2 décembre 13 décembre Préparation

Exercice 1

Soit la réaction totale des ions hydroxyde HO⁻ sur le bromo-éthane CH₃CH₂Br, noté A, en solution aqueuse à 25°C :

$$CH_3CH_2Br_{(aq)} + HO^-_{(aq)} \rightarrow CH_3CH_2OH_{(aq)} + Br^-_{(aq)}$$

Cette réaction admet un ordre.

On notera k la constante de vitesse et $\,$ n l'ordre global ($\,$ n = $\,$ p $_1$ + $\,$ p $_2$ avec $\,$ p $_1$ et $\,$ p $_2$ les ordres partiels par rapport aux réactifs).

On réalise plusieurs expériences.

Pour chaque expérience, on évalue le temps de demi-réaction $t_{1/2}$ en fonction de la concentration initiale [A]₀.

Les réactifs sont toujours introduits en quantité égale, on peut en déduire que [A] = [B].

[A] ₀ (mol.L ⁻¹)	10	25	50	75	100
t _{1/2} (min)	1110	440	220	150	110

- 1) Donner l'expression de la loi de vitesse en fonction de k, [A] et n.
- 2) A l'aide des données, déterminer l'ordre global de la réaction.
- 3) déterminer k.
- 4) Proposer une expérience permettant de déterminer tour à tour, les ordres partiels (p₁ et p₂).

Exercice 2

L'ammoniac peut s'oxyder ; l'équation stœchiométrique de la réaction peut s'écrire :

$$4NH_3 + 5O_2 \leftrightarrow 4NO + 6H_2O$$

- 1) Exprimer la vitesse de cette réaction en fonction de [NH₃] ou [O₂] ou [NO] ou [H₂O].
- 2) Si à un moment donné, l'ammoniac disparaît à la vitesse de 0,2 mol.L⁻¹ .s⁻¹,
 - à quelle vitesse le dioxygène disparait-il ?
 - à quelle vitesse l'eau se forme-t-elle ?
 - quelle est, à ce moment là, la vitesse de réaction ?

Exercice 3

Au cours du temps, l'eau de Javel perd son pouvoir nettoyant à cause de la diminution de sa concentration en ions hypochlorite ClO⁻. Ces ions, à l'origine des propriétés oxydantes de l'eau de Javel, subissent une dismutation lente. La cinétique de cette réaction de dismutation (équation ci- dessous) est étudiée en solution aqueuse à 343 K.

$$ClO_{(aq)} \rightarrow 1/3 \ ClO_{3(aq)} + 2/3 \ Cl_{(aq)}$$

L'ordre global de la réaction considérée est égal à 2.

La concentration initiale de ClO⁻ est égale à 0,10 mol.L⁻¹ . R = 8,314 J.mol⁻¹.K⁻¹.

- 1) Donner l'expression de la loi de vitesse de la réaction considérée.
- 2) Donner l'expression de la vitesse de réaction en fonction de la concentration de ClO-, celle de ClO₃- puis celle de Cl-.
- 3) Déterminer l'expression de la concentration en ClO⁻ en fonction du temps.
- 4) A 343 K, la constante de vitesse de la réaction considérée est égale à 3,1 10⁻³ mol⁻¹.L.s ⁻¹.

Calculer le temps de demi-réaction de la réaction considérée à 343 K.

5) L'énergie d'activation de la réaction considérée est égale à 47 kJ.mol.

Calculer la constante de vitesse de la réaction considérée à 363 K.

Calculer le temps t₁ nécessaire pour consommer 30 % de la quantité initiale de ClO⁻ à 363 K.

Exercice 4

En solution dans l'éthanol, la potasse *KOH* est totalement dissociée. On étudie à 20°C sa réaction avec le 1-bromo-2-méthylpropane (noté RBr*RBr*) qui conduit au 2-méthylpropan-1-ol (noté ROH) par substitution.

L'équation-bilan de la réaction s'écrit : RBr + HO = ROH + Br.

- 2) Définir le temps de demi-réaction. Dans le cas d'une réaction d'ordre 0, puis 1 et 2, exprimer $t_{1/2}$.
- 3) Une première expérience a pour conditions initiales : $[RBrRBr]_0 = 1,00.10^{-2} \text{ mol/L} mol$ et $[HOHO^-]_0 = 1,00.10^{-2} \text{ mol/L}$.

t (min)				30	
$[RBr] (10^{-2}mol.L^{-1})$	1,00	0,50	0,25	0, 12	0,06

- a) Pourquoi utiliser des concentrations si différentes en réactifs ?
- b) Démontrer que l'ordre de la réaction dans ce cas , est de 1 et déterminer la constante de réaction apparente : k_{lapp} .