Interrogation spéciale

Vérification d'acquisition du cours

Exercice 1

Définition de fonction strictement croissante.

En introduisant toutes les notations.

Exercice 2

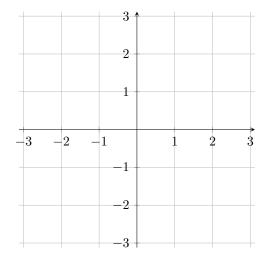
Soient \overrightarrow{u} , \overrightarrow{v} deux vecteurs du plan. Donner la définition de la colinéarité de \overrightarrow{u} et \overrightarrow{v} .

Exercice 3

Soit $t \in \mathbb{R}$. Rappeler la définition du nombre $\cos(t)$.

Exercice 4

Pour chacune des proposition suivantes, écrire la première ligne de la démonstration :


3.
$$(\forall x \in \mathbb{R}, (x < 2)) \Rightarrow (x \le 2) \dots$$

2.
$$(\exists x \in \mathbb{R}, x = 3) \Rightarrow (\forall n \in \mathbb{Z}, \neg (n^2 = 3))$$

4.
$$\forall x \in \mathbb{R}, (x < 2) \Rightarrow (x \le 2) \dots$$

Tracer l'allure du graphe de la fonction exponentielle.

Exercice 6

Donner les formules pour $\cos(a-b)$, $\sin(a+b)$, $\cos(2x)$ en quantifiant.

Interrogation spéciale

Vérification d'acquisition du cours

Exercice 1

Définition de fonction décroissante.

En introduisant toutes les notations.

Exercice 2

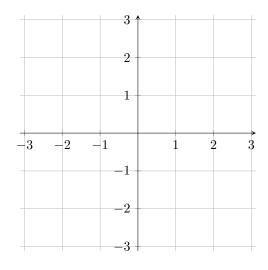
Soit $\mathcal{B} = (\overrightarrow{\imath}, \overrightarrow{\jmath})$ une base du plan. Soit \overrightarrow{u} un vecteur du plan, et $x, y \in \mathbb{R}$ tels que $\operatorname{Mat}_{\mathcal{B}}(\overrightarrow{u}) = \begin{pmatrix} x \\ y \end{pmatrix}$. Exprimer, en justifiant, \overrightarrow{u} en fonction des vecteurs de \mathcal{B} .

Exercice 3

Soit $t \in \mathbb{R}$. Rappeler la définition du nombre $\sin(t)$.

Exercice 4

Pour chacune des proposition suivantes, écrire la première ligne de la démonstration :


1.
$$\forall x \in \mathbb{R}, (x < 2) \Rightarrow (x \leq 2) \dots$$

3.
$$\exists x \in \mathbb{R}, ((x < 2) \land (x^2 > 4))$$

2.
$$(\forall x \in \mathbb{R}, (x < 2)) \Rightarrow (x \le 2)$$

Tracer l'allure du graphe de la fonction logarithme népérien.

Exercice 6

Donner les formules pour $\cos(a+b)$, $\sin(a-b)$, $\sin(2x)$ en quantifiant.