

- Un devoir maison est un **entrainement** et pas une évaluation : travailler avec vos **cours**, vos **fiches** et vos **TDs** est fortement recommandé.
- Réfléchir à plusieurs est une bonne idée après un premier travail de réflexion personnel.
- En cas de besoin, n'hésitez pas à me poser des questions, à la fin d'un cours ou par mail ! L'objectif est de **s'entrainer** :

emeryk.ablonet@ac-bordeaux.fr

Travail à faire				
Je fais le DM en fonction de mon temps et de comment je me sans à l'aise.				Combien de temps j'ai passé sur le DM ☐ environ 30min ;
Ž	Vert	Q1 à 4		□ environ 1h;□ environ 1h30;□ 2h ou plus
£	Bleu	Q1 à 4		
Ž	Rouge	Q1 à 7		
₹	Noir	tout le sujet		

Le tétraoxyde de tricobalt Co_3O_4 est un intermédiaire important dans la synthèse de cobalt métallique. On l'obtient par chauffage à l'air libre du monoxyde de cobalt selon la réaction d'équation :

$$_{6}CoO_{(s)} + O_{2(g)} = _{2}Co_{3}O_{4(s)}$$

Nous supposerons que le dioxygène se comporte comme un gaz parfait.

Données : $R = 8,314 \,\mathrm{J\,K^{-1}}$ la constante des gaz parfait.

- 1 Vérifier que l'équation de réaction est équilibrée.
- 2 Exprimer le quotient réactionnel en fonction des grandeurs pertinentes.

On se place dans un premier temps à $850\,^{\circ}$ C, où la constante d'équilibre vaut $K_{1}^{\circ}=0,75$. Dans un volume V_{0} initialement vide, on introduit $0,3\,\mathrm{mol}$ de dioxygène O_{2} et $1\,\mathrm{mol}$ de d'oxyde de cobalt CoO.

Nous supposons dans un premier temps que le volume de l'enceinte est $V_0=10\,\mathrm{L}.$

- 3 Déterminer la pression partielle en dioxygène une fois l'équilibre atteint.
- 4 En déduire la quantité de matière finale de dioxygène, ainsi que les quantités de matière des solides une fois l'équilibre atteint pour $V_0 = 10 \, \text{L}$.

Dans la suite, nous ne fixons plus la valeur du volume V_0 à 10 L.

- \bigcirc Partant des mêmes quantités de matière initiales, montrer que la réaction n'a pas nécessairement lieu. Déterminer la gamme de valeurs du volume V_0 permettant à la réaction d'avoir lieu.
- $footnote{6}$ Partant des mêmes quantités de matière initiales, montrer qu'il est possible d'aboutir à une rupture d'équilibre. Déterminer la gamme de valeurs du volume V_0 menant à cette situation.
- \bigcap Représenter graphiquement l'avancement final ξ_f en fonction du volume V_0 de l'enceinte, toujours pour les mêmes quantités de matière. Indiquer les domaines correspondant à l'absence de réaction, à une réaction équilibrée, ou à une rupture d'équilibre.

La réaction se fait industriellement à l'air libre à une température comprise entre 400 et 500 °C. À ces températures, la constante thermodynamique d'équilibre de la réaction est de l'ordre de $K_2^{\circ}=1\times 10^9$.

- ${\bf 8}$ Calculer la pression partielle $p_{{\bf O}_2, {\rm \'eq}}$ à l'équilibre.
- 9 Que vaut la pression partielle en dioxygène dans l'air atmosphérique? Commenter le choix d'opérer à l'air libre.

