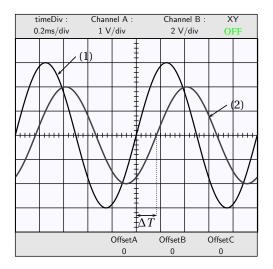
E. SAUDRAIS

1 — L'oscilloscope

Les réglages à faire avant toute utilisation :


- se placer sur GND et centrer correctement les traces des voies visualisées;
- se placer en mode DC par défaut;
- vérifier que la synchronisation de la base de temps se fait sur la voie étudiée.

L'oscilloscope visualisé la tension entre la borne d'entrée de la voie visualisée et la masse : **on ne peut donc visualiser une tension aux bornes d'un dipôle que si l'une des extrémités de ce dipôle est reliée à la masse**. Il faut en tenir compte lors de la conception du circuit.

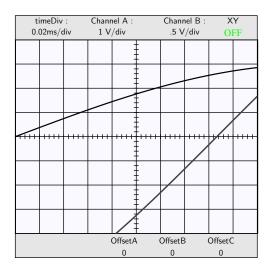
2 — Les méthodes à connaître

Ces méthodes figurent au programme de 1^{re} année.

Reconnaître une avance ou un retard de phase

Le signal (2) est en retard sur le signal (1).

Passer d'un décalage temporel à un déphasage et réciproquement


Soit ΔT le décalage temporel entre les signaux (1) et (2) sur l'oscillogramme. Si T est la période des signaux, le déphasage $\Delta \varphi$ est relié au décalage temporel par

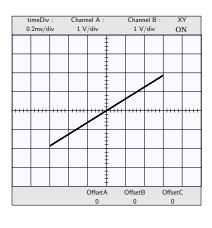
$$\frac{\Delta T}{T} = \frac{\Delta \varphi(\text{deg})}{360} = \frac{\Delta \varphi(\text{rad})}{2\pi}.$$

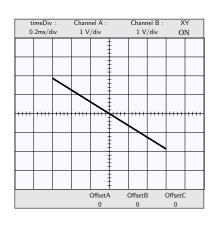
 \blacktriangleright Pour la lecture de ΔT , il faut que les valeurs moyennes des deux signaux se superposent : pour pourra se placer en mode AC.

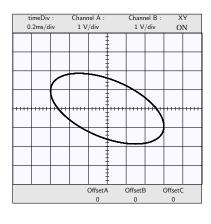
Sur le document, on a T=1 ms (5 divisions, avec 1 V/div). On mesure $\Delta T=0.16$ ms; le signal (2) présente donc un retard de phase de 58° par rapport au signal (1).

 \blacktriangleright On a intérêt à choisir une base de temps qui donne la mesure la plus précise possible de ΔT :

On lit alors $\Delta T = 8.3 \times 0.02 = 0.166$ ms, d'où un déphasage de 60°.


Repérer précisément le passage par un déphasage de 0 ou π en mode XY


On considère deux signaux sinusoïdaux de même fréquence. On se place en mode XY.


Déphasage de 0 : on obtient un segment de droite de pente positive. Cas (1) ci-dessous (les signaux sont en phase).

Déphasage de π : on obtient un segment de droite de pente négative. Cas (2) ci-dessous (les signaux sont en opposition de phase).

Déphasage quelconque : on obtient une ellipse. Cas (3) ci-dessous (correspond à un déphasage de 120° ici).

(1)

(2)

(3)