

#### C1 | Chimie



### La réaction chimique

# Prérequis 💟

 $\bigcirc$  Réaction totale, réaction équilibrée, tau d'avancement x

Lycée

Tableau d'avancement

Lycée

Concentration en quantité de matière, concentration en masse

Lycée

### I Modèle de l'équation de réaction

#### A connaitre

- Une réaction chimique se modélise par l'équation :  $\alpha A_{(e.p)} + \beta B_{(e.p)} = \gamma C_{(e.p)} + \delta D_{(e.p)}$ ;
- l'état physique (e.p) rend du caractère macroscopique de cet échange ;
- Notation générique d'une équation chimique :  $\sum_{i} \nu_{i} X_{i,(e.p)}$ , où  $X_{i}$  représentes les différentes espèces, et  $\nu_{i}$  les coefficients stoechiométriques.
- les coefficients sont comptés positivement pour les produits, et négativement pour les réactifs.

# Savoir-faire

Équilibrer une équation de réaction.

### II Avancement d'une réaction chimique

#### II.A Tableau d'avancement

### A connaitre

- Avancement en quantité de matière (mol)  $\xi$  et avancement en concentration (mol L<sup>-1</sup>) x
- On peut faire un avancement en concentration uniquement si :
  - ▶ le volume est constant;
  - ▶ toutes les espèces, hormis le solvant (l'eau en général), sont dissoutes.

### Savoir-faire

Compléter un tableau d'avancement à partir de l'équation de réaction et des données d'un ennoncé.

# Application 1 : recette de cuisine

Pour faire 12 cookies, il faut  $100 \, \mathrm{g}$  de farine,  $2 \, \mathrm{ceufs}$  et  $50 \, \mathrm{g}$  de chocolat. Dans mes placards, j'ai  $500 \, \mathrm{g}$  de farine,  $7 \, \mathrm{ceufs}$  et  $275 \, \mathrm{g}$  de chocolat.

- 1) Faire un tableau d'avancement.
- (2) Combien de cookies puis-je préparer?



3 Que reste-t-il dans le placard.

#### Solution

1

- $\Xi \xi_f = 3,5$  les œufs sont limitants, soit 42 cookies
- 3 Il restera:

→ œufs:0

 $\rightsquigarrow$  farine : 150 g

# Application 2 : tableau d'avancement | combustion

Nous brûlons  $n_0=1\,\mathrm{mol}$  de butane dans de l'air selon la réaction suivante :

$$C_4H_{10(g)} + O_{2(g)} \longrightarrow CO_{2(g)} + H_2O_{(g)}$$

- 1 Équilibrer l'équation de réaction.
- 2 La réaction est totale, déterminer l'avancement final.
- 3 En déduire les quantités de matière de toutes les espèces à l'état final.
- $\overline{ biga4}$  Mêmes questions dans  $n_1=$  4 mol de dioxygène

#### (Solution)



$$C_4H_{10(g)} + \frac{13}{2}O_{2(g)} \longrightarrow 4CO_{2(g)} + 5H_2O_{(g)}$$

- $\bigcirc$  C<sub>4</sub>H<sub>10</sub> est le réactif limitant car dans l'air O<sub>2</sub> est en excès. Donc  $\xi_f=1$  mol.
- <u>3</u>

$$\rightsquigarrow n_f(C_4H_{10}) = 0 \text{ mol}$$

$$\rightsquigarrow n_f(O_2) = excès$$

$$\leadsto n_f(\text{CO}_2) = 4 \, \text{mol}$$

$$\rightsquigarrow n_f(H_2O) = 5 \, \text{mol}$$

4 Si le dioxygène n'est pas en excès, il faut déterminer le réactif limitant :  $\xi_f=n_0$  ou  $\xi_f=2n_1/13$ . Nous gardons le plus petit des deux :  $\xi_f=\frac{8}{13}$  mol.

### II.B Réaction totale ou équilibrée?

# A connaitre

- une réaction est totale si un des réactifs est totalement consommé à la fin de la réaction, l'avancement est alors égal à l'avancement maximal;
- une réaction est équilibrée si aucun des réactifs n'est entièrement consommé : l'avancement final est inférieur à l'avancement maximal  $\xi_f < \xi_m ax$
- définition du réactif limitant

# Savoir-faire

déterminer le réactif limitant

#### III Caractérisation de l'avancement

#### III.A Quotient de réaction Q

#### A connaitre

- À tout instant, le quotient de réaction est défini par :  $Q = \frac{a(C)^{\gamma}(D)^{\delta}}{a(A)^{\alpha}a(B)^{\beta}}$ ;
- les activités sont données par :
  - ▶ solide :  $a(X_{(s)}) = 1$
  - ▶ solvant :  $a(X_{(solvant)}) \simeq 1$
  - $\blacktriangleright \ \ \mbox{solut\'e} \ \mbox{solut\'e} \ \ (\mbox{esp\`ece dissoute}) : a(\mbox{X}_{\mbox{(aq)}}) = \frac{[X]}{C^{\circ}}$
  - lacksquare gaz (espèce dissoute) :  $a(\mathbf{X}_{(\mathbf{g})}) = \frac{p(X)}{P^{\circ}}$
- formule de la concentration :  $[X] = C_X = \frac{n(X)}{V_{\mathsf{Solution}}}$
- • formule de la pression partielle :  $p(X) = \frac{n(X)}{n_{\mathrm{tot,g}}} P_{\mathrm{tot}} \text{ et } \sum_X p(X) = 1$

### (3) Savoir-faire

Déterminer le quotient de réaction à l'état initial ou à l'état final à partir des quantités de matière, concentration ou pression fournies.

# Application 3 : calcul de quotient de réaction

Pour chacune des trois réactions suivantes,

- 1 équilibrer l'équation de la réaction chimique ;
- 2 exprimer le quotient de réaction en fonction des quantités de matière ou des concentrations de chaque espèce.
  - 1.  $N_{2(g)} + H_{2(g)} = NH_{3(g)}$
  - $2. \ \ CH_{3}COOH_{(aq)} \ + \ H_{2}O_{(I)} = CH_{3}COO^{-}_{(aq)} \ + \ H_{3}O^{+}_{(aq)}$
  - 3.  $Ag^{+}_{(aq)} + Fe^{2+}_{(aq)} = Ag_{(s)} + Fe^{3+}_{(aq)}$

#### Solution

$$\begin{split} Q_{r,1} &= \frac{P_{\text{NH}_3}^2 P^{\circ 2}}{P_{\text{N}_2} P_{\text{H}_2}^3} \\ Q_{r,2} &= \frac{\left[\text{H}_3\text{O}^+\right] \left[\text{CH}_3\text{COO}^-\right]}{\left[\text{CH}_3\text{COOH}^+\right] C^{\circ}} \\ Q_{r,3} &= \frac{\left[\text{Fe}^{3+}\right] C^{\circ}}{\left[\text{Ag}^+\right] \left[\text{Fe}^{2+}\right]} \end{split}$$

#### III.B Constante d'équilibre $K^{\circ}(T)$

### A connaitre

- Définition de la constante d'équilibre  $K^{\circ}=Q_{\mathsf{eq}}$ ;
- ne dépend que de la température, pas de quantité de matière ;

#### III.C Sens d'évolution du réaction

### A connaitre

- si  $K^{\circ} > 1$ , la réaction est favorable dans le sens direct (vers la droite);
- si  $K^{\circ}$  < 1, la réaction est favorable dans le sens indirect (vers la gauche);
- si  $K^{\circ} > 10^4$  la réaction peut-être supposée totale (dans le sens direct);
- si  $K^{\circ} \in [1, 10^4]$  la réaction est équilibrée (dans le sens direct);

# Application 4 : constante d'équilibre

Énoncé Soit la réaction suivante :

$$\mathsf{HCOO}^{-}_{(\mathsf{aq})} + \mathsf{HNO}_{2(\mathsf{aq})} {=} \mathsf{HCOOH}_{(\mathsf{aq})} + \mathsf{NO}_{2}^{-}_{(\mathsf{aq})}$$

- ① À l'équilibre [HCOO¯] = [HNO2] =  $3.86 \times 10^{-2} \, \text{mol L}^{-1}$  et [HCOOH] = [NO2¯] =  $6.14 \times 10^{-2} \, \text{mol L}^{-1}$ . Déterminer la constante d'équilibre  $K^{\circ}$ .
- Nous réalisons une expérience pour laquelle nous introduisons initialement :

$$\rightsquigarrow \text{ [HCOO$^-$]} = 8{,}68\times 10^{-2}\,\text{mol}\,\text{L}^{-1}$$

$$\rightsquigarrow \ [\text{HNO}_2] = 6.80 \times 10^{-3} \, \text{mol} \, \text{L}^{-1}$$

$$\rightsquigarrow \ [\text{HCOOH}] = 1{,}13\times10^{-1}\,\text{mol}\,\text{L}^{-1}$$

$$\leadsto \ [\text{NO}_2^{-}] = 1{,}32 \times 10^{-2} \, \text{mol} \, \text{L}^{-1}$$

Ce système est-il à l'équilibre? (Ne pas déterminer l'équilibre).

3 Nous réalisons une expérience pour laquelle nous introduisons initialement :

$$\rightsquigarrow \text{ [HCOO$^-$]} = 4.03 \times 10^{-2} \, \text{mol L}^{-1}$$

$$\rightsquigarrow \text{ [HNO}_2] = 6.96 \times 10^{-2} \, \text{mol} \, \text{L}^{-1}$$

$$\rightsquigarrow \text{ [HCOOH]} = 2,23 \times 10^{-2} \, \text{mol L}^{-1}$$

$$\rightsquigarrow [NO_2^-] = 1.48 \times 10^{-1} \, \text{mol L}^{-1}$$

Ce système est-il à l'équilibre? (Ne pas déterminer l'équilibre).

### Solution :

$$1) K^{\circ} = 2,53$$

- $\begin{tabular}{l} \hline \end{tabular}$  oui, à justifier par le calcul de  $Q_{\rm ini}=K^\circ$
- $\colongraph{f 3}$  non, à justifier par le calcul de  $Q_{\sf init} < K^{\circ}$ , évolution dans le sens direct.

#### IV Méthode de détermination de l'état final d'une réaction

#### Savoir-faire

- déterminer l'avancement final et la composition finale du système pour une réaction quasi-totale;
- déterminer l'avancement final et la composition finale du système pour une réaction équilibrée;
- déterminer l'avancement final et la composition finale du système dans le cas d'une rupture d'équilibre;

# Application 5 : cas d'une réaction équilibrée

Énoncé Nous étudions la réaction acido-basique suivante :

$$CO_3^{2-}_{(aq)} + NH_4^+_{(aq)} = HCO_3^-_{(aq)} + NH_{3(aq)}$$

dont la constante d'équilibre est :  $K^{\circ} = 12,6$ .

Nous introduisons initialement la même concentration en ions carbonate et ammonium  $C_0 = 2.00 \, \mathrm{mol} \, \mathrm{L}^{-1}$ .

Déterminer les concentrations de toutes les espèces lorsque l'équilibre est atteint.

#### Solution

$$\begin{split} \left[ \text{CO}_3^{\ 2-} \right]_f &= 0,44 \, \text{mol L}^{-1} \\ \left[ \text{NH}_4^{\ 1+} \right]_f &= 0,44 \, \text{mol L}^{-1} \\ \left[ \text{HCO}_3^{\ -} \right]_f &= 1,56 \, \text{mol L}^{-1} \\ \left[ \text{NH}_3 \right]_f &= 1,56 \, \text{mol L}^{-1} \end{split}$$

# Application 6 : cas d'une réaction totale

Énoncé Nous étudions la réaction suivante :

$$CH_3COOH_{(aq)} + NH_{3(aq)} = CH_3COO^-_{(aq)} + NH_4^+_{(aq)}$$

dont la constante d'équilibre est :  $K^{\circ} = 10^{4,4}$ .

Nous introduisons initialement  $C_1=1.5\,\mathrm{mol}\,\mathrm{L}^{-1}$  d'acide éthanoïque et  $C_2=1.0\,\mathrm{mol}\,\mathrm{L}^{-1}$  d'ammoniac

Déterminer les concentrations de toutes les espèces lorsque l'équilibre est atteint.

#### (Solution)

$$\begin{split} & \left[ \mathrm{CH_3COOH} \right]_f = 0.5 \times 10^{-3} \, \mathrm{mol} \, \mathrm{L}^{-1} \\ & \left[ \mathrm{CH_3COO}^{1-} \right]_f = 1.0 \times 10^{-3} \, \mathrm{mol} \, \mathrm{L}^{-1} \\ & \left[ \mathrm{NH_4}^+ \right]_f = 1.0 \times 10^{-3} \, \mathrm{mol} \, \mathrm{L}^{-1} \\ & \left[ \mathrm{NH_3} \right]_f = 8.0 \times 10^{-8} \, \mathrm{mol} \, \mathrm{L}^{-1} \ll \left[ \mathrm{CH_3COOH} \right]_f \end{split}$$

L'hypothèse de réaction quasi-totale est bien vérifiée.

# Application 7 : cas d'une rupture d'équilibre

Énoncé Nous étudions la réaction suivante :

$$Ca(OH)_{2(s)} = Ca^{2+}_{(aq)} + 2HO^{-}_{(aq)}$$

dont la constante d'équilibre est :  $K^{\circ} = 10^{-5,2}$ .

Nous introduisons initialement  $n_0$  hydroxyde de calcium dans  $V_0=100\,\mathrm{mL}$  d'eau.

- 1 Déterminer  $\xi_{eq}$  en fonction de  $K^{\circ}$  et  $V_0$ .
- $\bigcirc$  Si  $n_0 = 1.0 \times 10^{-3}$  mol, déterminer les quantités de matière de toutes les espèces à l'état d'équilibre final.
- ③ Si  $n_0 = 5.0 \times 10^{-3}$  mol, déterminer les quantités de matière de toutes les espèces à l'état d'équilibre final.

#### Solution

1

$$\xi_{eq} = \sqrt[3]{\frac{K^{\circ}}{4}} \frac{V_0}{C^{\circ}}$$

$$\mathrm{A.N}~\xi_{\mathrm{eq}} = 1{,}16\times10^{-3}\,\mathrm{mol}$$

② If y rupture d'équilibre car  $\xi_{\text{max}} < \xi_{\text{eq}}$ :

$$\begin{split} n_{f,\mathrm{Na(OH)_2}} &= 0 \ \mathrm{mol} \\ n_{f,\mathrm{Na^{2+}}} &= 1.0 \times 10^{-3} \ \mathrm{mol} \\ n_{f,\mathrm{HO^-}} &= 2.0 \times 10^{-3} \ \mathrm{mol} \end{split}$$

3 La réaction est équilibrée car  $\xi_{\text{max}} > \xi_{\text{eq}}$ :

$$\begin{split} n_{f,\mathrm{Na(OH)_2}} &= 3.84 \times 10^{-3} \, \mathrm{mol} \\ n_{f,\mathrm{Na^{2+}}} &= 1.16 \times 10^{-3} \, \mathrm{mol} \\ n_{f,\mathrm{HO^-}} &= 2.32 \times 10^{-3} \, \mathrm{mol} \end{split}$$