# DEVOIR SURVEILLÉ

(durée 2 heures)

## Partie Thermodynamique

Données

$$M_{air} = 29.0 \text{ g.mol}^{-1}$$
  $\gamma = 1.40 \text{ pour l'air (assimilé à un gaz parfait diatomique)}$ 

 $R = 8,31 \text{ J.K}^{-1} \text{ .mol}^{-1}$ 

capacité thermique de la fonte:  $c_{fonte} = 0,54 \text{ kJ.K}^{-1}.\text{kg}^{-1}$ 

 $T(K) = \theta(^{\circ}C) + 273$ 

## Exercice 1 (15 min)

Une poêle en fonte de masse m=800 g est placée sur une plaque électrique à induction de puissance  $P_{\text{élec}}=1200$  W.

- 1. Evaluer la durée nécessaire pour amener la poêle de 20°C (température ambiante) à 200 °C.
- 2. La durée réelle sera-t-elle supérieure ou inférieure à votre estimation ?

#### Exercice 2 Transformations d'un gaz parfait (35 min)

Pour chacune des transformations suivantes (supposées réversibles) :

- indiquer la valeur initiale et la valeur finale de la pression P, du volume V et de la température T
- représenter l'allure de la transformation dans un diagramme (P,V) en précisant le sens
- calculer le travail W et le transfert thermique Q reçus par l'air

Masse molaire de l'air : 29 g.mol<sup>-1</sup>.

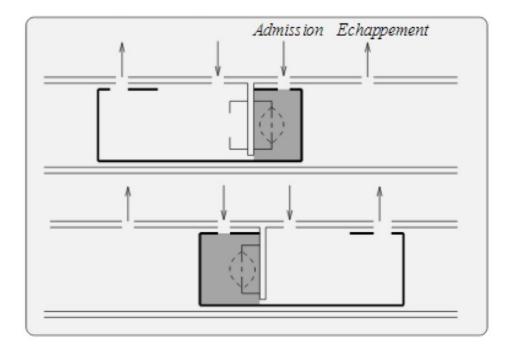
- 3. Une mole d'air est comprimée de 1,0 bar à 3,0 bar à température constante (150°C).
- 4. Un volume initial de 1,0 m³ d'air est chauffé de façon isobare (1013 hPa) de 300 K à 600 K.
- 5. 1 kg d'air, initialement à 900 K et sous 20 bar, subit une détente adiabatique : son volume est multiplié par 5.
- 6. Un volume de 10,0 L d'air initialement sous 1,0 bar et à 20°C, subit un chauffage isochore jusqu'à 500°C.

#### Exercice 3 Cycle de Lenoir (50 min)

Le cycle de Lenoir (1860) est associé au premier moteur à combustion interne à deux temps :

- 1er temps : admission du mélange (combustible + air), combustion, détente
- 2ème temps : échappement (évacuation des produits de la combustion)

Le piston est à double effet (la pression agit à chaque demi-tour sur l'une des faces) :



On modélise ce cycle réel de la façon suivante : de l'air (gaz parfait) subit le cycle suivant au contact de deux sources de température  $T_f$  = 300 K et  $T_c$  = 600 K

(on suppose toutes les transformations mécaniquement réversibles)

- 1 => 2 : échauffement isochore jusqu'à T<sub>c</sub>, au contact de la source chaude
- 2 => 3 : détente isotherme au contact de la source chaude
- 3 => 1 : refroidissement isobare au contact de la source froide

Initialement, l'air est dans l'état  $P_1 = 1,0$  bar,  $T_1 = T_f$  et  $V_1 = 1,0$  L. On donne R = 8,31 J.K<sup>-1</sup> .mol<sup>-1</sup>.

- 7. Donner l'allure du cycle dans le diagramme (P,V) de Clapeyron. S'agit-il d'un cycle moteur ou récepteur ?
- 8. Compléter le tableau avec des valeurs numériques dans les unités du système international.

| Etat | Volume | Pression | Température |
|------|--------|----------|-------------|
| 1    |        |          |             |
| 2    |        |          |             |
| 3    |        |          |             |

- 9. Calculer numériquement la quantité de matière n et la capacité thermique C<sub>v</sub> de l'air étudié.
- 10. Calculer numériquement le travail et le transfert thermique reçus par le gaz au cours de chaque phase (on les notera  $W_{12}$ ,  $Q_{12}$ ,  $W_{23}$ ,  $Q_{23}$ ,  $W_{31}$  et  $Q_{31}$ )
- 11. Sur un cycle, calculer numériquement le transfert thermique  $Q_C$  reçu de la source chaude, ainsi que le travail total W reçu au cours du cycle. En déduire le rendement  $\eta$  du cycle.
- 12. Calculer l'entropie créée  $S_{\text{création}}$  au cours du cycle. Ce cycle est-il réversible ?
- 13. Calculer  $\Delta S$  pour chaque transformation. Au cours de quelle(s) transformation(s) du cycle y a-til création d'entropie ?

Formulaire:

$$\Delta S = nR \frac{y}{y-1} \ln \frac{T_{final}}{T_{initial}} - nR \ln \frac{P_{final}}{P_{buitial}}$$

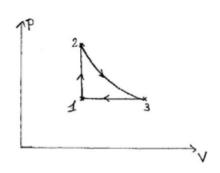
$$\Delta S = n \frac{R}{\gamma - 1} \ln \frac{T_{final}}{T_{initial}} + nR \ln \frac{V_{final}}{V_{initial}}$$

## Corrigé de la partie thermodynamique

### Exercice 4 Cycle de Lenoir

1) Graphiquement, l'aire algébrique entourée par le cycle est positive : A > 0(l'aire sous la courbe 2=>3, comptée positivement, est supérieure en valeur absolue à l'aire sous la courbe 3=>1, comptée négativement).

On a  $W = -\int_{curle} P dV = -A$  donc W < 0, le cycle est moteur (sur un cycle, le gaz fournit du travail au milieu extérieur).



2) On utilise la loi de gaz parfaits pour obtenir les valeurs indiquées en gras

| Etat | Température (K) | Pression (bar) | Volume (L) |
|------|-----------------|----------------|------------|
| 1    | 300             | 1,0            | 1,0        |
| 2    | 600             | 2,0            | 1,0        |
| 3    | 600             | 1,0            | 2,0        |

3) 
$$n = \frac{P_1 V_1}{RT_1} = 4,0.10^{-2} \text{ mol}$$
  $C_V = \frac{nR}{v-1} = 0.83 \text{ J. K}^{-1}$ 

$$C_V = \frac{nR}{v-1} = 0.83 \text{ J. K}^{-1}$$

4) 
$$W_{12} = 0$$
 J (volume constant)

$$Q_{12} = \Delta U_{12} - W_{12} = C_V (T_2 - T_1) = 2,5.10^2 \text{ J}$$

$$W_{23} = -\int_{V_2}^{V_3} P \, dV = -nRT_C \int_{V_2}^{V_3} \frac{dV}{V} = -nRT_C \ln \left( \frac{V_3}{V_2} \right) = -1,4.10^2 \, J$$

$$Q_{23} = \Delta U_{23} - W_{23} = 0 - W_{23} = +1,4.10^2 \, J \quad (\Delta U_{23} = 0 \text{ car } T_3 = T_2)$$

$$W_{31} = -\int_{V_3}^{V_1} P dV = -P_1 \int_{V_3}^{V_1} dV = -P_1 (V_3 - V_1) = 1,0.10^2 J$$

$$Q_{31} = \Delta U_{31} - W_{31} = C_V (T_1 - T_3) - W_{31} = -3,5.10^2 J$$

5) Le transfert thermique au contact de la source chaude s'effectue sur les phases 1=>2 et 2=>3

On a donc  $Q_C = Q_{12} + Q_{23} = 3,9.10^2 \text{ J}$ 

Le travail total échangé au cours du cycle s'obtient en sommant tous les travaux :  $W = W_{12} + W_{23} + W_{31} = -40 \text{ J}$ 

On en déduit le rendement  $\eta = \frac{-W}{O_c} = 0.10$  soit un rendement de 10 %.

6) Sur un cycle,  $\Delta S_{\text{cycle}} = 0 = S_{\text{ech}} + S_{cr} = \frac{Q_{12}}{T_C} + \frac{Q_{23}}{T_C} + \frac{Q_{31}}{T_C} + S_{cr}$ , on en déduit  $S_{cr} = 0.51 \, \text{J.K}^{-1} > 0$ , le cycle n'est pas réversible.

 $\Delta S = nR \left( \frac{1}{\gamma - 1} ln \left( \frac{T_2}{T_1} \right) + ln \left( \frac{V_2}{V_1} \right) \right)$  (exercise 5) et en appliquant le second principe à

chacune des transformations, on observe que  $S_{cr} = 0$  pour la transformation isotherme (2=>3), et  $S_{cr} > 0$  pour l'échauffement (1=>2) et le refroidissement (3=>1). Pour qu'une transformation soit réversible, on doit avoir à tout instant T = T<sub>ext</sub> (température du système égale à la température de contact), ce qui n'est pas le cas au cours des transformations 1=>2 et 2=>3.

#### Exercice 1

 $1 \Delta H = \Delta U = Q = C \Delta T$  et  $Q = P \Delta t$ .  $\Delta t = C \Delta T / P$ . A.N.:  $\Delta t = 64.8$  s soit 1 min et 5 s.

2 La durée réelle sera supérieure car on néglige les pertes de chaleur.

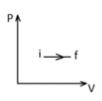
La conversion d'énergie électrique en transfert thermique au fond de la poêle n'est pas parfaite => la puissance thermique  $P_{thermique}$  réellement disponible est inférieure à  $P_{élec}$ , donc  $\Delta t_{réel} > \Delta t_{calculé}$ On a négligé le transfert thermique entre la poêle et l'air environnant, et entre la poêle et la plaque => il faudrait tenir compte de l'échauffement de l'air et de la plaque,  $\Delta H_{réel} > \Delta H_{calculé} => \Delta t_{réel} > \Delta t_{calculé}$ 

Exercice 2 Transformations d'un gaz parfait

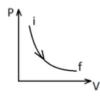
$$\begin{array}{lll} 1 \ ) & P_i = 1,\!0.10^5\,Pa & T_i = 423\;K & n = 1\;mol => V_i = 3,\!5.10^{\text{-2}}\text{m}^3 \\ P_f = 3,\!0.10^5\,Pa & T_f = 423\;K & => V_f = 1,\!2.10^{\text{-2}}\;\text{m}^3 \\ & W \! = \! - \! \int_{V_i}^{V_f} \! P \, dV \! = \! - \! nRT_0 \! \int_{V_i}^{V_f} \! \frac{dV}{V} \! = \! - \! nRT_0 \! \ln \! \left( \! \frac{V_f}{V_i} \! \right) \! \! = \! 3,\!8.10^3\;J \\ & Q \! = \! \Delta U \! - \! W \! = \! C_V \! \Delta T \! - \! W \! = \! 0 \! - \! W \! = \! -3,\!8.10^3\;J \; \; (\text{isotherme}) \end{array}$$

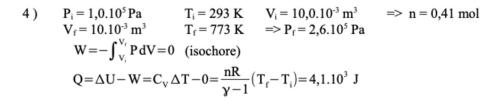


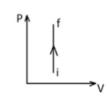
$$\begin{array}{lll} P_i = 1,\!013.10^5\,Pa & V_i = 1,\!0\ m^3 & T_i = 300\ K \implies n = 41\ mol \\ P_f = 1,\!013.10^5\,Pa & T_f = 600\ K \implies V_f = 2,\!0\ m^3 \\ W = -\int_{V_i}^{V_f} P\ dV = -P_0 \int_{V_i}^{V_f} dV = -P_0 \big(V_f - V_i\big) = -1,\!0.10^5\ J \\ Q = \Delta U - W = C_V \Delta T - W = \frac{nR}{\nu - 1} \big(T_f - T_i\big) - W = 3,\!6.10^5 J \end{array}$$



$$\begin{array}{lll} 3 \text{ )} & P_{\mathrm{i}} = 20.10^5 \, Pa & T_{\mathrm{i}} = 900 \, \, \text{K} & n = m/M = 34,5 \, \, \text{mol} & => V_{\mathrm{i}} = 0,13 \, \, \text{m}^3 \\ V_{\mathrm{f}} = 5 \, \, V_{\mathrm{i}} = 0,65 \, \, \text{m}^3 & P_{\mathrm{f}} = P_{\mathrm{i}} \, (V_{\mathrm{i}}/V_{\mathrm{f}})^{\gamma} = \, 2,1.10^5 \, Pa & => T_{\mathrm{f}} = 476 \, \, \text{K} \\ Q = 0 & (adiabatique) & W = \Delta U - Q = C_{_{V}} \, \Delta T = \frac{nR}{\gamma - 1} (T_{_{\mathrm{f}}} - T_{_{\mathrm{i}}}) = -3,01.10^5 \, \, \text{J} \end{array}$$





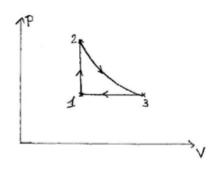


### Exercice 4 Cycle de Lenoir

1) Graphiquement, l'aire algébrique entourée par le cycle est positive : A > 0(l'aire sous la courbe 2=>3, comptée positivement, est supérieure en valeur absolue à l'aire sous la courbe 3=>1, comptée négativement).

Cycle parcouru dans le sens horaire d'où W < 0.

On a  $W=-\int_{cucle} P dV = -A$  donc W < 0, le cycle est moteur (sur un cycle, le gaz fournit du travail au milieu extérieur).



On utilise la loi de gaz parfaits pour obtenir les valeurs indiquées en gras

| Etat | Température (K) Pression (bar) |     | Volume (L) |  |
|------|--------------------------------|-----|------------|--|
| 1    | 300                            | 1,0 | 1,0        |  |
| 2    | 600                            | 2,0 | 1,0        |  |
| 3    | 600                            | 1,0 | 2,0        |  |

3) 
$$n = \frac{P_1 V_1}{RT_1} = 4,0.10^{-2} \text{ mol}$$
  $C_V = \frac{nR}{v-1} = 0.83 \text{ J. K}^{-1}$ 

$$C_V = \frac{nR}{N-1} = 0.83 \text{ J. K}^{-1}$$

4) 
$$W_{12} = 0$$
 J (volume constant)

$$Q_{12} = \Delta U_{12} - W_{12} = C_v (T_2 - T_1) = 2,5.10^2 \text{ J}$$

$$W_{23} = -\int_{V_2}^{V_3} P \, dV = -nRT_C \int_{V_2}^{V_3} \frac{dV}{V} = -nRT_C \ln \left( \frac{V_3}{V_2} \right) = -1,4.10^2 \, J$$

$$Q_{23} = \Delta U_{23} - W_{23} = 0 - W_{23} = +1,4.10^2 J$$
 ( $\Delta U_{23} = 0$  car  $T_3 = T_2$ )

$$W_{31} = -\int_{V_3}^{V_1} P \, dV = -P_1 \int_{V_3}^{V_1} dV = -P_1 (V_3 - V_1) = 1,0.10^2 \, J$$

$$Q_{31} = \Delta U_{31} - W_{31} = C_V(T_1 - T_3) - W_{31} = -3.5.10^2 J$$

5) Le transfert thermique au contact de la source chaude s'effectue sur les phases 1=>2 et 2=>3 On a donc  $O_C = O_{12} + O_{23} = 3.9.10^2 \text{ J}$ 

Le travail total échangé au cours du cycle s'obtient en sommant tous les travaux : W = W<sub>12</sub> + W<sub>23</sub> + W<sub>31</sub> = -40 J

On en déduit le rendement  $\eta = \frac{-W}{Q_0} = 0.10$  soit un rendement de 10 %.

6) Sur un cycle,  $\Delta S_{\text{cycle}} = 0 = S_{\text{éch}} + S_{cr} = \frac{Q_{12}}{T_C} + \frac{Q_{23}}{T_C} + \frac{Q_{31}}{T_C} + S_{cr}$ , on en déduit  $S_{cr} = 0.51 \, \text{J.K}^{-1} > 0$ , le cycle n'est pas réversible.

 $\Delta S = nR \left( \frac{1}{\gamma - 1} ln \left( \frac{T_2}{T_1} \right) + ln \left( \frac{V_2}{V_1} \right) \right)$ En réutilisant l'expression

en appliquant le second principe à

chacune des transformations, on observe que  $S_{cr} = 0$  pour la transformation isotherme (2=>3), et  $S_{cr} > 0$  pour l'échauffement (1=>2) et le refroidissement (3=>1). Pour qu'une transformation soit réversible, on doit avoir à tout instant T = T<sub>ext</sub> (température du système égale à la température de contact), ce qui n'est pas le cas au cours des transformations 1=>2 et 2=>3.