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Samedi 18/10/2025. Durée : 2h

CONSIGNES

. La calculatrice n’est pas autorisée. Les autres outils électroniques (téléphone,
tablette...) et documents papier sont strictement interdits. Un brouillon est autorisé.

. Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction
de votre composition ; d’autres couleurs, excepté le vert, peuvent être utilisées, mais
exclusivement pour les schémas et la mise en évidence des résultats.

. Ne pas utiliser de correcteur.

. Écrire le mot FIN à la fin de votre composition.

. Numéroter les pages de votre composition.

Le sujet comporte quatre parties indépendantes.

Partie I - Structure cristallographique du chlorure de sodium

Remarque :
Cet exercice est extrait du sujet de physique-chimie de l’écrit du concours CCINP

2024 en filière PSI. Très classique, il ressemble beaucoup à l’exercice 5 du TD3, fait
en DM et corrigé en classe !

Le sel, ou chlorure de sodium NaCl, est un cristal ionique dans lequel les ions
Na+ forment un réseau de type cubique face centrée (CFC) de paramètre de maille a,
représenté figure 1.

Les ions Cl−, quant à eux, se logent dans les sites octaédriques. On note r le rayon
d’un cation Na+ et R le rayon d’un anion Cl−.

FIGURE 1 – Structure de type cubique face centrée

Q1. Combien y a-t-il d’ions sodium par maille?



Les ions sodium occupent un réseau cubique à faces centrées. Il y a 8 ions so-
dium qui occupent les sommets de la maille ; ils comptent chacun pour 1/8 car ils
sont partagés entre 8 mailles. Il y a aussi 6 ions sodium qui occupent les centres des
faces ; ils comptent chacun pour 1/2 car ils sont partagés entre 2 mailles. Au total, il y
a NNa+ = 8× 1

8 +6× 1
2 = 4 ions sodium par maille.

Remarque : Modèle de rédaction à connaître pour ce genre de question.

Q2. Préciser sur un schéma la position des centres des sites octaédriques. Com-
bien y en a-t-il par maille? Sont-ils tous occupés par les atomes de chlore?

Il y a 12 sites octaédriques centrés sur les milieux des arêtes, qui comptent chacun
pour 1/4 car ils sont partagés entre 4 mailles. Il y a aussi un site octaédrique centré
sur le centre du cube, qui appartient en propre à la maille. Ainsi, il y a un total de
Ns.o. = 12× 1

4 +1×1 = 4 sites octaédriques par maille.
Le cristal étant électriquement neutre, il y a autant d’ions sodium Na+ que d’ions

chlorure Cl− dans une maille, soit 4. Comme les ions chlorure occupent les sites octa-
édriques, ces derniers sont tous occupés.

Remarque :
La notion de site octaédrique a été vue dans l’exercice 6 du TD3, à retravailler si

besoin. L’énoncé précisait où se trouvaient les sites octaédriques, dans les données
en fin d’exercice.

On donne r = 97 pm, R = 181 pm et a = 556 pm. On admet que a
p

2 = 786 pm et
a
p

3 = 963 pm.
Q3. Préciser si les ions Na+ sont tangents entre eux et si oui, préciser suivant quel

alignement. Préciser si les ions Na+ et Cl− sont tangents entre eux et si oui, préciser
suivant quel alignement.

Les ions sodium ne peuvent pas être tangents entre eux car ils se repoussent par
interaction électrostatique, étant tous chargés positivement. Les ions sodium et les
ions chlorure sont potentiellement tangents entre eux car ils s’attirent par interaction
électrostatique, étant de charges opposées.

L’alignement peut se faire soit le long d’une arête de la maille cubique, soit le long
de la grande diagonale.

Si l’alignement a lieu le long de l’arête de la maille, alors 2(r +R) = a. L’application
numérique donne 2(r +R) = 2(97+181) = 2×278 = 556pm= a, ce qui valide cette hypo-
thèse.
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FIGURE 2 – Condition de contact entre ions le long d’une arête de la maille

Si l’alignement a lieu le long de la grande diagonale, alors 2(r +R) = a
p

3 (on ap-
plique le théorème de Pythagore deux fois d’affilée, comme vu en cours), ce qui n’est
pas le cas.

Q4. Exprimer la masse volumique ρNaCl du chlorure de sodium en fonction de r et
de R ainsi que des masses molaires M(Na) et M(Cl).

La maille est cubique et contient deux types d’entités. Sa masse volumique a donc
pour expression :

ρNaCl =
NNa+ ×M(Na)+NCl−M(Cl )

NA ×a3
.

On a montré plus haut que NNa+ = NCl− = 4 et que a = 2(r +R), soit après simplification :

ρNaCl =
M(Na)+M(Cl )

2NA × (r +R)3
.

Q5. Indiquer, en justifiant, la valeur numérique correcte parmi les valeurs suivantes :
ρNaCl = 2,16 g·cm−3 ; ρNaCl = 216 g·dm−3 ; ρNaCl = 21,6 kg·m−3.

On convertit toutes ces valeurs dans une unité commune, ce qui donne :
ρNaCl = 2,16 g·cm−3 ; ρNaCl = 0,216 g·cm−3 ; ρNaCl = 0,0216 g·cm−3.
On compare ensuite à la masse volumique de l’eau liquide : ρeau = 1,0 g·cm−3. Le

sel coule dans l’eau, ce qui implique que sa masse volumique est supérieure à celle
de l’eau. La seule possibilité est donc la première : ρNaCl = 2,16 g·cm−3.

Remarque :
On pouvait aussi faire le calcul, mais la calculatrice est interdite et il n’y a pas d’aide

au calcul. Une façon de procéder est d’admettre que les chiffres significatifs sont 2, 1
et 6, et raisonner en ordre de grandeur.

Données :
. Masses molaires : M(Na) = 23 g·mol−1 ; M(Cl) = 35,5 g·mol−1 ;
. Constante d’Avogadro : NA = 6,02 ·1023 mol−1 ;
. Les centres des sites octaédriques sont décalés d’une demi-arête par rapport

aux sommets et aux centres des faces.

Partie II - Trombone de Kœnig
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Remarque :
Cet exercice, extrait d’un sujet d’oral CCINP 2017, filière TSI, a la même thématique

que l’exercice 2 du TD5, qui a été corrigé en classe, à retravailler au besoin.

La figure 2 représente un trombone de Kœnig. C’est un système interférentiel
acoustique constitué d’une entrée (E) et d’une sortie (S) reliées par deux tubes en
U, dont l’un est muni d’une coulisse télescopique.

FIGURE 3 – Trombone de Kœnig

Un haut-parleur, placé à l’entrée, émet une onde sonore progressive sinusoïdale
à la fréquence f . Un microphone, placé à la sortie, enregistre le son résultant de la
superposition des ondes qui se sont propagées dans les deux tubes à la célérité c.
On suppose que les ondes ont la même amplitude dans les deux tubes et que leur
propagation guidée a lieu sans amortissement.

Q6. Rappelez les conditions nécessaires à l’observation d’interférences et justifier
qu’elles sont réunies dans ce montage.

Pour observer des interférences, il faut que plusieurs ondes se superposent en un
même point de l’espace. Ici, les deux ondes issues du haut-parleur et se propageant
dans les deux tuyaux se superposent au niveau du microphone placé en sortie.

Ces ondes doivent être de même nature, ce qui est le cas puisqu’il s’agit d’ondes
sonores.

Elles doivent être sinusoïdales (seul cas au programme), or l’énoncé précise que
c’est le cas.

Elles doivent être synchrones (autrement dit, avoir la même fréquence), ce qui est
le cas car elles sont émises en même temps par la même source, et se propagent dans
un milieu linéaire (l’air) qui ne modifie pas leur fréquence au cours de la propagation.

Le déphasage entre les deux signaux doit être constant dans le temps, ce qui est
le cas car leur phase à l’origine est identique (ils sont émis simultanément) et que le
déphasage dû à la propagation est fixé par la longueur du tube de droite, qui reste
constante une fois la configuration du montage fixée.

Enfin, le déphasage entre les deux signaux doit être un multiple entier de 2π (si-
gnaux en phase, interférences constructives) ou valoir π à un multiple entier de 2π
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près (signaux en opposition de phase, interférences destructives), ce qui est possible
en réglant judicieusement la différence de marche grâce au tube coulissant de droite.

Remarque : les deux signaux ont certes la même amplitude d’après l’énoncé,
mais ce n’est une condition nécessaire que si l’on souhaite avoir des interférences
maximalement constructives ou destructives.

On note d1 la distance parcourue par l’onde dans le tube fixe (à gauche) et d2 la
distance parcourue par l’onde dans le tube à coulisse. Lorsque la coulisse est rentrée
au maximum dans le tube fixe, les distances d1 et d2 sont égales. On note L le dépla-
cement de la coulisse par rapport à cette situation.

Q7. Dans le cas où L = 0, le microphone enregistre-t-il un son? Pourquoi?

Si L = 0, alors les deux signaux parcourent la même distance pour atteindre le mi-
crophone. Comme ils ont été émis en phase, et que la propagation n’introduit pas de
déphasage supplémentaire, ils arrivent en phase au niveau du microphone, où ils in-
terfèrent constructivement pour former un son amplifié. Le microphone enregistre donc
un son.

On considère à présent le cas où L > 0.
Q8. Quelle est la relation entre la différence de marche δ = d2 −d1 et L ? Quelle

est la condition sur la différence de marche et la longueur d’onde λ pour observer des
interférences constructives? Et des interférences destructives? En déduire les condi-
tions d’interférences constructives et destructives vérifiées par L, c et f .

Sur le schéma, on constate que dans le tube de droite, le son parcourt une dis-
tance L supplémentaire deux fois d’affilée par rapport au tube de gauche, ce qui se
traduit par d2 = d1+2L et δ= d2−d1 = 2L. Les interférences sont constructives si δ= nλ,
où n est un nombre naturel, et destructives si δ = nλ+λ/2 = (n +1/2)λ. Comme pour
une onde sinusoïdale, λ = c

f , on obtient respectivement L = nc
2 f pour des interférences

constructives et L = (n+1/2)c
2 f pour des interférences destructives.

On souhaite utiliser le trombone de Koenig pour étudier la célérité du son dans
l’air. On réalise l’expérience avec une onde sonore progressive sinusoïdale dont la
fréquence est f = 500 Hz. En déplaçant la coulisse, on constate que le microphone
n’enregistre aucun son aux positions successives de la coulisse notées L1 et L2.

Q9. Montrer que la célérité du son est c = 2 f (L2 −L1).

Les interférences destructives sont observées pour les positions L1 et L2, qui cor-
respondent à des ordres d’interférence successifs notés n et n +1, soit L1 = (n+1/2)c

2 f et
L2 = (n+1+1/2)c

2 f . On calcule alors L2 −L1 = c
2 f , qu’on réarrange pour obtenir l’expression

demandée.

On réalise l’expérience pour plusieurs températures. Le tableau suivant donne les
résultats des mesures.

Q10. Calculer la valeur expérimentale de la célérité du son à la température de
20◦C.
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On lit les valeurs de L2 et L1 à la température de 20◦C, on applique la formule
démontrée à la question Q9 pour trouver :

c = 2 f (L2 −L1) = 2×500(51,5−17,2) = 2×500×34,3 = 34300cm·s−1 = 343m·s−1.

Remarque : On a interpété ici la donnée f = 500Hz comme étant fournie avec 3
chiffres significatifs, ce qui est compatible avec l’utilisation d’un GBF pour alimenter le
haut-parleur. Le résultat a donc 3 chiffres significatifs également.

La théorie des ondes sonores permet d’établir que la célérité c du son dans un gaz
supposé parfait s’exprime par

c =
√
γRT

M
,

où le coefficient de Laplace γ vaut 7/5 pour l’air, R = 8,31 J ·K−1·mol−1 est la constante
des gaz parfaits, T la température (en kelvin) du gaz et M sa masse molaire (pour l’air
M = 29,0 g·mol−1).

Q11. Calculer la valeur théorique de la célérité du son dans l’air à la température
de 20◦C. Commenter.

On applique la formule fournie, en faisant les conversions nécessaires :

c =
√

7/5×8,31(273+20)

29,0×10−3
=

√
1,40×8,31×293

0,0290
= 343m · s−1,

en utilisant l’aide au calcul et en arrondissant pour conserver trois chiffres significatifs,
comme pour les données.

On retrouve le même résultat que dans l’expérience, ce qui valide le modèle utilisé
dans la théorie des ondes sonores.

Aide au calcul :√
1,33×8,31×293

0,029 = 334,1651 ;√
1,33×8,31×20

29 = 2,7608 ;√
1,40×8,31×293

0,029 = 342,8462 ;√
1,40×8,31×20

0,029 = 89,5737.

Partie III - La houle

Remarque : par certains aspects, cet exercice se rapproche de l’exercice 4 du TD4,
à revoir si besoin.
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La houle est un train de vagues régulières qui se propagent sur de longues dis-
tances depuis leur lieu de formation. Elles sont générées par un vent soufflant sur une
grande étendue d’eau sans obstacle. En arrivant près du rivage, sous certaines condi-
tions, la houle déferle, au grand bonheur des surfeurs.

1. Houle non sinusoïdale

La surface de l’eau est simplement schématisée ci-dessous aux instants t1 = 0 (trait
plein) et t2 = 60 s (pointillés) pour une vague qui se propage en direction de la côte.
L’origine, d’abscisse x = 0, est prise à 1000 m de la côte.

Q12. Justifier que la houle est une onde mécanique progressive, et expliquer ce
que représente concrètement la grandeur physique y(x, t ) qui lui est associée.

La houle est une onde progressive : le signal y associé se propage au cours du
temps, sans déplacement de matière mais en transportant de l’énergie. Elle est de
nature mécanique car elle nécessite un milieu matériel (l’eau) pour se propager. La
grandeur physique y(x, t ) qui est associée à cette onde est la hauteur locale de l’eau
par rapport au niveau de référence en l’absence de vague.

Q13. Calculer la largeur spatiale ∆x de la vague.

On observe que le profil de la vague s’étale sur une distance ∆x = xC − xA = 500−
100 = 400m.

Q14. Calculer sa célérité c, en m·s−1 puis en km·h−1.

En une durée t2 − t1 = 60s, le front d’onde se déplace d’une distance xD − xC =
800− 500 = 300m. La célérité de l’onde, qui désigne sa vitesse de propagation, vaut
alors c = xD−xB

t2−t1
= 300

60 = 5,0m·s−1 = 18km·h−1.

Q15. En déduire la valeur de la largeur temporelle ∆t de cette vague.

La largeur temporelle de l’onde désigne la durée qu’il lui faut pour traverser un dé-
tecteur. Elle vaut ∆t = ∆x

c = 400
5 = 80s= 1min20s.

Q16. Représenter graphiquement le signal y(xE, t ) qu’enregistrerait un capteur de
déplacement vertical positionné sur une bouée flottant à la surface de l’eau au point E
d’abscisse xE = 900 m.
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Le front d’onde atteint le point E au bout d’une durée tE = xE−xC
c = 900−500

5 = 400
5 = 80s

par rapport au début de l’expérience. On enregistre alors un signal pendant une durée
∆t = 80s. Sur la représentation temporelle du signal associé à l’onde, les états vibra-
toires sont observés dans l’ordre inverse par rapport à une représentation spatiale.

On enregistre alors le signal ci-dessous :

2. Houle sinusoïdale

Pour faciliter l’étude théorique des vagues, on utilise souvent le modèle des vagues
sinusoïdales. Pour de telles vagues, il existe une crête (point culminant) suivie d’un
creux (point le plus bas) et ainsi de suite, selon la forme d’un sinus.

La hauteur H de la vague correspond à la distance verticale entre le sommet de
la crête et le fond du creux de la vague. La longueur L de la vague correspond à la
distance entre deux crêtes ou deux creux successifs.

Dans cette sous-partie, la houle est modélisée par une onde sinusoïdale, qui pos-
sède une double périodicité spatiale et temporelle. La vitesse de propagation de la
houle est dorénavant notée v .

Q17. Quel nom est habituellement donné à la longueur L de la vague?

La plus petite longueur sur laquelle l’onde se répète, qui correspond à sa période
spatiale, est habituellement nommée longueur d’onde et notée λ.

a. Propagation en eau profonde

Loin des côtes, quand la hauteur H des vagues augmente, l’expérience montre que
la distance L entre deux vagues successives augmente aussi, ainsi que la vitesse de
propagation v . Des mesures en eau profonde permettent de construire le graphique
donnant l’évolution de v2 en fonction de L.
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Q18. Justifier qu’on peut modéliser les données par une relation de la forme v2 = aL,
et évaluer le coefficient directeur a avec deux chiffres significatifs. À l’aide des données
en fin de partie, donner l’expression théorique de a. Calculer sa valeur et commenter.

Le nuage de points qui correspond aux données expérimentales peut être modélisé
par une droite passant par l’origine du repère, ce qui traduit une relation de proportion-
nalité entre L et v2, qu’on peut écrire sous la forme v2 = aL2.

Pour trouver la valeur du coefficient directeur, on prend un point de cette droite
modèle : celui dont les coordonnées sont approximativement (500m; 800m2·s−2), puis
on calcule : a = v2

L = 800
500 = 1,6m·s−2. Sous l’hypothèse d’une eau profonde, on devrait

avoir v =
√

gλ
2π soit en mettant cette relation au carré, v2 = g

2πλ = g
2πL, de sorte que

a = g
2π ' 10

6 ' 1,6 : il y a un bon accord entre théorie et expérience.

Dans l’océan Atlantique, loin de la Pointe bretonne, là où l’océan avoisine en moyenne
les 3000 m de profondeur, une houle est formée de façon telle que la longueur de
chaque vague vaut L1 = 60 m.

Q19. Calculer sa vitesse de propagation v1. Quelle est sa période T1 ?

Comme L1 = 60m¿ 3000m= H, on est dans le régime d’eau profonde et on peut, en
extrapolant, appliquer le modèle déterminé plus haut : v2

1 = aL1 = 1,6×60 = 100m2·s−2

soit v1 =
√

v2
1 = p

100 = 10m·s−1. Comme l’onde est sinusoïdale, v1 = λ1
T1

= L1
T1

, d’où

T1 = L1
v1

= 60
10 = 6s.

b. Propagation en eau peu profonde

« Quand les vagues approchent de la côte et rencontrent des eaux peu profondes,
leur vitesse diminue car le frottement avec le sol les freine. Dès que la profondeur de-
vient plus faible que la moitié de la longueur d’onde, les particules d’eau sont encore
plus ralenties. Ainsi, la longueur d’onde de la houle diminue et son amplitude aug-
mente, mais sa période est la seule propriété qui ne change pas à l’approche de la
côte. Ainsi en arrivant près du rivage, la vitesse des particules sur la crête est plus
importante que celle des particules dans le creux de l’onde, et lorsque ce déséquilibre
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devient trop grand, la vague déferle. »
D’après http ://ifremer.fr

La houle étudiée atteint l’entrée d’un port.
Q20. À l’aide des données, calculer la nouvelle vitesse de propagation v2 de la

houle si la profondeur vaut 4 m. D’après les informations fournies par le site web de
l’Ifremer, quelle est sa période T2 ? En déduire sa nouvelle longueur L2. Commenter.

On suppose à présent qu’on est dans un régime d’eau peu profonde, ce qui permet
d’utiliser la formule v2 = √

g H = p
10×4 = 6m·s−1 en ne conservant qu’un seul chiffre

significatif. La période vérifie T2 = T1 = 6s par conservation de la période lors du chan-
gement de régime. La nouvelle longueur d’onde vaut, puisque l’onde est toujours si-
nusoïdale, L2 = v2T2 = 40m en ne conservant qu’un seul chiffre significatif. On est bien
dans le régime d’eau peu profonde comme supposé au début car L2 = 10H, ce qui va-
lide l’hypothèse faite au préalable.

Q21. L’entrée du port est limitée par deux digues séparées par un passage de lar-
geur d . Comment choisir l’ouverture d pour que la houle soit fortement arrêtée par les
digues et qu’aucun phénomène de diffraction ne soit observé?

Pour empêcher la diffraction, on peut choisir d ¿ λ2, soit d ¿ L2 = 40m. Une digue
de quelques mètres de large permet à de petits bateaux de passer et vérifie ce critère.

Données :
- L’intensité du champ de pesanteur terrestre est g = 10 m·s−2.
- Pour des ondes « courtes » (en eau profonde), c’est-à-dire telles que la longueur

d’onde λ est au moins dix fois plus faible que la profondeur h de l’océan, la vitesse de

propagation est donnée par la relation v =
√

gλ
2π .

- Pour des ondes « longues » (en eau peu profonde), c’est-à-dire telles que la lon-
gueur d’onde λ est au moins dix fois plus grande que la profondeur h de l’océan, la
vitesse de propagation est donnée par la relation v =√

g h.

Partie IV - Un brin en matière synthétique

Remarque :
Cette partie, issue du baccalauréat 2025 en filière générale spécialité SI, est clas-

sique et ressemble à l’exercice 1 du TD5 traité en classe, à revoir si nécessaire.

Les violonistes frottent habituellement leurs cordes à l’aide de brins en matière na-
turelle issus de la crinière de chevaux. De nouveaux brins en matière synthétique sont
de plus en plus utilisés par les musiciens.

On souhaite déterminer le diamètre du nouveau brin en matière synthétique à l’aide
du phénomène de diffraction et le comparer au diamètre d’un brin prélevé sur la cri-
nière de chevaux.

Données :
- Longueur d’onde du laser : λ= 650 nm, avec une incertitude-type u(λ) = 10 nm;
- Distance entre le brin et l’écran D = 1,7 m;
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FIGURE 4 – Schéma du montage de diffraction du faisceau laser par un brin

- La largeur de la tache centrale de la figure de diffraction est notée L, l’incertitude-
type associée est u(L) = 1×10−3 m.

Q22. Indiquer la couleur du laser utilisé dans cette expérience.

Une longueur d’onde λ= 650 nm correspond à de la lumière rouge.

Q23. Rappeler la relation entre le demi-angle caractéristique de la diffraction θ en
radian, la longueur d’onde du laser λ et la largeur a du brin.

On peut s’appuyer sur la relation approchée θ' λ
a qui ne fait pas d’hypothèse sur la

taille de l’obstacle, ou la relation (hors programme) sin(θ) = λ
a , valable pour un obstacle

de forme rectangulaire, ce qui est le cas ici.

L’angle θ étant petit, on peut se placer dans l’approximation des petits angles :
tan(θ) ' sin(θ) ' θ.

Q24. Par un raisonnement géométrique s’appuyant sur la figure 3, déterminer l’ex-
pression de θ en fonction de la distance D entre le brin et l’écran et de la largeur L de
la tache centrale. En déduire que le diamètre a du brin en matière synthétique a pour
expression a = 2Dλ

L .

On représente les données utiles sur un schéma, sur lequel on s’appuie pour faire
un raisonnement géométrique :

On remarque que tan(θ) = L/2
D = L

2D . Comme L ¿ D, on se trouve dans le cadre
de l’approximation des petits angles, ce qui permet d’écrire tan(θ) ' θ, et en combinant
avec le résultat de la question précédente, il vient : L

2D ' λ
a , soit a = 2λD

L en réarrangeant.
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Une simulation permet d’obtenir la distribution de l’intensité lumineuse sur l’écran
où se forme la tache de diffraction :

FIGURE 5 – Distribution de l’intensité lumineuse pour le brin en matière synthétique

Q25. À l’aide de la figure 4, déterminer la valeur du diamètre a du brin en matière
synthétique.

La tache centrale est délimitée par la première annulation de l’intensité lumineuse,
qui a lieu lorsqu’on s’éloigne de 6mm du centre de la tache d’après la figure 4. Ainsi,
L = 12mm.

On en déduit, en utilisant la relation trouvée à la question précédente : a = 2λD
L =

2×650×10−9×1,7
12×10−3 = 3,4×6,5

1,2 × 100×10−9

10−2 = 18,42×10−5 = 1,8×10−4m en utilisant l’aide au calcul
fournie et en conservant deux chiffres significatifs.

Une bonne estimation de l’incertitude-type associée à a est donnée par la relation :
u(a) = a u(L)

L .
Q26. Calculer l’incertitude-type u(a) associée au diamètre du brin en matière syn-

thétique.

On utilise la relation fournie : u(a) = a u(L)
L = 1,8×10−4 1

12 = 1,5×10−5m.

Q27. En tenant compte de l’incertitude-type, vérifier si le résultat du diamètre du
brin en matière synthétique obtenu expérimentalement est en accord avec celui du
brin issu de la crinière du cheval, qui vaut ac = 1,7×10−4 m.

On calcule l’écart normalisé : z = |a−ac |
u(a) = 1,8×10−4−1,7×10−4

1,5×10−5 = 0,6 < 2, ce qui permet
de valider l’accord entre la mesure et la valeur de référence tout en tenant compte de
l’incertitude-type.

Aide au calcul :

3,4×6,5
1,2 = 18,42.

FIN
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