[1]:

TD Modélisation 4 : Phénomenes de diffusion

Préambule python :

import matplotlib.pyplot as plt

from math import sqrt, cos, sin, exp, pi
import numpy as np

from random import randint

1 Transfert thermique dans un mur

D’aprés les épreuves de modélisation CCINP 2015 et 2023 (débuts). ## Etude analytique du
régime stationnaire On étudie les transferts thermiques dans le mur d’une maison (voir figure ci-
dessous), considéré comme un isolant de section S et d’épaisseur e. La température a U'intérieur de

la maison est notée Tj,,,, et celle a I'extérieur T,_,.

Le mur a une épaisseur L = e = 40cm. Les propriétés physiques du mur sont constantes :
o conductivité thermique A = 1,65W.m 1. K~!

e capacité thermique massique a pression constante ¢, = 1000.J kg LK1

« masse volumique p = 2150kg.m 3.

On note T'(z,t) la température dans le mur en fonction du temps. Dans le mur (pour 0 < z <e),
la température suit la loi de diffusion thermique :

or_ o1

pcp@ N A8x2

Dans la suite, on se place en régime stationnaire.

Question 1 : A quelle condition peut-on supposer que la température ne dépend pas des coordon-
nées y et z 7

Correction 1 : Lorsque les dimensions transversales (selon y et z) du mur sont grandes devant
I’épaisseur e du mur, on peut négliger les effets de bords, il y a invariance par translation selon y
et z, et ainsi on se rameéne a un probléme unidimensionnel selon 'axe des x : T'(x,y, z) = T'(x).

. . PO I . oT __ \ 03T J . . . ’
Question 2 : Réécrire I'équation pc, gy = A3,z en régime stationnaire. Justifier que la tempéra-

ture dans l'isolant est de la forme T'(z) = Az + B.

Correction 2 : En régime stationnaire 2& = 0 — ‘3135 =0 et donc T'(x) = Az + B.

Question 3 : En déduire I'expression de la température T'(x) en fonction des données du probléme.

T T,

Correction 3 : En utilisant que 7'(0) = T;,,, et T'(e) = T, Sext——int ef,

Lo, On en déduit que A =
B =T,,, et donc finalement :

xr
T(J") = (Text - Tznt)g + Tint

On rappelle les expressions :

e de la loi de Fourier : jth(x) = —)\%‘%

e du flux thermique : ¢ = ffj_;h(:b)dg

o de la résistance thermique : R, = T’%

Question 4 : Proposer une interprétation physique de la résistance thermique. Montrer que
Rth = %'

Correction 4 : Interprétation physique : citer (et expliquer rapidement) ’analogie élec-
trique/thermique).

Avec la loi T'(x), on obtient :

. ar Tew =T,

Jnw) = A, = et

» . T T <
¢ = // Jon(@).dS = —pZext——inte // ds

Avec dS = dS ex, on obtient :

T, —T, T..—T
@:_)\M//dgz_)\wtmtg
e (&

On a alors :

Finalement :

R., — CZj7J'm‘, _Tert ¢
th —

) TS
Question 5 : Déterminer ’épaisseur e du mur isolant permettant d’obtenir, pour une surface

S = 2,0m?, une résistance thermique R, = 0,12K. W1

Correction 5 : e = 40cm

1.1 Etude numérique du régime transitoire : version 2023

On cherche a résoudre numériquement 1’équation aux dérivées partielles :

or . o*T
ot ' oa?
avec k,, = ﬁ la constante de diffusivité thermique.

Pour ce faire, on discrétise le temps et I'espace de la facon suivante :

o le temps est discrétisé en N, dates comprises entre O et ¢,,,.., la durée de la simulation. Ces
dates sont séparées du pas temporel dt =t,, ... /(N,—1) et chacune d’entre elle s’écrit ¢,, = ndt
avec n € [0, Ny —1]. Ainsi, tg =0 et ty 1 =14,

o l'espace est discrétisé en NN, valeurs comprises entre 0 et e = L, séparées du pas spatial dz.
On note ¢ € [0, N, — 1] l'indice repérant le numéro de I'un des N, points et x; € [0, L] la
position du point correspondant. Ainsi, x, =0 et ¢ N,—1= L.

Question 6 : Donner l'expression de dx en fonction de L et de N,.

L

Correction 6 : dz = N 1
-

La paramétrisation précédente permet de noter T}* = T'(z;, tn) la température échantillonnée.

et BT

L’énoncé de 2023 donne les formules de discrétisation pour , puis demande d’en déduire

celle pour ‘gwg Réalisons nous-méme ce travail, dans l'esprit de ’énoncé de 2015.

Question 7a : A l'aide d’un développement limité de la fonction x — T'(z,t), donner une expres-
sion de T'(z + dz,t) a l'ordre 3 (o(dz?)) en fonction de T et de ses dérivées partielles par rapport
a x évaluées en (z,t). De méme, donner une expression de 7'(x — d,t) a 'ordre 3.

Correction 7a : T(z + dz,t) = T(z,t) + dzdl(z,t) + (dg) gg(x,t) + <d‘g>3 gig(x,t) + o(dz?)

T(z —dz,t) = T(z,t) — dz L (z,t) + %375(95, t) — W T (1 1) + o(da?)

Question 7b : En déduire une expression approchée a l'ordre 1 (o(dx)) de 2T (2,t) (dérivée
partielle spatiale seconde de T' évaluée au point x a 'instant ¢) en fonction de T’ (:c—i—d:c t),T(x—dx,t),
T(z,t) et d.

Correction 7b : Gréce aux deux expressions précédentes qu’on somme, on obtient : g (x,t) =
T(a+de,t)+T(e—dz.t)-2T(w.t
Question 7c : Déduire de la question précédente une expression approchée de 82—T| (dérivée

partielle spatiale seconde de T" évaluée en z; a l'instant ¢,,) en fonction de T7*, T}, T;* | et dz.

Correction 7c : On remplace dans l'expression précédente T'(x;,t,,) par T}*, alors T'(z; + dz,t) =

__n 92T ~ I+ T, 2T
T(x;q1,t) =Tj, et on obtient : F— L, g

i'n

La dérivée partielle temporelle de ’équation de diffusion est maintenant approchée grace a un
développement limité.

Question 7d : A l'aide d’un développement limité de la fonction t — T'(z, t), donner une expression
de T'(x,t+dt) al'ordre 1 (o(dt)) en fonction de T et de sa dérivée partielle par rapport a ¢ évaluées
en (z,t).

Correction 7d : T(z,t +dt) = T(z,t) + dtZ(z, 1) + o(dt)

Question 7e : En déduire une valeur approchée de %(x, t) (dérivée partielle par rapport au temps
de T évaluée au point = a l'instant ¢) a Pordre 0 (o(1)) en fonction de T'(x,t + dt), T(x,t) et dt.

Correction 7e : 3t Lip,t) = W +o(1)

Question 7f : Donner une expression de 2 B | (dérivée partielle par rapport au temps de T’
évaluée en z; a 'instant ¢,) en fonction de 17", TZ"Jrl et dt, avec T/ = T'(z;,t, +dt).

. . OT ~ Iy
Correction 7f : B e T

L’équation de diffusion est valable en chaque point d’abscisse x; et a chaque instant ¢,,.

[1:

Question 7g : Ecrire la forme approchée de cette équation au point i et & 'instant n en approchant

2 N .

375 avec la formule obtenue & la question 6, et en approchant %—th , avec la formule obtenue
Tisln Tistn

a la question précédente.

n+1 _Tn

. . T Lo fo T AT —2T
Correction 7g : ——5— ~k, (dz)?

Question 8 : Montrer que ’équation obtenue a la question précédente peut s’écrire sous la forme
TinH = K(T}", + TZT-LH) + (1 —=2K)1"
en précisant ’expression du parametre K en fonction de dz, dt et k,,.
dt

Correction 8 : K = kthw

Cette derniere équation est appelée schéma numérique explicite. Si on connait la température en
tous les points x, Ty, .., Ty, 1, Ty a l'instant ¢, on peut calculer grace a elle la température en
tous les points a l'instant ultérieur ¢,, ;.

On suppose tout d’abord que le mur est a la température extérieur : T'(z,t <0) =1T,,, = 5,0°C.
A la date t = 0, on impose les conditions aux limites :

T(0,t > 0) =T,,, = 20°C
T(L,t>0)=T,,, =5,0°C

Le code python ci-dessous implémente ce schéma numérique pour calculer les échantillons de tem-
pérature. Dans les questions qui suivent, on cherche a compléter les passages manquants du code,
repérés par des “QQQ”,

import numpy as np

Caractéristique du mur

rho = 2150 # masse wvolumique [kg/m~-3]

Lambda = 1.65 # conductivité thermique [W/m/K]

cp = 1le3 # capacité thermgieu massique [J/K/kgl
kth = Lambda / (rho * cp) # diffusivité thermique [m2/s]

L = 4de-1 # épaisseur du mur [m]

Conditions aux limites
Tint = 20 # température intérieur [°C]
Text = 5.0 # température extérieur [°C]

Paramétres de la simulation

tmax = 72000 # durée de la simulation [s] (ict 20h)
Nt = 3456 # discrétisation temporelle (Nt dates)
Nx = 60 # discrétisation spatiale (Nz points)

Discrétisation spatio-temporelle
dt = tmax / (Nt - 1) # pas temporel [s]
dx = Q0 # pas spatial [m] # Q9

[48] :

Constante du schéma numérique
K = Q@@ # Q10

Initialisation de la température
T = Text * np.ones((Nx, Nt)) # tableau des températures T(xz,t) [°C]
©e@ # Q11

Calcul de la température

for n in range(0, Nt-1): # boucle temporelle
for i in range(l, ©@QQ): # boucle spatiale # Q12
T[i, n + 1] = @@@ # (13

Question 9 : A l'aide de la question 6, donner l'instruction permettant de définir le pas spatial
dx en fonction des variables L et Nx.

Question 10 : A l'aide de la question 8, donner 'instruction permettant de définir la constante K
du schéma numérique en fonction des variables kth, dx et dt.

Question 11 : Dans la partie Initialisation des températures, la premiere ligne permet
d’initialiser une matrice des températures de NV, lignes et IV, colonnes a une valeur initiale identique

T..;. Proposer un code a la ligne suivante pour assurer la condition aux limites T'(z = 0,t) = T,,,.

Question 12/13 : On rappelle que la derniére valeur fournie par U'instruction range(1, Nx) est
Nx -1, lintervalle de la fonction range étant semi-ouvert. En examinant le schéma numérique,
compléter la boucle spatiale. Implémenter ensuite le schéma numérique a l'intérieur des deux
boucles.

Correction 9/10/11/12 :

import numpy as np

Caractéristique du mur

rho = 2150 # masse wvolumique [kg/m 3]

Lambda = 1.65 # conductivité thermique [W/m/K]

cp = 1le3 # capacité thermqieu massique [J/K/kg]
kth = Lambda / (rho * cp) # diffusivité thermique [m~2/s]

L = 4e-1 # épaisseur du mur [m]

Conditions aux limites
Tint = 20 # température intérieur [°C]
Text = 5.0 # température extérieur [°C]

Paramétres de la simulation

tmax = 72000 # durée de la simulation [s] (ici 20h)
Nt = 5000 # discrétisation temporelle (Nt dates)
Nx = 60 # discrétisation spatiale (Nz points)

Discrétisation spatio—temporelle
dt = tmax / (Nt - 1) # pas temporel [s]

[57]:

dx = L/ (Nx - 1) # pas spatial [m] # Q9

Constante du schéma numérique
K = kth * dt / dx**2 # Q10

Initialisation de la température

T = Text * np.ones((Nx, Nt)) # tableau des températures T(z,t) [°C]

for n in range(Nt): # (11
T[O, n] = Tint

Ou plus efficace : T[0, :] = Tint

Calcul de la température
for n in range(0, Nt - 1): # boucle temporelle
for i in range(l, Nx - 1): # boucle spatiale # Q12
Tli, n + 1] = K * (T[i-1, n] + T[i+1, n]) + (1 - 2*K) * T[i, nl# Q13

Une partie non mentionnée du code a permis de tracer la température dans le mur aux dates t,, t,
et t5 (on a limité ici Nx & 5).

Question 14 : A l'aide de ce graphe, classer les dates ¢, ¢4 et 5 de facon croissante.

Question 15 : Compte tenu de la question 2, justifier que le régime permanent est pratiquement
atteint.

Correction 14/15 : t5 < t; < t, car plus le temps “avance”, plus on se rapproche du régime
permanent pourlequel la température est une fonction affine du temps (graphe : droite allant de
T,..aT,,) Daillleurs, au temps t,, on remarque que le graphe est quasiment une droite : le
régime transitoire est quasiment fini, le régime permanent est pratiquement atteint.

La suite de I’énoncé traite d’autres domaines (plus de diffusion). On peut cependant ici tester la
“bonne” exécution de notre code :

X = np.linspace(0, L, Nx) # Création des Nz points d'abscisse

plt.figure()
for i in range(10): # création de 10 graphes réguliérement espacés dans le temps
plt.plot(X,T[:, i*(Nt-1)//9],1label ='t = '+str(round(i*(Nt-1)*dt/

+(9%3600),1))+' h')

plt.xlabel('x (m)"')

plt.ylabel('T (°C)")

plt.legend()

plt.show()

20+

18 ~

16 ~

14 1

T(°C)

12 1

10 ~

T T T T T T T T T
0.00 005 010 0.15 020 025 030 035 040
x (m)

On trouve bien un graphe similaire (mais bien plus précis !) a celui proposé a la question 14.

1.2 Etude numérique du régime transitoire : version 2015

Dans la version précédente (2023), la condition initiale considérait le mur a la température ex-
térieure. Cela revient au probléeme d’une maison dans laquelle le chauffage a été longtemps éteint :
apres un régime transitoire, toute la maison (murs compris) sont donc a la température extérieur
T,,, = 5,0°C. On allume alors le chauffage a t = 0 : on consideére que l'air est immédiatement a

la température intérieure désirée T, , = 20°C, alors que les murs sont pour I'instant encore a la
température extérieure.

Dans cette autre version, la température a 'intérieur de la maison est constante dans le temps et
égale a T;,, = 20°C. Aux temps négatifs (¢ < 0, la température extérieure est égale a T, = 10°C.

A t = 0, elle chute brusquement & T2, = —10°C et elle reste égale a cette valeur aux temps positifs

(t > 0). On souhaite étudier I’évolution du profil de température dans le mur au cours du temps.

Cela revient a considérer le probléme du passage jour/nuit, pendant lequel la température extérieure
chute. On considere ici que ce changement de température extérieur est immédiat.

Question 16 : On considére deux instants :
e pour un instant particulier négatif ¢, < 0,

e pour un instant particulier positif ¢, > 0, tres longtemps apres la variation de température

[24] :

extérieure, quand le régime permanent est de nouveau établi dans le mur.

Quelle est la nature des profils T'(z) obtenus (en régime permanent) a ces deux instants ? Tracer
a la main les deux profils sur un méme graphique.

Correction 16 : En régime stationnaire, le profil suit celui d’une fonction affine. En rouge pour
t < 0, et en bleu ciel pour t — 400 et dans d’autres couleurs pour les cas intérmédiaires.

Question 17 : Sur le méme graphique, tracer a la main qualitativement les profils intermédiaires
a différents instants entre la variation brutale de la température extérieure (t = 0) et l'instant t,
ou le régime est de nouveau permanent.

Correction 17 : Juste apres le changement brutal, la température n’a significativement varié
qu’au voisinage de e (tracé en bleu foncé). Apres un temps suffissamment long le changement de
température se fait ressentir dans toute I’épaisseur du mur (tracé vert). On peut utiliser le temps
caractéristique d’évolution L =~ ,/k,,7 de la température sur une longueur L, avec k,, = S
coefficient de diffusion thermique : ’

e 7=10s donne L ~ 3mm
e 7=>500s donne L ~ 2cm

Pour résoudre numériquement le nouveau régime transitoire, les conditions initiale et aux limites
s’écrivent :

(0,t) =Ty, vt >0

(e,t) =T2, vVt >0

T(x,0)=ax+b Vzel0e]

T
T

Question 18 : Exprimer a et b en fonction de T},,,, T, et e.

Correction 18 : Voir question 3 : a = % etb="1T,,.

Question 19 : Compléter le code ci-dessous pour effectuer la simulation numérique donnant la
matrice des températures.

Conditions aux limites

Tint = 20 # température intérieur [°C]
Textl = 10 # température extérieur pour t < 0 [°C]
Text2 = -10 # température extérieur pour t >= 0 [°C]

Initialisation de la température

T = np.zeros((Nx, Nt)) # tableau des températures T(z,t),
«[°C] initialisé a4 0
a, b = (Textl - Tint) / L, Tint # respect de la condition initiale,

wen t = 0

X = np.linspace(0, L, Nx)

T[:, 0] = a * X +b

T[O, :] = Tint # respect de la condition a lay
slimite en ¢ = 0

T[Nx - 1, :] = Text2 # respect de la condition 4 lay
slimite en © = e

[25] :

[26] :

[58]:

Calcul de la température
for n in range(0, Nt-1): # boucle temporelle
for i in range(l, Nx-1): # boucle spatiale
Tli, n + 11 = K * (T[i-1, n] + T[i+1, n]) + (1 - 2#K) * T[i, nl]

On souhaite arréter le calcul lorsque la température ne varie presque plus dans le temps. Dans ce
but, on évaluera la norme 2 de 7" — T" ! & chaque itération. On donne la définition de la norme

2 d’un vecteur V :
V], = \/ZVf
i=1

Vi

Va
avec V = ;
Vn—l

v,

n

Question 20: Ecrire une fonction calc_norme qui calcule la norme 2 d’un vecteur.

Correction 20:

def calc_norme(V):
return sqrt(sum([vi**2 for vi in V]))

Ou, sans tricher :
def calc_norme(V):
s =0
for elem in V:
s += elem**2
return sqrt(s)

Test :

B=[1,2,3]
print(calc_norme (B) **2)
14.0

Question 21: Modifier le code de la question 17 pour interrompre la simulation numérique lorsque
la la norme 2 du vecteur T,, — T}, ; deviendra inférieure & 5.10~ (on considere alors que la régime
permanent est atteint) ou lorsque le nombre d’itérations atteindra la valeur Nt (prévoir les deux
cas). Utiliser, pour cela, la fonction calc_norme définie a la question précédente.

Correction 21:

Conditions aux limites

Tint = 20 # température intérieur [°C]
Textl = 10 # température extérieur pour t < 0 [°C]
Text2 = -10 # température extérieur pour t >= 0 [°C]

[63]:

Initialisation de la température

T = np.zeros((Nx, Nt)) # tableau des températures T(z,t),
o [°C] initialisé a 0
a, b = (Textl - Tint) / L, Tint # respect de la condition initiale,

wen t = 0

X = np.linspace(0, L, Nx)

T[:, 0] = a * X +b

T[O, :] = Tint # respect de la condition 4 lay
slimite en ¢ = 0

T[Nx - 1, :] = Text2 # respect de la condition 4 lay
slimite en © = e

Calcul de la température

Premtiére itération temporelle, afin d'avoir deux vecteurs de température,
wsuccessifs :
n=20
for i in range(l, Nx-1): # boucle spatiale
T[i, n + 1] = K * (T[i-1, n] + T[i+1, n]) + (1 - 2%K) * T[i, n]

while n < Nt-2 and calc_norme(T[:, n+1] - T[:, n]) > 5e-3: # boucle,
~temporelle
n +=1
for i in range(l, Nx-1): # boucle spatiale
T[i, n + 1] = K % (T[i-1, n] + T[i+1, nl]) + (1 - 2%K) * T[i, n]

print("Le nombre d'itération temporel est de : "+str(nt+2)+"/"+str(Nt))

Le nombre d'itération temporel est de : 3293/5000

Question 22 : Ecrire un script permettant de tracer sur un méme graphique le profil de tempéra-
ture en fonction de x pour 10 temps régulierement espacés. Faire afficher le temps en heures au
bout duquel le régime permanent est établi.

Correction 22:

X = np.linspace(0, L, Nx) # Création des Nz points d'abscisse

temps=n*dt
h=temps//3600
m, s=(temps’3600)//60, (temps%3600) %60

plt.figure()
plt.title("Schéma explicite, régime permanent atteint en {0}h {1}mn {2}s".
~format (int (h) ,int(m),int(s)))
for i in range(10): # création de 10 graphes réguliérement espacés dans le temps
plt.plot(X,T[:, i*(n-1)//9],label ='t = '+str(round(i*(n-1)*dt/
~(9%3600) ,1))+' h')

10

plt.xlabel('x (m)')
plt.ylabel('T (°C)")
plt.legend ()
plt.show()

Schéma explicite, regime permanent atteint en 13h 9mn 59s

20 -
15 -
10 -
_ —— t=0.0h
£ s5]— t=15h
- — t=29h
— t=4.4h
09 — t=59h
— t=7.3h
s t=8.28h
—— t=10.2h
t=11.7h
104 — t=13.2 h
T

T T T T T T T T
0.05 010 015 020 025 030 035 040
x (m)

o
o
o

Ces questions sont une version adaptée (simplifiée) du début de I’énoncé CCINP 2015. La suite de
l’énoncé poursuit sur le méme probléme, avec des méthodes plus complexes...
1.3 Transfert thermique dans un oeuf

D’aprés Oral Centrale Physique 2.

1.4 Théorie et solution numérique

On s’intéresse a la cuisson d’un ceuf de poule. Celui-ci est constitué d’une coquille calcaire contenant
principalement deux zones distinctes : 'une périphérique appelée « blanc » (albumen) et l'autre
centrale appelée « jaune » (vitellus). Ces deux zones sont fluides avant cuisson.

On modélise un ceuf par une sphere de rayon R, avec une répartition a symétrie sphérique du blanc

11

et du jaune. L’équation de diffusion s’écrit :

oT(r,t)

5 DAT(r,t)

avec D diffusivité et A laplacien.
Question 1 : Montrer que, compte-tenu de la symétrique sphérique du probléeme, ’équation de
diffusion s’écrit :
oT(r,t) D 10 (,0T(rt)
———=D—=— | rr——m—
ot r2 or or

Aide : on rapelle que, en sphérique :

ﬁ L2 20f 0% f 1 9f 1 0%f
orz " ror 89 r2tanf 00 = r2gin® § Op?

Af =

Correction 1 : D’apres la symétrie du probléme (invariance par rotation selon 6 et ¢), la tem-
pérature T'(r, 0, p,t) ne dépend que de t et v : T'(r,0,p,t) =T(r,t) . On a donc :

o*T 20T 1 0 oT
AT(rt) = Sr + g = o (125
(r?) o2 ror r2or (r or
L’équation de diffusion DAT = <= avec D coefficient de diffusion s’écrit ainsi comme demandé.

On souhaite maintenant modéliser numériquement 1’évolution au cours du temps du profil de tem-
pérature au sein de l'ceuf. On utilise pour cela la méthode d’Euler pour discrétiser I’équation
précédente.

Le principe adopté est le suivant : le profil de température initial T (r, t = 0) au sein de 'ceuf est
oT(r,t)

connu. On pose comme variable intermédiaire : ©(r,t) = =

Question 2 : Ecrire le systéme d’équation différentiel d’ordre 1 faisant intervenir les fonctions
T(r,t) et O(r,t).

Correction 2 :

{ o(r,t) = Zrd

T (r,t 1 9
8(2 d = DrQ or (2@(7‘,t>)

On note 7, et [, les périodes d’échantillonnage (ou « pas ») temporelle et spatiale de la résolution

numérique.

Question 3 : Montrer, a 'aide d’'un D.L. & l'ordre 1 en [, de T'(r —I.,t), qu'on a O(r,t) =

T(r,t)—T(r—1,,
(r.t) lC(T’ t)+0(1)

Correction 3 : T(r—I,,t) = T(r,t)—1,2L, Tt)—l—o(l) et ainsi T(r, t)—T(r—I,,t) = 1, 2L, ”)—l—o(l)=
[.O(r,t) + o(l,) et on obtient ainsi le resultat demandé.

Question 4 : Montrer, a 'aide d'un D.L. a 'ordre 1 en I, de f(r +1,,t) = (r +1,)?0(r +1,,1),

or?20(r,t r+1.)20(r+l,,t)—120(r,t
que IO _ (L PO rOwY | o)

Correction 4 : f(r +1,t) = (r+1.)20(r + 1_,t) = f(r,)+z Ot 4 o(1,) = r2O(r,t) +

I or? 9(1" Y4 o(l,) et done (r+1,)20(r +1,,t) — r20(r,t) = 1,2" @ (rt) 4 o(l), et ainsi on trouve le
resultat demandé.

12

[8]:

[9]:

On note T la température T'(ry, t,), évaluée au point d’abscisse r, = k x [, a U'instant t, = i x 7,
et OF = O(ry, ;).

Question 5 : En déduire alors, via la méthode d’Euler, le schéma numérique suivant :

k TkiTik—l

{ 61) :

k _ mk , Dt (k+1)l,)?0F ' —(kl,)?OF
Tig =T + gt i

e

Correction 5 : Il “suffit” de ré-écire les deux équations obtenus a la question 2, en se servant des
deux D.L. précédemment établis.

Dans la suite, on modifie légerement ce schéma par celui-ci, équivalent du point de vue mathéma-
tique, et évitant de diviser par O :

k TzkiTik—l
{ Of = = 7"—
k _ mk Dr, ((k+1)l,)208 (Kl)20k
T =T + e I

e

On cherche a tracer des graphiques successifs sur I’évolution temporelle de la température en fonc-
tion de l'espace. Pour cela, on considérera deux listes Temp et Theta stockant les valeurs de la
température et de © au niveau des N+1 points d’espace.

Question 6 : Ecrire un script python définissant le rayon de 'oeuf R = 2 ¢m, et permettant, a
partir de N = 100, de calculer le pas d’espace le, la liste des positions de I’espace r (contenant les
N-+1 points entre 0 et R), et créant la liste Temp, pour 'instant initial. A Pinstant initial, on a tout
juste plongé 'oeuf dans I'’eau bouillante : la température initiale sera prise égale a 20°C, sauf a la
surface de l'oeuf.

Correction 6 :

N = 100

R = 2e-2

r = np.linspace(0,R,N+1)
le = R/N

Temp = N*[293] + [373]

Question 7 : Ecrire un scirpt python définissant les autres données du probleme : D =
1,4.1077 m2.s7! le coefficient de diffusion, n+1 = 10001 le nombre de points temporels & considérer,
et 7, le pas temporel, sachant que la durée totale de ’expérience sera 1" = 15 min

Correction 7 :

D = 1.4e-7
n = 10000
T =15 * 60

taue = T / n

Question 8 : Ecrire le script mettant a jour la liste Theta pour le temps i, et la liste Temp pour
le temps 7 + 1, sachant qu’on déja les listes Theta pour le temps ¢ — 1 et Temp pour le temps i. La
température extérieure sera en permanence celle de I'eau bouillante, et on admet qu’on a a tout
instant Theta [0]=0.

13

[10]:

[13]:

Correction 8 :

Theta=[0] # theta au centre

for k in range(N)
Theta.append ((Temp [k+1]-Temp[k])/le) # calcul de theta en k+1 d l'instant %

Temp[k] += D+*taue/
o ((k+1)*1e) **2% (((k+1)*1le)**2xTheta[k+1] - (k*le) **2xThetalk])/le # calcul de,
~temp en k a4 l'instant i+1

Temp[N] = 373 #la derniére valeur reste inchangée (100°C)

Question 9 : Insérer ce script dans une boucle permettant d’effectuer tous les pas de temps. On
ajoutera une commande permettant de tracer, sur un méme graphique, 10 courbes représentant le
profil de température a des temps réparties régulierement entre le début et la fin de la cuissson.

Correction 9 :

N = 100

R = 2e-2

r = np.linspace(0,R,N+1)
le = R/N

Temp = N*[293] + [373]

D = 1.4e-7

n = 10000

T = 15 * 60

tauve = T / n

ratio = 1.2 # ratio de tatlle entre fig et texte (légende et azes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio) ,dpi = 200)
for i in range(n): # on calcul pour chaque pas de temps

Theta=[0] # theta au centre

for k in range(N)
Theta.append ((Temp [k+1]-Temp[k])/le) # calcul de theta en k+1 dy
<l'instant <
Temp[k] += D*taue/
o ((k+1)*1le)*x2% (((k+1) *le) **2*Theta [k+1] - (k*xle) **2xThetal[k])/le # calcul dey

~temp en k a4 l'instant i+1
Temp[N] = 373 #la derniére valeur reste inchangée (100°C)
9 premiers plot (T en degrés, pour une meilleure lisibilité)
if i*10%n == O:

plt.plot(r, [Temp[p]-273 for p in range(N+1)],label = "T aprés,
"+str(int (i*taue))+"s")

14

Dernier graphe
plt.plot(r, [Temp[p]-273 for p in range(N+1)],label = "T aprés
o"+str(int (ixtaue))+"s")

plt.xlabel('$r \ \mathrm{(m)}$')
plt.ylabel('$T \ \mathrm{(°C)}$')
plt.legend()

plt.show()
100 1 —
90 1
80 - —— Tapres 0s
—— Tapres 90s
—— Tapres 180s
707 —— Taprés 270s
S —— Tapres 360s
< 60- —— T apres 450s
~ T aprés 540s
50 - —— Taprés 630s
T aprés 720s
—— Taprées 810s
40 7 —— T aprés 899s
30
20 1

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
r(m)

On donne quelques informations sur la cuisson d’un oeuf :

o Debut de coagulation de I'ovalbumine (protéines des blancs) a 62°C, et formation d’un gel
tres ferme a 70°C.

o Début de I’épaississement a 65°C par coagulation des protéines du jaune (ovovitelline), perte
de fluidité a 70°C, coagulation totale a 85°C.

Question 10 : Estimer le temps pour obtenir un oeuf dur.

Correction 10 : D’apres le graphique précédent, la température semble atteindre les 85°C a coeur
aux alantours des 800s. Vérifions le :

[12]: T = 800
taue = T / n
Temp = N*[293] + [373]

ratio = 1.2 # ratio de taille entre fig et texte (légende et azes), par défaut 1

plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)
for i in range(n): # on calcul pour chaque pas de temps

Theta=[0] # theta au centre

for k in range(N)
Theta.append ((Temp [k+1]-Temp[k])/le) # calcul de theta en k+1 dy
»l'instant 1
Temp [k] += Dxtaue/
o ((k+1)*1e) **2% (((k+1)*1e) **2xTheta[k+1] - (k*le) **2xThetalk])/le # calcul de,

~temp en k a4 l'instant 1+1
Temp [N] = 373 #la derniére valeur reste inchangée (100°C)

9 premiers plot (T en degrés, pour une meilleure lisibilité)
if i*x10%n ==
plt.plot(r, [Temp[p]-273 for p in range(N+1)],label = "T aprés,
~"+str(int (ixtaue))+"s")

Dernier graphe
plt.plot(x, [Temp[p]-273 for p in range(N+1)],label = "T aprés,
o"+str(int (ixtaue))+"s")

plt.plot(r, [85 for k in range(N+1)],label = "85°C ")
plt.xlabel('$r \ \mathrm{(m)}$')
plt.ylabel('$T \ \mathrm{(°C)}$"')

plt.legend()
plt.show()

16

[14]:

100 1
90 1
80 A
70 A
T apres Os
g 60 - Taprt:es 80s
- T apres 160s
T aprés 240s
50 1 T aprés 320s
T aprés 400s
40 4 T apres 480s
T apreés 560s
T apres 640s
301 T aprés 720s
T aprés 799s
20 A —— 85°C

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
r(m)

De fagon plus précise, 720s, soit 12 min semblent suffirent. Usuellement, on parle plutét de 9 min
pour un oeuf dur...

1.5 Pour aller plus loin : jaune et blanc
On considére que la répartition du jaune dans un oeuf vérifie a =~ 0, 8.

Question 11 : Par tatonnement, en modifiant la valeur de T, déterminer la durée necessaire pour
que 'oeuf soit “a la coque”.

Correction 11 : Pour un oeuf a la coque, il faut que la majeure partie du jaune se trouve en
dessous des 65°C, et la majeure partie du blanc au dessus de 70°C (sachant que le jaune se trouve
jusqu’a 1,6 cm du centre). Sur le graphe précédent, on remarque que pour T = 160s, 'oeuf est déja
trop cuit. Regardons avec plus de précision :

T = 130

tauve = T / n

Temp = N*x[293] + [373]

ratio = 1.2 # ratio de taille entre fig et texte (légende et azes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)

for i in range(n): # on calcul pour chaque pas de temps

Theta=[0] # theta au centre

for k in range(N)

17

Theta.append ((Temp [k+1]-Temp[k])/le) # calcul de theta en k+1 a,
<l'instant %

Temp[k] += D*taue/
o ((k+1)*1e) **2% (((k+1)*1le) **2xTheta[k+1] - (k*le) **2xThetalk]) /le # calcul de,
~temp en k da l'instant i+1

Temp [N] = 373 #la derniére valeur reste tinchangée (100°C)

if i*20%n == 0 and i*taue > 100:
plt.plot(x, [Temp[p]-273 for p in range(N+1)],label = "T aprés,
"+str(int (i*taue))+"s")

Dernier graphe
plt.plot(zx, [Temp[p]-273 for p in range(N+1)],label = "T aprés,
<"+str(int (ixtaue))+"s")

Ligne hortizontale "a la bonne température"
plt.plot(r,[67.5 for k in range(N+1)],label = "67,5°C ")

Ligne verticale de séparation blanc/jaune
plt.axvline(x=1.6e-2,color="'black')

plt.xlabel('$r \ \mathrm{(m)}$')
plt.ylabel('$T \ \mathrm{(°C)}$"')
plt.legend ()

plt.show()

18

[15]:

100 4 —— Taprés 104s
—— Taprés 110s
904 Tapr?s 117s
—— Tapres 123s
—— Taprés 129s
801 — 67,5°C
70
o
2 601
-
50 4
40 A
30
20 1

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
r(m)

Le temps nécessaire est donc compris entre 110 et 117s (alors qu’on parle plutét de 3 min...).
Looeuf dit “parfait”, servi dans certains restaurants, s’obtient a l'aide d’une cuisson a 64,5 °C.
Question 12 : Déterminer l'ordre de grandeur de la durée nécessaire pour que 1’oeuf soit “parfait”.

Correction 12 : On impose ici une température extérieur de cuisson de 64,5 °C, et on estime le
temps nécessaire pour qu’elle soit atteinte partout, méme au centre de 'oeuf :

T = 15 * 60
taue = T / n
Temp = N*[293] + [273+64.5]

ratio = 1.2 # ratio de taille entre fig et texte (légende et azes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)
for i in range(n): # on calcul pour chaque pas de temps

Theta=[0] # theta au centre

for k in range(N)
Theta.append ((Temp [k+1]-Temp[k]) /le) # calcul de theta en k+1 dy
»l'instant 1
Temp[k] += D*taue/
o ((k+1)*1e) **2% (((k+1)*1e) **2xTheta[k+1] - (k*le) **2xThetal[k])/le # calcul de,
~temp en k a4 l'instant i+1

19

Temp [N] = 273+64.5 #la derniére valeur reste inchangée (100°C)

9 premiers plot (T en degrés, pour une meilleure lisibilité)
if i*10%n == 0 and i*taue > 500:
plt.plot(r, [Temp[p]-273 for p in range(N+1)],label = "T aprés
<"+str(int (i*taue))+"s")

Dernier graphe
plt.plot(r, [Temp[p]l-273 for p in range(N+1)],label = "T aprés
o"+str(int (ixtaue))+"s")

plt.xlabel('$r \ \mathrm{(m)}$')
plt.ylabel('$T \ \mathrm{(°C)}$"')
plt.legend()

plt.show()
—— T apres 540s
647 1 aprés 630s
—— Taprés 720s
624 — Tapres 810s
—— T aprés 899s
60 -
581
U
=
56 A
54 -
52 A
50

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
r(m)

Bien evidemment, cela n’est pas possible avant un temps infini. Estimons le temps necessaire pour
qua la température au centre soit d’au moins 95% de celle a atteindre, soit 61,3°C :

[16]: T = 23 * 60
taue = T / n
Temp = Nx[293] + [273+64.5]

ratio = 1.2 # ratio de tatlle entre fig et texte (légende et azes), par défaut 1

20

plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)
for i in range(n): # on calcul pour chaque pas de temps

Theta=[0] # theta au centre

for k in range(N)
Theta.append ((Temp [k+1]-Temp[k])/le) # calcul de theta en k+1 dy
»l'instant 1
Temp[k] += D+*taue/
o ((k+1)*1e) **2% (((k+1)*1e) **x2xTheta[k+1] - (k*le) **2xThetalk])/le # calcul de,
~temp en k a4 l'instant i+1

Temp[N] = 273+64.5 #la derniére valeur reste inchangée (100°C)

9 premiers plot (T en degrés, pour une meilleure lisibilité)
if i*20%n == 0 and ixtaue > 800:
plt.plot(r, [Temp[p]-273 for p in range(N+1)],label = "T aprés,
s"+str(int (i*xtaue))+"s")

Dernier graphe
plt.plot(r, [Temp[p]-273 for p in range(N+1)],label = "T aprés,
o"+str(int (ixtaue))+"s")

Ligne horizontale "d 95J de la bonne température”
plt.plot(r,[61.3 for k in range(N+1)],label = "61,3°C ")

plt.xlabel('$r \ \mathrm{(m)}$')
plt.ylabel('$T \ \mathrm{(°C)}$')
plt.legend()

plt.show()

21

64

63

62 1

T (°C)

—— T aprés 828s

T aprés 897s
611 —— T aprés 966s
—— Taprées 1035s
—— Taprés 1104s
60 - —— Tapres 1173s

T aprés 1242s
—— Tapres 1311s

T apres 1379s
— 61,3°C

59 A

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
r(m)

17min semblent donc étre suffisantes !

En réalité le blanc et le jaune n’ont pas tout a fait la méme conductivité thermique, elle est méme
dans un rapport double. On peut trouver que pour le blanc D, = 1,7 x 10~ "m2.s71 et que pour le
jaune D; = 1,0 x 107 "m?.s7".

Question 13 : Modifier le programme pour tenir compte de cette différence, et estimer a nouveau
le temps de cuisson d’un oeuf.

2 Troisieme partie : Diffusion de particules

2.1 Modéle de la marche aléatoire

Pour modéliser la diffusion de particules, on utilise un modele discret : une molécule se trouve a
I'instant ¢ dans une cellule, et peut, a 'instant ¢ + 7, se trouver dans une cellule voisine.

Dans un premier temps, on se place dans le cas unidimensionnel : la particule se déplace sur selon
I’axe x, et ne peut se trouver, par discrétisation, qu’aux positionx z;,7 € Z. On repere chacune de
ces positions par 'entier relatif ¢. On choisit comme origine O, la position initiale de la particule.

Une particule située en ¢ a l'instant ¢, a une chance sur deux (probabilité 0,5) de se retrouver en
i—1 a l'instant ¢+ 7, et l'autre chance sur deux (probabilité 0, 5) de se retrouver en i+ 1 a 'instant
t+ 7 : c’est ce qu'on nomme une marche aléatoire, c’est-a-dire qu’on effectue des pas dans une
direction aléatoire !

Question 1 : Ecrire une fonction maid(tf,n) qui retourne la liste 1" des temps a chaque pas et
celle des positions L d’une particule, jusqu’a I'instant ¢,. La particule est initialement (at; =0)en

22

O, et a effectué une marche aléatoire de n+1 pas. On utilisera la fonction randint (a,b), générant
un entier aléatoirement compris entre a et b (compris).

[17]: def mald(tf,n):

tau = tf / n

ti = 0 # temps initial

i =0 # posttion initiale

L, T = [1], [til

for k in range(n):
r = randint(0,1) # tirage aléatoire
d = 2x(r-0.5) # déplacement (soit -1, soit 1)
i +=d # nouvelle position
ti += tau
L.append (i)
T.append(ti)

return T, L

Tragons alors différentes trajectoires :
[18]: n = 200
tf = 10

ratio = 1.2 # ratio de tatille entre fig et texte (légende et azes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)
plt.title("Différentes trajectoires de marches aléatoires 1d (n=200)")

for i in range(10):
T, L = mald(tf,n)
plt.plot(T,L)

plt.show()

23

Différentes trajectoires de marches aléatoires 1d (n=200)

30 4

20 A

n\\
N Nf"d.. *v“*"'.’ "“ w
ANV YA
IR M‘s‘MW y M\‘s

01 oo N \’A
W
‘k A\ -‘o 0

—-10 41

—20 1

Faisons quelques statistiques sur ces marches : nous allons nous interesser & la position moyenne
atteinte apreés un certain temps. Pour cela, nous fera des moyennes sur N marches différentes.

Question 2 : Ecrire la fonction Midpos (tf,n,N) qui retourne la liste des n+ 1 temps T et la liste
des n + 1 positions moyennes M a chaque pas, en moyennant sur N marches alétoires.

[19]: def Midpos(tf,n,N):
M=[0 for i in range(n+1)]
for j in range(N)
T, L = mald(tf,n) # on réalise une marche
for i in range(l,n+1):
M[i] += L[i]/N # on ajoute la psotion d chaque instant dans la,
»liste M, divisé par N pour faire la moyenne
return T, M

Tracons ces positions moyennes en fonction du temps :

[20]: |N = 100000
T, M = Midpos (tf,n,1000)
ratio = 1.2 # ratio de tatlle entre fig et texte (légende et azes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)
plt.title("Position moyenne en fonction du temps")
plt.plot(M,T)
plt.show()

24

[21]:

Position moyenne en fonction du temps

10+

| ==

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Diantre ! La position moyenne est vraiment tres proche de 'origine, quelquesoit le temps consid-

éré...alors qu’on observait précédemment des trajectoires qui s’éloignaient de cette méme origine
|

Question 3 : Expliquer ce phénomene !

Correction : A chaque pas, on a la méme probabilité d’aller a droite ou & gauche, il est donc
normal gu’en moyenne, on reste au milieu, donc proche de 'origine. Autrement dit, si on observe
une marche (soit une succession de pas) qui, au bout d’un temps T, se retrouve en i, il existe, avec
la méme probabilité, la marche symétrique qui se retrouve en —¢ au méme instant 7" : en moyenne,
a chaque instant 7', on se trouve au milieu, & ’origine.

Pour tenir compte de la symétrie de ces marches, nous allons calculer, a la place de la position
moyenne, la distance moyenne a l'origine

Question 4 : Ecrire une fonction Middist (tf,n,N) qui retourne la liste des n + 1 temps T et
la liste des n + 1 distances moyennes a l'origine D a chaque pas, en moyennant sur N marches
alétoires.

def Middist(tf,n,N):
D=[0 for i in range(n+1)]
for j in range(N)
T, L = mald(tf,n) # on réalise une marche
for i in range(l,n+1):
D[i] += abs(L[i])/N # on ajoute la distance d l'origine d chaque,
~instant dans la liste M, divisé par N pour faire la moyenne

25

[22]:

[23]:

return T, D

Voyons cela :

T, D = Middist(tf,n,1000)

ratio = 1.2 # ratio de tatlle entre fig et texte (légende et axes), par défaut 1
plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)

plt.title("Distance moyenne & 1l'origine en fonction du temps")

plt.plot(T,D)

plt.show()

Distance moyenne a l'origine en fonction du temps

10 4

Question 5 : Commenter le graphe précédemment obtenu : mathématiquement, comment semble

évoluer la distance moyenne a l’origine en fonction du temps 7 A quel phénomene cela fait-il penser
?

Correction : On semble avoir D oc v/T. Vérifions :

D2 = [elem**2 for elem in D]

ratio = 1.2 # ratio de taille entre fig et texte (légende et azes), par défaut 1
plt.figure(figsize=(8+*ratio,5*ratio),dpi = 200)

plt.title("Distance moyenne & l'origine au carré en fonction du temps")
plt.plot(T,D2)

plt.show()

26

Distance moyenne a I'origine au carré en fonction du temps

1201

100 A

80 A

60

40

20 A

La proportionnalité entre la distance moyenne a 'origine au carré et le temps semble donc étre
vérifiée. Cette relation est typique des phénomeénes de diffusion. Vérifions cela théoriquement...

Question 6 : On note p(x,,t) la probabilité de se trouver en z; a U'instant ¢. Exprimer p(x,,t+7)

en fonction de p(x;_,t) et p(x;,,1).

Pour se trouver en z; a U'instant ¢, il fallait soit se trouver en z; ; a U'instant précédent (en t), soit
en x,, ;. Cependant, dans chacune de ces positions, il faut faire “le bon pas” pour arriver en x; :
ce “bon pas” a pour probabilité 1/2. On a donc :

1 1
p(x;,t+7)= ip(xifht) + §p(xi+1vt>

Question 7 : On note dz = z,;,; —x; la longueur d'un pas, et d¢ = 7 la durée d’'un pas, et on pose
x = x,;. Ré-écrire I’équation précédente a ’aide de z, t, dt et dz. Utiliser alors des développements
de Taylor pour montrer que p(z,t) obéit & une équation de diffusion, et donner I’expression du
coefficient de diffusion.

On a:))
p(z,t+dt) = ip(x —dz,t)+ §p(x +dz, t)

On utilise alors des développements de Taylor a ’ordre 2 en spatial :

B Op dz? 9%p 3
p(x —dz,t) = p(x,t) — dxa—x(m,t) + T@@J) + O(dx?)
dz? 02%p

0
p(x +dx,t) = p(z,t) + dx—p(x,t) +

5 (z,t) + O(dz?)

2 0a?

27

Et un développement a l'ordre 1 en temporel :

p(z,t+d)=p(x,t) + dtg]Z(x, t) + O(dt?)

Finalement, on obtient ’équation de diffusion suivante :

Op 82p da2
a(x,t) = Ddiff@(x,t) avec Ddiff = 242

On a donc vu que pour lorsque la longueur et la durée des pas tendent vers 0, on retrouve un
espace “continu”, et le mouvement de cette marche suit une loi de diffusion. Vérifions d’autres
caractéristiques de cette loi de diffusion.

Retournons au cas discret : nous allons déterminer ce qu’on nomme la distribution des positions
en fonction du temps : il s’agit de construire un histogramme représenter le nombre de marches
qui, apres un temps t, arrive a la position 1.

Question 8 : Ecrire une fonction Dist1d(tf,n,N) qui retourne la liste T des temps, et un tableau
Tab (utiliser np.array) dans lequel chaque colonne représente les différentes positions en fonction
du temps pour une marche (jusqu’au temps ;). Chaque nouvelle colonne correspond a une nouvelle
marche. Il s’agit donc d’un tableau de N colonnes et n + 1 lignes.

[24]: def Disti1d(tf,n,N):
Tab = np.zeros((n+1,N))

for j in range(N):
T, L = mald(tf,n) # une marche, qu'on va stocker dans ja jiéme colonne,
~du tableau

Tab[:,j] = L
return T, Tab

Tragons alors I'histogramme :

[26]: n, tf, N = 200, 10, 10000
T, Tab = Dist1d(tf,n,N)

ratio = 1 # ratio de taille entre fig et texte (légende et azes), par défaut 1

plt.figure(figsize=(8*ratio,5*ratio),dpi = 200)

plt.title("Histogramme du nombre de marche atteignant une certaine position
waprés un certain nombre de pas")

plt.hist(Tab[10,:],bins=[i for i in range(-int(n/5),int(n/5),1)],alpha = 0.4,
~label ="Aprés 10 pas")
plt.hist(Tab[70,:],bins=[i for i in range(-int(n/5),int(n/5),1)],alpha = 0.4,

-label ="Aprés 70 pas")

plt.hist(Tab[200,:],bins=[i for i in range(-int(n/5),int(n/5),1)],alpha = 0.4,
~label ="Aprés 200 pas")

plt.xlabel("Position")

plt.ylabel("Nombre de marches")

plt.legend ()

28

plt.show()

Histogramme du nombre de marche ateignant une certaine position aprés un certain nombre de pas

25001 Apreés 10 pas
Apreés 70 pas
Apres 200 pas
2000 -
(%]
[}
<
o
© 1500 -
£
(]
o
I
‘€ 1000
o
=
500 -
0 T T T T T T T T T
—-40 -30 -20 -10 0 10 20 30 40
Position

W

On remarque que la distribution des position “s’étale” avec le temps. On pourrait montrer que cet
étalement, caractérisé par la largeur typique, évolue comme la racine carré du temps (encore une
signature du processus de diffusion.

Montrons cette propriété... en théorie continue !
Question 9 : Vérifier que la loi de propabilité gaussienne suivante :

22

67 20(t)2

(m t)—$
Py = S var

vérifie ’équation de diffusion, avec o(t) I'écart-type de cette loi de probabilité. En déduire
Pexpression de o(t), et commenter.

A suivre :
o fit sur graphe précédent pour sigma(t) ?
e en2d?

o vérifier loi de la distance au carré en fonction du temps (voir T&D PC)

29

	 Transfert thermique dans un mur
	 Étude numérique du régime transitoire : version 2023
	 Étude numérique du régime transitoire : version 2015
	 Transfert thermique dans un oeuf
	 Théorie et solution numérique
	 Pour aller plus loin : jaune et blanc

	 Troisième partie : Diffusion de particules
	 Modèle de la marche aléatoire

