1^{er} principe

- pour un système fermé macroscopiquement au repos : $\Delta U = W + Q$ avec $W = -\int P_{ext} \; \mathrm{d}V$ le travail des forces de pression
- reformulation pour une transformation isobare ou monobare : $\Delta H = W_{autre} + Q$ avec H = U + PV l'enthalpie et W_{autre} le travail autre que le travail des forces de pression
- sur un cycle (machines thermiques) : $\Delta U_{cycle}=0 \Leftrightarrow W+\sum_i Q_i=0$ où Q_i est le transfert thermique échangé avec le $i^{\rm ème}$ thermostat

2nd principe

- pour un système fermé : $\Delta S = S_e + S_c$
- S_c est l'entropie créée telle que $S_c=0$ pour une transformation réversible et $S_c>0$ pour une transformation irréversible
- $S_e=rac{Q}{T_{front}}$ est entropie échangée avec le milieu extérieur à la température de frontière constante T_{front}
- sur un cycle (machines thermiques) : $\Delta S_{cycle} = 0 \Leftrightarrow \underbrace{S_c}_{\geq 0} + \sum_i \frac{Q_i}{T_i} = 0 \Rightarrow \sum_i \frac{Q_i}{T_i} \leq 0$, inégalité de

CLAUSIUS où $\frac{Q_i}{T_i}$ est l'entropie échangée avec le $i^{
m ème}$ thermostat de température T_i

Phase condensée (liquide ou solide)

- capacité thermique : $C_V = C_P = C$
- $\Delta S = C \ln \left(\frac{T_f}{T_i} \right)$

Corps pur diphasé

- titre massique en vapeur : $x_g = \frac{m_{vapeur}}{m_{système}} = \frac{v v_\ell}{v_g v_\ell}$
- pour le changement d'état $1 \to 2$: $\Delta H = m \; \Delta_{1 \to 2} \; h$ où m est la masse qui change d'état et $\Delta_{1 \to 2} \; h$ est l'enthalpie massique (ou chaleur latente) de changement d'état $1 \to 2$

Gaz parfait

• équation d'état des gaz parfaits : PV = nRT; P en Pa, V en m^3 ; $R = 8,314 \text{ J. K}^{-1}$. mol^{-1}

• 1^{ère} loi de Joule : $\Delta U = C_V \Delta T$

• $2^{\text{ème}}$ loi de Joule : $\Delta H = C_P \Delta T$

• Coefficient $\gamma : \gamma = \frac{C_P}{C_V}$

• Gaz parfait monoatomique : $C_V = \frac{3}{2}nR$ et $\gamma = \frac{5}{3}$

• Gaz parfait diatomique : $C_V = \frac{5}{2}nR$ et $\gamma = \frac{7}{5} = 1,4$

• Relations de MAYER :

$$\begin{cases} C_P - C_V = nR \\ C_{P_m} - C_{V_m} = R \text{ avec } C_{P_m} = \frac{C_P}{n} \text{ et } C_{V_m} = \frac{C_V}{n} \\ c_p - c_V = \frac{R}{M} \text{ avec } c_P = \frac{C_P}{m} \text{ et } c_V = \frac{C_V}{m} \end{cases}$$

• Relations de Mayer + coefficient γ : $C_V = \frac{nR}{\gamma - 1}$ et $C_P = \frac{nR\gamma}{\gamma - 1}$

• Variation d'entropie :

$$\begin{cases} \Delta S(T, V) = C_V \ln \left(\frac{T_f}{T_i}\right) + nR \ln \left(\frac{V_f}{V_i}\right) \\ \Delta S(T, P) = C_P \ln \left(\frac{T_f}{T_i}\right) - nR \ln \left(\frac{P_f}{P_i}\right) \\ \Delta S(P, V) = C_V \ln \left(\frac{P_f}{P_i}\right) + C_P \ln \left(\frac{V_f}{V_i}\right) \end{cases}$$

• Lois de LAPLACE pour les transformations ADIABATIQUES et REVERSIBLES :

$$\begin{cases} T_f V_f^{\gamma-1} = T_i V_i^{\gamma-1} \text{ ou } T V^{\gamma-1} = cste \\ T_f^{\gamma} P_f^{1-\gamma} = T_i^{\gamma} P_i^{1-\gamma} \text{ ou } T^{\gamma} P^{1-\gamma} = cste \\ P_f V_f^{\gamma} = P_i V_i^{\gamma} \text{ ou } P V^{\gamma} = cste \end{cases}$$