

O2 | Optique

Formation des images

Prérequis 🛇		
	Notion de rayon lumineux, tracés de rayons	O1
	Relation de Snell-Descartes pour la réflexion et réfraction	01
	Calcul d'inverse, manipulation d'inverse	math
	Résolution de polynôme d'ordre 2	math

I Généralités sur les systèmes optiques (SO)

I.A Définition d'un SO

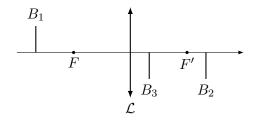
A connaitre

Vocabulaire à maitriser : système optique, axe optique, objet, image, objet/image ponctuel/le

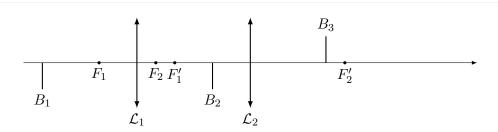
I.B Notion d'objet et d'image

A connaitre

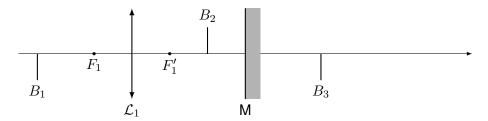
Vocabulaire à maitriser : objet, image, ponctuel


Savoir-faire

- Déterminer si un objet est réel ou virtuel
- Déterminer si une image est réelle ou virtuelle


Application 1 : Réel ou virtuel?

- (1) Dans les configurations suivantes, déterminer si B est un objet réel ou virtuel.
- (2) Dans les configurations suivantes, déterminer si B' est une image réelle ou virtuelle.


Cas 1 : le système optique est constitué d'une lentille $\mathcal L$:

Cas 2 : le système optique est constitué de deux lentilles convergentes : $\{\mathcal{L}_1, \mathcal{L}_2\}$

Cas 3 : le système optique est constitué d'une lentille et d'un miroir

Solution

Cas 1:

Cas 2:

Cas 3:

- → B1 : objet réel, image virtuelle

- → B1 : objet réel, image virtuelle
- → B2 : objet virtuel, image virtuelle
- → B3 : objet virtuel, image réelle
- → B1 : objet réel, image réelle
- → B2 : objet virtuel, image virtuelle
- → B3 : objet virtuel, image virtuelle

I.C Stigmatisme

A connaitre

Définition du stigmatisme

I.D Aplanétisme

A connaitre

Définition de l'aplanétisme

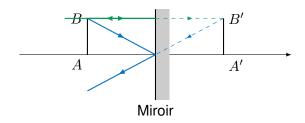
I.E Grandissement transversal

🔘 À connaitre

Définition du grandissement transversal γ

II Le miroir plan

II.A Tracé


Savoir-faire

Tracer les rayons lumineux réfléchissant sur un miroir

Application 2 : Image au travers d'un miroir plan

Tracer l'image d'un objet AB par un miroir plan. Identifié le caractère réel ou virtuel de l'image.

Solution

L'image est virtuelle, car située avant la sortie du système optique.

II.B Propriétés

A connaitre

- Le miroir plan est rigouresment stigmatique et aplanétique
- Le grandissement d'un miroir plan vaut $\gamma = 1$

III Lentilles minces

III.A Définitions

A connaitre

- Lentilles minces à bords minces : convergentes ;
- lentilles minces à bords épais : divergentes ;

III.B Conditions de Gauss (ou approximations de Gauss)

A connaitre

Les conditions de Gauss et les conséquences sur les lentilles minces :

- → stigmatisme approché
- → aplanétisme approché

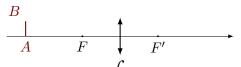
III.C Les trois rayons principaux

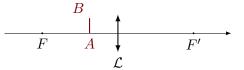
A connaitre

- Connaitre les trois rayons principaux d'une lentille mince convergente et divergente
- connaitre la définition des foyers objets et images
- différencier focale d'une lentille convergente d'une lentille divergente ;

Savoir-faire

Tracer les rayons permettant de trouver l'image d'un objet au travers d'une lentille convergente et divergente

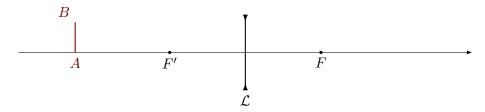

III.D Études de cas particuliers


Savoir-faire

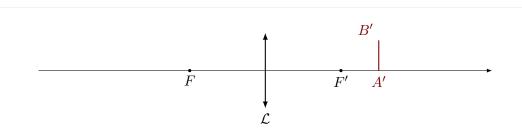
- Tracer le parcours d'un rayon quelconque;
- Tracer l'image d'un objet situé à l'infini. Notion de plan focal objet et image. Notion de foyers secondaires;

Application 3: trouver l'image d'un objet au travers d'une lentille convergente

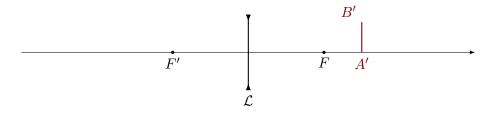
 \bigcirc Tracer l'image de l'objet AB au travers d'une lentille convergente, tracer les trois rayons caractéristiques pour les deux cas suivants.



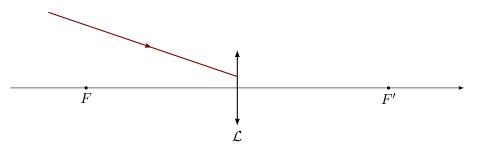
2 L'image est-elle réelle ou virtuelle?


Application 4: trouver l'image d'un objet au travers d'une lentille divergente

- \bigcirc Tracer l'image d'un objet AB réel au travers d'une lentille divergente. Tracer les trois rayons caractéristiques.
- 2 L'image est-elle réelle ou virtuelle?


Application 5 : trouver l'objet à partir de l'image pour une lentille convergente

1 Déterminer à l'aide du tracé des trois rayons principaux la position de l'objet pour une image réelle au travers d'une lentille convergente.


Application 6 : trouver l'bjet à partir de l'image pour une lentille divergente

1 Déterminer à l'aide du tracé des trois rayons principaux la position de l'objet pour une image réelle au travers d'une lentille divergente.

Application 7 : Image d'un rayon quelconque

Tracé le rayon émergent d'un rayon incident quelconque au travers d'une lentille convergente.

III.E Relations de conjugaison

A connaitre

- Relation de conjugaison de Descartes¹
- Pour qu'une image se forme au travers d'une lentille la distance objet-écran D doit satisfaire la condition : $D \ge 4f'$

Savoir-faire

Exploiter la relation de conjugaison de *Descartes*. L'exploitation de la relation de *Newton* n'est pas au programme.

^{1.} En principe la relation de conjugaison de *Descartes* doit-être fournie dans un sujet. Ce qui n'est pas toujours le cas aux oraux. De plus, la relation de *Newton* n'est pas au programme.

Application 8 : projection d'une image

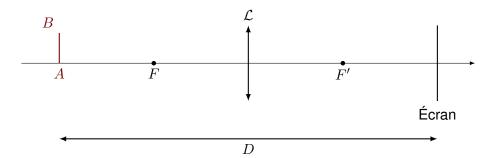
Soit une lentille de focale $f'=15\,\mathrm{cm}$ et un objet situé devant la lentille à une distance $d=40\,\mathrm{cm}$.

- 1 La lentille est-elle convergente ou divergente?
- 2 Par le calcul, déterminer la position de l'image.

Solution

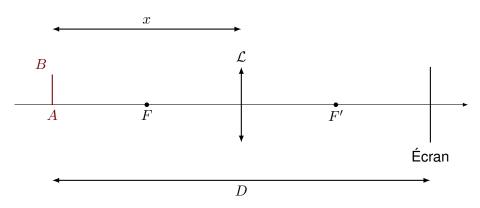
- (1) f' > 0, il s'agit d'une lentille convergente.
- $\overline{(2)}$ Nous cherchons la position de l'image, $\overline{OA'}$:

Nous appliquons la relation de conjugaison de Descartes :


$$\frac{1}{f'} = \frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}}$$
$$\overline{OA'} = \frac{f'\overline{OA}}{f' + \overline{OA}}$$

 $\triangle \overline{OA}$ est négatif, car l'objet est situé avant la lentille.

Application numérique : $\overline{OA'} = 24 \, \text{cm}$.


Application 9 : condition minimal de projection

Montrer que pour projeter un objet sur un écran situé à une distance D de l'objet, la focale d'une lentille convergente doit respecter la condition : $D \ge 4f'$.

Solution

 $\fbox{1}$ Nous définissons la distance entre l'objet et la lentille par x.

Ainsi : $\overline{OA} = -x$ et $\overline{OA'} = D - x$. Nous appliquons la relation de conjugaison de *Descartes* :

$$\frac{1}{f'} = \frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}}$$

$$\frac{1}{f'} = \frac{1}{\overline{D-x}} + \frac{1}{x}$$

$$\frac{1}{f'} = \frac{D}{x(D-x)}$$

$$xD - x^2 = f'D$$

$$x^2 - xD + f'D = 0$$

Je reconnais un polynôme d'ordre 2, dont le déterminant s'écrit :

$$\Delta = D^2 - 4f'D$$

La position x de lentille est réelle si et seulement si le déterminant est positif :

$$D^2 - 4f'D \ge 0$$
$$D \ge 4f'$$

<u>Conclusion</u>: il n'est possible de faire la projection d'un objet sur un écran que si l'écart entre l'objet et l'écran est supérieur à quatre fois la focale de la lentille.

III.F Grandissement transversal

A connaitre

Le grandissement transversal pour une lentille est : $\gamma = \frac{OA'}{OA}$