

M1 | Mécanique

Référentiel et cinématique du point

Prérequis 💟

Notions mathématiques :

Math

- Dérivée d'une fonction scalaire et vectorielle ;
- Projection d'un vecteur sur un axe, produit scalaire ;
- Manipulation des vecteurs
- Notions physiques :

Lycée

- Poids : $\overrightarrow{P}=m\overrightarrow{g}$ dirigé vers le bas, avec \overrightarrow{g} l'accélération de la pesanteur, valeur moyenne $9.81~{\rm m\,s^{-2}}$ sur Terre ;
- Force gravitationnelle entre deux corps massifs :

$$\overrightarrow{F_{1/2}} = -G \frac{m_1 m_2}{r^2} \overrightarrow{u_{1 \to 2}}$$

avec
$$G=6.67 \times 10^{-11} \mathrm{m^3 \, kg^{-1} \, s^{-2}}$$

- Lois de Newton :
 - ▶ 1ère loi : principe d'inertie;
 - ▶ 2ème loi : $\sum \overrightarrow{F_{ext}} = m \overrightarrow{a}$;
 - ► 3ème loi : principe d'action-réaction.

I Système et référentiel

I.A Point Matériel

A connaitre

Masse ponctuelle ou point matériel

Approximer un système réel par un point matériel : choisir le point où concentrer la masse

I.B Référentiels

I.B.1 Temps absolu

À connaitre

Le temps est le même partout dans l'espace.

I.B.2 Espace

A connaitre

- relativité du mouvement ;
- définition d'un référentiel;
- 1ère loi de Newton ou référentiel Galiléen (ou principe d'inertie)
- définition du vocabulaire : isolé, rectiligne, uniforme ;
- les trois référentiels galiléens usuels : terrestre (ou du laboratoire), géocentrique et héliocentrique.

II Cinématique

II.A Vecteur position

A connaitre

- Noté \overrightarrow{r} ou plus souvent \overrightarrow{OM} ;
- ullet trajectoire : ensemble des points M au cours du temps ;
- vocabulaire : rectiligne et circulaire.

II.B Vecteur vitesse

A connaitre

- définition : $\overrightarrow{v} = \frac{d\overrightarrow{OM}}{dt}$;
- uniforme : norme v de \overrightarrow{v} est constante et méthodes de calcul de la norme ;
- le vecteur vitesse est tangent à la trajectoire : $\overrightarrow{v} = v\overrightarrow{u_T}$.

(3) Savoir-faire

- tracer le vecteur vitesse sur une trajectoire ;
- déterminer le vecteur vitesse à partir de la position ou le vecteur position à partir de la vitesse;
- déterminer si le mouvement est uniforme ou non.

II.C Vecteur accélération

A connaitre

- Définition $\overrightarrow{a} = \frac{d\overrightarrow{v}}{dt} = \frac{d^2\overrightarrow{OM}}{dt^2}$;
- Notation $\dot{x} = \frac{\mathrm{d}x}{\mathrm{d}t}$

Savoir-faire

• déterminer la vitesse à partir de l'accélération et le contraire ;

III Repère cartésien

III.A Définition

- 🖾 À connaitre
 - Déterminer / tracer un repère cartésien direct;
 - Connaitre les propriétés du repère cartésien : orthonormé et fixe ;
 - $\bullet \ \ \text{Nous utiliserons uniquement les notations}: (\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z}) \ \text{ou} \ (\overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z}).$

III.B Vecteur position

A connaitre

$$\overrightarrow{OM} = x\overrightarrow{e_x} + y\overrightarrow{e_y} + z\overrightarrow{e_z}$$

III.C Vecteur vitesse

A connaitre

$$\overrightarrow{v} = \dot{x}\overrightarrow{e_x} + \dot{y}\overrightarrow{e_y} + \dot{z}\overrightarrow{e_z}$$

III.D Vecteur accélération

A connaitre

$$\overrightarrow{a} = \ddot{x}\overrightarrow{e_x} + \ddot{y}\overrightarrow{e_y} + \ddot{z}\overrightarrow{e_z}$$

Application 1 : Si on connait déjà l'accélération

Énoncé On considère le mouvement suivant :

$$\begin{vmatrix} x(t) \\ y(t) \\ z(t) \end{vmatrix} = \begin{vmatrix} 0 \\ at \\ -\frac{gt^2}{2} + bt \end{vmatrix}$$

- 1 Déterminer l'expression du vecteur vitesse puis du vecteur accélération.
- ② Trouver l'équation de la trajectoire z(y).
- 3 Tracer la trajectoire. Représenter des vecteurs vitesses et accélérations sur la trajectoire.
- 4 Nous dérivons les équations du mouvement fournies :

$$\overrightarrow{v} = \begin{vmatrix} 0 \\ a \\ -at + b \end{vmatrix}$$

Nous faisons de même pour obtenir le vecteur accélération :

$$\overrightarrow{v} = \begin{vmatrix} 0\\0\\-g \end{vmatrix}$$

Le vecteur accélération est constant. Nous nous trouvons dans une situation de pesanteur.

(5)

$$\begin{split} y(t) &= at \Rightarrow t = y/a \\ z(t) &= -\frac{1}{2}gt^2 + bt \Rightarrow z(y) = -\frac{1}{2a^2}gy^2 + \frac{b}{a}y \end{split}$$

6 La trajectoire est une parabole concave passant par l'origine. Les vecteurs vitesses sont tangents à la trajectoire. Les vecteurs accélérations sont dirigés vers le bas (dans le sens de la concavité).

Application 2 : Si on connait déjà la vitesse

Énoncé On considère le mouvement suivant dont on connait la vitesse au cours du temps

$$\overrightarrow{v} = r_0 \omega \Big|_{(\overrightarrow{e_x}, \overrightarrow{e_y})} \Big|_{\cos(\omega t)} - \sin(\omega t)$$

où r_0 est une longueur constante et ω une vitesse angulaire constante. La position initiale est $(r_0,0)$ dans le repère $(\overrightarrow{e_x},\overrightarrow{e_y})$.

- (1) Déterminer l'expression du vecteur accélération et le vecteur position.
- (2) Le mouvement est-il uniforme ? Quelle est la nature de la trajectoire ?
- 3 Tracer la trajectoire. Vous placerez différents vecteurs vitesses et accélérations.

Solution

4

$$\overrightarrow{OM} = \begin{vmatrix} r_0 \cos(\omega t) \\ r_0 \sin(\omega t) \end{vmatrix}$$

et

$$\overrightarrow{a} = -r_0 \omega^2 \begin{vmatrix} \cos(\omega t) \\ \sin(\omega t) \end{vmatrix} = -\omega^2 \overrightarrow{OM}$$

- 5 On peut remarquer que $x^2+y^2=r_0^2$, il s'agit d'une équation de cercle. Sinon la tracer qu cours du temps. (Attention au sens de tracé en fonction du signe de ω). Le calcul de la norme de la vitesse : $v=r_0\omega$ est une constante, le mouvement est uniforme circulaire.
- \bigcirc On sait que la trajectoire est un cercle, que le vecteur vitesse est tangent à la trajectoire (dans le sens de parcours) et d'après la Q1 que le vecteur accélération est colinéaire à \overrightarrow{OM} de sens opposé.

