Exercice 1

A R i
Soit le circuit ci-contre. Le générateur de tension est idéal, ‘ l
de f.e.m. E constante. Tant que l'interrupteur est ouvert, g
le condensateur, de capacité C, est déchargé et la bobine . L c r
idéale, d’inductance L, n'est parcourue par aucun " '2 s
courant. 8

A Tlinstant t = 0, l'interrupteur est fermé instantanément et on cherche a déterminer l'évolution
ultérieure du réseau électrique.

1. On montre que 1'équation différentielle liant i3 a ses dérivées par rapport au temps t s'écrit :

d’i, diy .
dtz +2)\E+(0013:0
avec 271 et A= R+r
0 w/(LC) 2RrC

Onprendra: R=22kQ; r=10kQ; C=1,0pF; L=10mH.

Calculer numériquement la pulsation propre o, la période propre T, et le coefficient A.
Que caractérise A?

2. Quelle relation doit-il exister entre R, r, C et L. pour que la solution de I'équation différentielle
corresponde a un régime pseudopériodique ? Est-ce le cas ici ?

3. Définir et calculer la pseudo-pulsation w et la pseudo-période T.

Exercice 2

Une masse est attachée a un ressort. Les forces qui s’appliquent a cette masse sont : le poids ,
la réaction qui s’oppose au poids , la force de rappel du ressort et éventuellement une force de
frottement. i

AVAVASS ol

\

P

+
X
0

1. Lorsqu’il n’y a pas de frottement, I’application de la seconde loi de Newton conduit a 1’équation
d’x  k

différentielle : d—t§+ax=0. Déterminer la solution de cette équation différentielle si x(t=0) = 1 cm
et v(t=0) = 0.

2. Lorsqu’il y a une force de frottement F=—av, I’application de la seconde loi de Newton conduit
a I’équation différentielle : C(I;tf + % % +% x=0.

Donner la forme des solutions selon le signe du discriminant : A.



tension u(t) enVv

Exercice 3

On considere un circuit électrique, dans lequel I'une des tensions, notée u, est régie par I’équation
différentielle: u”+ b 0w’ + w2u= w2 E avec w,=23,010°rad.s'etE=2V.

Les graphes ci-dessous représentent la tension u(t), dans les casb =0 oub = 0,2 ou b = - 0,2 soit
u”’+ w2u= 02E ou u”+ 0,200+ 0w2u= 02E ou u”-02wnut+ 0Zu= w?E.

Pour chaque graphe on expliquera en détail pourquoi u(t) peut étre ou non solution de 1’équation
différentielle, en précisant la valeur de b (au moins 3 arguments possibles, on écrira 1’expression
générale de la solution de I’équation différentielle pour les 3 valeurs de b)
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