
Test de cristallographie Sujet B

Donnée: $N_A = 6,02.10^{23} \text{ mol}^{-1}$.

Exercice 1

La structure structure du cristal de lithium est CUBIQUE CENTREE (CC) L'arête du cube vaut: a = 358 pm . La masse molaire du lithium (Li) est M = 197 g.mol $^{-1}$.

1. Dessiner la maille CC. (compléter le schéma ci-contre)

2. Déterminer, en justifiant, le nombre d'atomes de lithium par maille.

3. Donner l'expression de la masse volumique. Poser l'application numérique (en indiquant l'unité.).

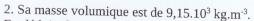
$$\rho = \frac{N_{L_1} \times H_{L_2}}{N_A \times a^3} \qquad A.N. : \rho = \frac{2 \times 197 \times 10^{-3}}{6,02 \times 10^{23} \times (358 \times 10^{-12})^3} = 14264 \text{ kg} \cdot \text{m}^{-3}.$$

Exercice 2

On considère les deux oxydes de chrome CrO_3 et Cr_2O_3 (utilisé dans les rubis artificiels). La structure cristalline de l'un des deux peut être décrite par une maille cubique : les ions chrome Cr^{x+} (x à déterminer) occupent les sommets et les ions oxyde O^{2-} le milieu des arêtes.

1. Quelle est la formule de l'oxyde décrit par la structure ci-dessus?

Sommets:
$$N_{Cr} = 8 \times \frac{1}{8} = 1$$
milieux des arêts: $N_{02} = 12 \times \frac{1}{4} = 3$
Cr03 est la formule de cet oxyde


2. La neutralité est vérifiée, en déduire la valeur de x.

$$1 \times (x) + 3 \times (-2) = 0$$
 (neutralité)
 $x = 6$ Cr 6+

Exercice 3

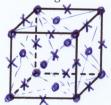
Le cristal de polonium est un réseau cubique simple composé d'atomes de polonium de masse molaire $M = 209 \text{ g.mol}^{-1}$.

1. Déterminer, en justifiant, le nombre d'atomes de polonium par maille.

En déduire l'expression du paramètre a (arête du cube). Poser l'application numérique (en indiquant l'unité.).

$$\rho = \frac{N_{Po} \times M_{Po}}{N_{A} \times a^{3}} \rightarrow a = \left(\frac{N_{Po} \times M_{Po}}{N_{A} \times p}\right)^{1/3}$$

A.N.:
$$\alpha = \left(\frac{1 \times 209 \times 10^{-3}}{6,02 \times 10^{23} \cdot 9,15 \times 10^{3}}\right)^{1/3}$$


$$\alpha = 336 \times 10^{-12} = 336 \text{ pm}$$

Exercice 4

L'oxyde de magnésium (MgO) cristallise dans une structure cubique à faces centrées pour les ions O^{2-} et les sites octaédriques (milieux des arêtes et centre du cube) occupés par les ions Mg^2 .

1. Dessinez la maille cubique de MgO en plaçant les ions O^{2-} et Mg^{2+} aux bons emplacements dans le cube.

2. Vérifiez la neutralité de la maille cristalline et déduisez en la formule de MgO.

$$N_{02} = \frac{16}{2} + 8 \times \frac{1}{8} = 4$$
 $4x(-2) + 4x(2) = 0$ neutralité vérifiée.

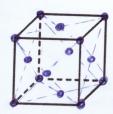
 $N_{02} = \frac{1}{2} + 8 \times \frac{1}{8} = 4$
 $4x(-2) + 4x(2) = 0$ neutralité vérifiée.

L'arête du cube est $a = 421 \times 10^{-10}$ m la manual in la Manual de MgO.

3. L'arête du cube est a = 4.21×10^{-10} m, la masse molaire de Mg est M_{Mg} = 24 g.mol $^{-1}$, celle de O est M_{O} = 16 g.mol $^{-1}$, et le nombre d'Avogadro est N_{A} = 6.02×10^{23} mol $^{-1}$.

Donnez l'expression de la masse volumique ρ de MgO et effectuez l'application numérique (en indiquant l'unité).

$$\rho = \frac{4 \times (Mg + M_0)}{N_A \times a^3}$$
A.N.
$$\rho = \frac{4 \times (24 + 16) \times 10^{-3}}{6 p_2 \times 10^{23} \times (4, 21 \times 10^{-10})^3} = 3562 \, \text{kg} \cdot \text{m}^{-3}$$


Test de cristallographie Sujet A

Donnée: $N_A = 6,02.10^{23} \text{ mol}^{-1}$.

Exercice 1

L'or (Au) cristallise dans le système cubique faces centrées (CFC). L'arête du cube vaut: $a=407,8~\mathrm{pm}$. La masse molaire de l'or est $M_{\mathrm{Au}}=197~\mathrm{g.mol^{-1}}$.

1. Dessiner la maille CFC. (compléter le schéma ci-contre)

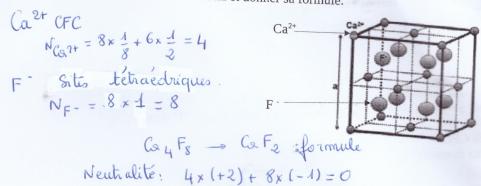
2. Déterminer, en justifiant, le nombre d'atomes d'or par maille.

$$N_{An} = 8 \times \frac{1}{8} + \frac{1}{2} \times 6 = 4$$

3. Donner l'expression de la masse volumique. Poser l'application numérique (en indiquant

$$\rho = \frac{N_{Au} \times M_{Au}}{N_{A} \times a^{3}}$$

$$\rho = \frac{N_{Au} \times M_{Au}}{N_{A} \times a^{3}} \qquad A.N. \qquad \rho = \frac{4 \times 197 \times 10^{-3}}{6,02 \times 10^{23} \times (407,8 \times 10^{-12})^{3}}$$

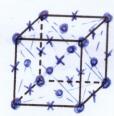

Exercice 2

1. Vérifier la neutralité de ce cristal et donner sa formule.

CsCl formule 1 > (+1) + 1 × (-1) = 0.

2. Vérifier la neutralité de ce cristal et donner sa formule.

Exercice 3


Le chlorure de sodium cristallise sous la forme d'un réseau cubique faces centrées pour les anions Cl⁻, avec les sites octaédriques (milieux des arêtes et le centre du cube) occupés par les cations Na *.

1. Dessiner la maille de chlorure de sodium (compléter le schéma ci-contre). Vérifier la neutralité de ce cristal et donner sa formule.

$$N_{Na} + = 42 \times \frac{1}{4} + 4 \times 4 = 4$$
 $N_{Cl} = 8 \times \frac{1}{8} + 6 \times \frac{1}{2} = 4$ CFC

Neutralite: $4 \times (+4) + 4 \times (-4) = 0$

Formule: $N_{a_4} Cl_4 \longrightarrow N_a Cl$

L'arête du cube vaut: $a = 5,64.10^{-10} \text{ m}$.

La masse molaire de Na est M_{Na} = 23 g.mol⁻¹ et celle de Cl est M_{Cl} = 35,5 g.mol⁻¹.

2. Donner l'expression de la masse volumique. Poser l'application numérique (en indiquant

$$\rho = \frac{4 \times M_{Na} + 4 M_{Ce}}{N_{A} \times a^{3}} = \frac{4 \times (M_{NA} + M_{Ce})}{N_{A} \times a^{3}} \qquad \rho = \frac{4 \times (23 + 35,5) \times 10^{-3}}{6,02 \times 10^{23} \times (5,64 \times 10^{-10})^{3}}$$

Exercice 4

Le trioxyde de tungstène WO3 solide est, en première approche, un solide ionique. Il présente une structure cubique telle que les ions tungstène W^{6+} occupent les sommets de la maille et les ions oxyde O²⁻ le milieu des arêtes. On note a le paramètre de maille.

Dessiner une maille (compléter le schéma ci-contre) et vérifier la formule du cristal.

$$N_{W6+} = 8 \times \frac{1}{8} = 1$$
 (sommets)
 $N_{02-} = 12 \times \frac{1}{4} = 3$ (milieupdes arêtes)
W03 est la formule de ce cristal.