6 novembre 17 novembre

Préparation

Exercice n°1: Compléter

Élément	Symbole	Protons	Neutrons	Électrons	Z	A
Potassium	K				19	40
Cadmium	Cd ²⁺				48	112
Chlore	Cl ⁻				17	35

Exercice $n^{\circ}2$:

On connaît aujourd'hui pas moins de quinze isotopes de nombre de masse compris entre 10 et 24 pour l'azote $_{7}$ N. Parmi ceux-ci , deux seulement sont stables 14 N et (abondance : 99,63%) et 15 N (abondance 0,37%)

- 1. Donner la composition du noyau de chacun de ces isotopes.
- 2. Déterminer la masse molaire moyenne.
- 3. Déterminer les configuration électroniques et les électrons de valence de H , O , N et Cl

Données:

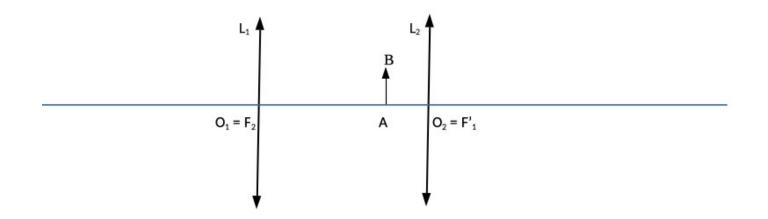
Elément	О	Н	N	Cl
Numéro atomique	8	1	7	17

- 2. Construire les schémas de Lewis des entités suivantes.
 - 1. Dichlorométhane CH₂Cl₂
 - 2. Méthylamine CH₃NH₂
 - 3. Méthanal H₂CO
 - 4. EthaneC₂H₆
 - 5. Ethène C₂H₄
 - 6. Ion oxonium H₃O⁺

Exercice n°3:

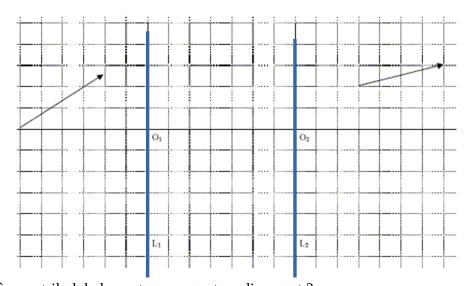
- 1. On donne les représentations de Lewis simplifiées des trois isomères du dichloroéthène, de formule brute C₂H₂Cl₂. Enoncer la règle de l'octet (duet) est-elle vérifiée ? Compléter l'écriture, en ajoutant les doublets libres.
- 2. Justifier la polarisation de la liaison C Cl. Indiquer les charges partielles correspondantes.

	Numéro atomique (Z)	Electronégativité de Pauling
Н	1	2,2
С	6	2,55
Cl	17	3,16


3. Représenter alors le moment dipolaire **résultant** apparaissant sur ces trois composés (*on négligera le moment dipolaire des liaisons* C-H).

Exercice n°4:

Soit un système optique constitué de l'association de deux lentilles convergentes identiques de distance focale égale à 40 cm. Le centre optique O₁ de la première lentille L₁ est distant de 40 cm du centre optique O₂ de la deuxième lentille L₂.


Soit un objet AB de 1 cm de taille situé à 30 cm derrière la première lentille sur l'axe optique.

- 1. Quelles sont la position et la taille de l'image intermédiaire A₁B₁ de l'objet AB par rapport à la première lentille.
- 2. Déterminer la position et la taille de l'image finale A2B2.
- 3. Faire une construction géométrique.

Exercice n°5:

Sur la gauche un rayon incident pénètre dans le système et émerge sur la partie droite, comme indiqué sur la figure. Un carreau correspond à un centimètre.

- 1. Ce système est-il globalement convergent ou divergent?
- 2. Compléter sur la feuille le trajet du rayon lumineux.
- 3. En déduire la nature de chacune des deux lentilles (convergente ou divergente ?).
- 4. Soient F_1 et F'₁ les foyers objet et image de la lentille L_1 , F_2 et F'₂ les foyers objet et image de la lentille L_2 . Trouver graphiquement la position de ces foyers. Préciser les valeurs algébriques O_1F '₁ et O_2F '₂.

Penser à utiliser la parallèle au rayon incident passant par O_1 ... etc 3 pts