INTERROGATION 10

VÉRIFICATION D'ACQUISITION DU COURS

Exercice 1

Soient $a, b \in \mathbb{C}$, $n \in \mathbb{N}$. Énoncer la formule de binôme de Newton pour $(a+b)^n$.

Soient u et v sont des fonctions définies et dérivables sur \mathbb{R} , v est à valeurs dans \mathbb{R}^{+*} . $n \in \mathbb{N}^*$. Donner les dérivées suivantes en précisant le domaine de dérivabilité à coté,

		Domaine			Domaine
\sin'	=		(uv)'	=	
\cos'	=		$\left(\frac{u}{v}\right)'$	=	
\tan'	=		$\ln(v)'$	=	
\exp'	=		$(e^u)'$	=	
$\ln'(x)$	=		$(\sqrt{v})'$	=	
$\frac{\mathrm{d}\sqrt{x}}{\mathrm{d}x} _x$	=		$(u^n)'$	=	
$\sin(u)'$	=		$\left(\frac{1}{v^n}\right)'$	=	

Interrogation 10 Vérification d'acquisition du cours

Exercice 1

Donner l'écriture et la valeur explicite de la somme des entiers.

Soient u et v sont des fonctions définies et dérivables sur \mathbb{R} , v est à valeurs dans \mathbb{R}^{+*} . $n \in \mathbb{N}^*$. Donner les dérivées suivantes en précisant le domaine de dérivabilité à coté,

		Domaine			Domaine
\cos'	=		$(e^u)'$	=	
sin'	=		$\ln(v)'$	=	
\ln'	=		$\left(\frac{u}{v}\right)'$	=	
$\exp'(x)$	=		(uv)'	=	
tan'	=		$(\sqrt{v})'$	=	
$\frac{\mathrm{d}\sqrt{x}}{\mathrm{d}x} _x$	=		$(u^n)'$	=	
$\cos(u)'$	=		$\left(\frac{1}{v^n}\right)'$	=	

Tsi 1 Benjam Nom Prénom

Estimation avant : / 10

Estimation après : /10

Tsi 1 Benjam Nom Prénom

Estimation avant : / 10

Estimation après : /10