous allons déterminer ce qu’on nomme la distribution des positions
en fonction du temps : il s’agit de construire un histogramme représenter le nombre de marches
qui, après un temps 𝑡, arrive à la position 𝑖.
Question 8 : Ecrire une fonction Dist1d(tf,n,N) qui retourne la liste T des temps, et un tableau
𝑇 𝑎𝑏 (utiliser np.array) dans lequel chaque colonne représente les différentes positions en fonction
du temps pour une marche (jusqu’au temps 𝑡𝑓). Chaque nouvelle colonne correspond à une nouvelle
marche. Il s’agit donc d’un tableau de 𝑁 colonnes et 𝑛 + 1 lignes.

[24]: def Dist1d(tf,n,N):
Tab = np.zeros((n+1,N))

for j in range(N):
T, L = ma1d(tf,n) # une marche, qu'on va stocker dans ja jième colonne␣

↪du tableau
Tab[:,j] = L

return T, Tab

Traçons alors l’histogramme :

[26]: n, tf, N = 200, 10, 10000
T, Tab = Dist1d(tf,n,N)

ratio = 1 # ratio de taille entre fig et texte (légende et axes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)
plt.title("Histogramme du nombre de marche atteignant une certaine position␣

↪après un certain nombre de pas")
plt.hist(Tab[10,:],bins=[i for i in range(-int(n/5),int(n/5),1)],alpha = 0.4,␣

↪label ="Après 10 pas")
plt.hist(Tab[70,:],bins=[i for i in range(-int(n/5),int(n/5),1)],alpha = 0.4,␣

↪label ="Après 70 pas")
plt.hist(Tab[200,:],bins=[i for i in range(-int(n/5),int(n/5),1)],alpha = 0.4,␣

↪label ="Après 200 pas")
plt.xlabel("Position")
plt.ylabel("Nombre de marches")
plt.legend()

28

plt.show()

On remarque que la distribution des position “s’étale” avec le temps. On pourrait montrer que cet
étalement, caractérisé par la largeur typique, évolue comme la racine carré du temps (encore une
signature du processus de diffusion.

Montrons cette propriété… en théorie continue !

Question 9 : Vérifier que la loi de propabilité gaussienne suivante :

𝑝(𝑥, 𝑡) = 1
𝜎(𝑡)

√
2𝜋𝑒− 𝑥2

2𝜎(𝑡)2

vérifie l’équation de diffusion, avec 𝜎(𝑡) l’écart-type de cette loi de probabilité. En déduire
l’expression de 𝜎(𝑡), et commenter.

A suivre :

• fit sur graphe précédent pour sigma(t) ?

• en 2d ?

• vérifier loi de la distance au carré en fonction du temps (voir T&D PC)

29

	 Transfert thermique dans un mur
	 Étude numérique du régime transitoire : version 2023
	 Étude numérique du régime transitoire : version 2015
	 Transfert thermique dans un oeuf
	 Théorie et solution numérique
	 Pour aller plus loin : jaune et blanc

	 Troisième partie : Diffusion de particules
	 Modèle de la marche aléatoire

