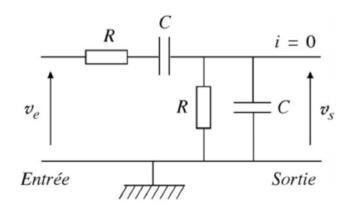
FILTRE DE WIEN

Soit le filtre ci-dessous :

$$R = 1 \text{ k}\Omega$$
 $C = 22 \text{ nF}$

v_e: tension sinusoïdale



1) ÉTUDE DU COMPORTEMENT EN RÉGIME SINUSOÏDAL

Le filtre de Wien est un filtre passe-bande.

1- a) Fonction de transfert $H(j \omega)$

$$\underline{H}(j\omega) = \frac{jRC\omega}{1 - R^2C^2\omega^2 + 3jRC\omega} \text{ ou encore } \underline{H} = \frac{1}{3} \cdot \frac{1}{[1 + \frac{1}{3}.j(\frac{1}{x} - x)]}$$

1- b) Amplification en tension H

L'amplification en tension H vaut donc :

$$H = \frac{RC\omega}{\sqrt{\left(1 - R^2 C^2 \omega^2\right)^2 + 9 R^2 C^2 \omega^2}}$$

On pose:
$$\omega_0 = \frac{1}{RC}$$
 et $x = \frac{\omega}{\omega_0}$ (pulsation réduite)

On en déduit :
$$H(x) = \frac{x}{\sqrt{(1-x^2)^2 + 9x^2}}$$

Ou encore , sous la forme canonique :
$$H = \frac{H_0}{1 + jQ(\frac{f}{f_0} - \frac{f_0}{f})}$$

Par identification avec
$$H = \frac{1}{3} \cdot \frac{1}{\sqrt{\left[1 + \frac{1}{9} \cdot \left(\frac{1}{x} - x\right)^2\right]}}$$
, on trouve

$$H_0 = 1/3$$
, $Q = 1/3$ et $f_0 = 1/(2 \pi RC)$

H(x) admet un maximum pour x = 1, calculer H_{max} puis $G_{max} = 20 \log(H_{max})$.

1 - c) Fréquences de coupure à - 3 dB

Les pulsation de coupure réduite x_1 et x_2 sont définies par : $H(x_1) = H(x_2) = \frac{H_{max}}{\sqrt{2}}$

Montrer que: x_1 = 0,30 et x_2 = 3,30. En déduire f_1 et f_2 .

1-d) Déphasage φ de Vs par rapport à Ve

Montrer que: $\varphi = -\arctan(\frac{1-x^2}{3x})$

Calculer ϕ quand l'amplification H est maximale,

Calculer ϕ_1 et ϕ_2 pour les deux fréquences de coupure $\ f_1$ et f_2 .

2) ÉTUDE EXPERIMENTALE

Câbler le montage.

Vérifier rapidement en envoyant des tension d'entrées bien choisies qu'il se comporte comme prévu.

Les résultats seront consignés dans le tableau récapitulatif et mis en évidence sur les graphes tracés.

Tracer (sur papier semi-log) le diagramme du gain G_{dB} en décibels en fonction de log f .

- \triangleright Déterminer la fréquence de résonance et comparer avec la valeur théorique (f₀ = 1/(2 π RC)).
- Déterminer le gain maximal et comparer avec la valeur théorique 20 log H max .
- \triangleright Déterminer les fréquences f_1 et f_2 de coupure à -3 dB.
- \triangleright Comparer ces valeurs théoriques aux valeurs f_1 et f_2 calculées précédemment.

Tracer (sur papier semi-log) le diagramme du déphasage φ en fonction de log f .

- Mesurer le déphasage φ à la fréquence de résonance et comparer avec la valeur théorique.
- Mesurer les déphasages ϕ_1 et ϕ_2 pour les deux fréquences f_1 et f_2 de coupure à -3 dB et comparer avec les valeurs théoriques calculées précédemment.

Compléter le tableau récapitulatif.

Tableau récapitulatif

	Valeurs théoriques	Valeurs expérimentales
Fréquence de résonance (en Hz)		
Gain max (en dB)		
Fréquence de coupure f ₁		
Fréquence de coupure f ₂		
Déphasage à la résonance		
Déphasage à la fréquence f ₁		
Déphasage à la fréquence f ₂		