TD13 : Dynamique du point matériel

CAPACITES TRAVAILLEES :

> Enoncer la définition du barycentre. Utiliser son associativité. Exploiter les symétries pour
prévoir la position du barycentre d’un systéme homogene : TLB1.

> Décrire le mouvement relatif de deux référentiels galiléens : TLB2, ex5.

> Etablir un bilan des forces et en rendre compte sur un schéma : TLB3,4,5,6,7, ex1,2,3,4,5.

> Déterminer les équations du mouvement d’un point matériel : TLB4,5,6,7, ex1,2,3,4,5.

> Mettre en équation le mouvement sans frottement d’un point matériel et le caractériser
comme un mouvement a vecteur accélération constant : TLB4,5, ex1,2.

> Exploiter, sans la résoudre analytiquement, une équation différentielle : analyse en ordres
de grandeur, détermination de la vitesse limite, utilisation des résultats obtenus par simulation
numérique : TLB5, ex2.

> Etablir 'équation du mouvement du pendule simple. Justifier 'analogie avec l'oscillateur
harmonique dans le cadre de I'approximation linéaire : TLB6.

> Etablir et exploiter Ia troisiéme loi de Kepler dans le cas d’'un mouvement circulaire : TLB7,
ex3,4.

1 Questions de cours

QC1 : Modéle du point matériel.

QC2 : Centre de masse d’un systeéme.

QC3 : Méthode de résolution d’un probléme de dynamique.
QC4 : Lois de force.

QCS5 : Lois de Newton.

QCS6 : Lois de Kepler.

2 Tester les bases

TLB1 : position d’un barycentre

1. Enoncer la définition du barycentre (centre de masse) d’un systéme de points matériels.

2. On place quatre boules supposées ponctuelles M1, M,, M3 et My de masses respectives
m;, my, m3 et my aux sommets d’'une planche horizontale carrée dont l'aréte vaut 2 meétres,
centrée sur l'origine d’un repere cartésien (Oxy).
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Déterminer la position du barycentre dans les cas suivants :
-Mp=My=mM3=mMy=109;

-Mmp=my=m3=my=100g;
-mp=200Q;My=m3=my=100g;

-my=200g; m;=m3=my=100g.

3. Déterminer ou justifier qualitativement la position du centre de masse des systemes
suivants :

a. une boule de billard;

b. le rateau dont la photographie est donnée ci-dessous;

c. les deux masses sur les plateaux de la balance ci-dessous;

d. le skieur muni de son matériel, dont la chronophotographie est donnée ci-dessous;;

€. le gadget en forme d’aigle ci-dessous;

f. le croissant ci-dessous, obtenu en découpant un cercle dans un matériau homogene.
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TLB2 : mouvement relatif de deux référentiels galiléens

1. Enoncer la premiére loi de Newton.

2. Rappeler la définition d’'un mouvement rectiligne et uniforme.

3. Quelle propriété possede le vecteur vitesse v d’'un point matériel M dans un référentiel
ou il est en mouvement rectiligne et uniforme ? Comment cela se traduit-il sur la dérivée de
cette vitesse par rapport a la variable temps ?

4. Si un systéme posséde une vitesse v par rapport a un référentiel %, lui-méme en mou-
vement de translation a la vitesse V par rapport & un référentiel %’, exprimer la vitesse v’ de ce
systéme par rapport au référentiel %’ en fonction de 7 et V.

5. En déduire une condition sur V pour que 2’ soit galiléen si 2 est galiléen.

6. En conclusion, décrire le mouvement relatif de deux référentiels galiléens.

TLB3 : une descente tout schuss

Un skieur de masse m = 60 kg descend en ligne droite, a vitesse constante, une piste
enneigée faisant un angle o = 10° avec I'horizontale.

Lintensité de la pesanteur vaut g = 10N-kg~!.

1. Faire linventaire des principales forces qui s’exercent sur le skieur et les représenter
qualitativement sur un schéma.

2. Etablir la relation vectorielle que vérifient ces forces, dans un référentiel que vous préci-
serez.

3. Expliquer pourquoi la force de frottement peut étre considérée constante au cours du
mouvement, puis déterminer sa valeur.
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TLB4 : la panenka

En 1976, lors de la finale de 'Euro, le match est serré et doit se décider aux tirs aux buts.
Antonin Panenka, joueur tchécoslovaque, doit effectuer un tir décisif. Il prend une longue course
d’élan et frappe... mollement et en plein milieu du but. Le gardien allemand Sepp Maier, qui
a plongé sur sa gauche, regarde impuissant ce ballon qui retombe doucement dans ses filets.
Panenka vient de donner a la fois le titre a son équipe et naissance a une véritable oeuvre
d’art : « la panenka ».

En 2015 Panenka raconte comment lui est venue cette idée : « Une nuit ou je ne dormais
pas, je me suis dit que les gardiens choisissaient généralement de partir sur un c6té. Mais si
on frappait trés fort au centre, ils pouvaient quand méme arréter la balle en tendant le pied. En
revanche, si le contact avec le ballon était plus Iéger, il serait impossible au gardien de faire
demi-tour pour repousser le ballon. »

Cette technique demeure longtemps confidentielle car le championnat tchécoslovaque reste
secret, cloitré derriére le « rideau de fer ». La spéciale de Panenka est donc totalement incon-
nue des Occidentaux, d’ou la surprise totale en finale de I'Euro 76!

D’aprés Jéréme BERGOT, La dure épreuve du penalty : Antonin Panenka, un geste caché
derriére le rideau, Ouest France 2021

Captures d'écran du tir de Panenka

On cherche a étudier la trajectoire du ballon lors du tir au but a partir de la vidéo de la finale
de 1976. Malheureusement, le zoom progressif de la vidéo ne permet pas de faire des mesures
de vitesse trés précises. En revanche, on peut faire des chronométrages a I'aide d’un logiciel
de pointage. On étudie le mouvement a partir de l'instant, choisi comme origine des temps, ou
le ballon ne touche plus ni le sol ni le pied de Panenka.

Les informations extraites de la vidéo sont les suivantes :

> le ballon traverse la ligne de but at, =0,96 s;

> le ballon semble traverser la ligne de but en plein milieu de la cage a la fois dans le sens
de la hauteur et de la largeur.

Données :

> intensité du champ de pesanteur terrestre : g =9,81 m- s72;

> distance jusqu’a la ligne de but lors d’'un tirau but : D=11 m;

> dimensions de la cage de but : L=7,32 m en largeur et h = 2,44 m en hauteur;

> vitesse initiale moyenne d’un tir au but lors d’un penalty « classique » : 120 km-h™1;
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FIGURE 1 — Schéma de la situation

Le ballon est choisi comme systéme d’étude. Le référentiel terrestre est supposé galiléen.

1. Représenter sur un schéma le ballon et la ou les force(s) qui s’exerce(nt) sur lui entre
l'instant de la frappe et celui de I'impact avec le sol (on néglige I'influence de l'air).

2. Déterminer I'expression des coordonnées du vecteur accélération dans le repére pro-
posé sur la figure ci-dessous.

3. Montrer que les équations horaires du mouvement sont les suivantes :

x(1) Voxl

L
y() = —Egt + Voy L.

4. Reproduire la figure et y tracer I'allure de la trajectoire du ballon.
5. Déterminer les valeurs de vy, et de vo,.
6. Vérifier que Panenka frappe « mollement » dans le ballon.

TLBS5 : chute d’une sonde sur la planete Mars (CCINP 2023)

Une sonde chute dans I'atmosphere de la planéte Mars. Un parachute ouvert ralentit sa
chute, ce qui occasionne une force de type frottement fluide f = -k, ol h est le coefficient de
frottement fluide et v est le vecteur vitesse.

1. Soit 'axe (Oz), vertical et orienté vers le bas, dont I'origine O se situe au point d’ouverture
du parachute. Faites un schéma sur lequel figurent la sonde spatiale matérialisée par son
centre de gravité G a une altitude quelconque aprés ouverture du parachute, I'axe (Oz) et les
deux forces s’exergant sur la sonde.

2. La descente de la sonde peut-elle étre qualifiée de chute libre ? Justifier.

3. A partir de la seconde loi de Newton, établir 'équation différentielle vérifiée par la projec-
tion de la vitesse v de la sonde sur 'axe vertical et la mettre sous la forme : 2% + Av =B, ol A et
B représentent deux constantes dont on précisera les expressions.

4. Sans résoudre I'équation, déduire de la question précédente I'expression de la vitesse
limite théorique pouvant étre atteinte par la sonde avec cette hypothese, au bout d’'un temps
infiniment long.

TLB6 : pendule simple non amorti

Un pendule simple est constitué d’'un systeme, modélisé par un point matériel M de masse
m, suspendu a I'extrémité d’un fil inextensible de masse négligeable et de longueur I. Lautre
extrémité est fixée en un point O, choisi comme origine d’un repére cartésien associé au réfé-
rentiel (%) terrestre, considéré galiléen. Laxe (Ox) est selon la verticale descendante.

Langle formé par la verticale descendante et le fil est une fonction de la variable temps 0().
A linstant initial, le systéme est laché sans vitesse initiale dans le plan Oxy (défini alors par le
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fil et la verticale), depuis la position 6(r = 0) = 8y, avec 6y = 15°. On considére que le systeme
est soumis uniquement a la force de tension du fil et a 'attraction terrestre dans le champ de
pesanteur uniforme g = gii,, avec g =9,8 m-s~2.

1. Ecrire la deuxiéme loi de Newton dans la base cartésienne. Commenter.

2. Ecrire la deuxiéme loi de Newton dans la base polaire. Commenter.

3. Déterminer I'équation différentielle vérifiée par 6, et expliquer ce qui rend a priori sa
résolution analytique (autrement dit, a la main) complexe.

4. Simplifier cette équation différentielle dans le cadre de I'approximation des petits angles,
et expliquer pourquoi on peut la qualifier d’approximation linéaire. Commenter.

5. Déterminer la période T, des oscillations de faible amplitude. Faire I'application numé-
rique pour | =1,00 m. Commenter.

TLBY7 : localisation d’un flotteur par satellite (d’aprés CCS 2025)

Un flotteur a la surface de 'océan est suivi et localisé par nano-satellite.

Le nano-satellite mg = 25 kg est placé sur une orbite terrestre circulaire a une altitude h; =
650 km. On se place dans le référentiel géocentrique supposé galiléen et on suppose que la
Terre est sphérique, homogene et sans rotation perceptible sur les durées mises en jeu ici.

1. Exprimer la force gravitationnelle exercée par la Terre sur un nano-satellite.

2. En déduire I'expression de la vitesse v; du satellite dans le référentiel géocentrique.
Calculer v;.

3. Vérifier que dans le référentiel géocentrique, la vitesse du satellite est nettement supé-
rieure a celle du flotteur.

Données :

> Rayon de la Terre : Ry =6371 km;

> Masse de la Terre : Mt = 5,97 x 10%* kg ;

> Constante gravitationnelle : G=6,67 x 107! m3.-kg~!-s72;

> Période de rotation sidérale de la Terre Tt = 86164 s.

3 Exercices

Exercice 1 : protection des crapauds

Dans le sud de la Seine-et-Marne, la plaine de Sorques est une zone naturelle protégée
qui abrite de nombreux amphibiens (crapauds, grenouilles, tritons). Les crapauds Bufo bufo
ont pour habitat la forét de Fontainebleau la majeure partie de I'année. Une fois par an, au
printemps, ces amphibiens migrent vers les plans d’eau pour se reproduire.

FIGURE 2 — Gauche : barriere de protection le long d’'une route ; droite : crapaud

Pour éviter qu’ils ne se fassent écraser en passant sur la route qui traverse cette zone de
migration, un dispositif a été installé : des barriéres en bois, suffisamment hautes pour empé-
cher le saut sur la route, sont placées de chaque cété, obligeant les amphibiens a emprunter
des passages souterrains appelés « crapauducs ».
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Dans cet exercice, on se propose d’étudier le mouvement lors d’un saut d’'un crapaud Bufo
bufo afin de déterminer la hauteur minimale des barriéres de protection.

Le systéeme considéré est un crapaud dont on étudie le mouvement du centre de masse,
noté G. Le champ de pesanteur terrestre local g est considéré uniforme et les frottements lies
a l'action de l'air sont supposés négligeables face au poids.

Données :
> intensité de la pesanteur terrestre : g =9,81 m-s—2
> taille moyenne d’un crapaud Bufo bufo : 10 cm.

Le mouvement du centre de masse G du crapaud est étudié dans le référentiel terrestre
supposé gallleen et muni du systeme d’axes (Ox) et (Oz) respectivement horizontal muni du
vecteur unitaire i et vertical muni du vecteur unitaire j.

FIGURE 3 — Modélisation du saut du crapaud

Aladate r=0, le centre de masse G est placé a I'origine du repére O et son vecteur vitesse
initiale, noté 7y, a une direction faisant un angle a avec I'axe horizontal (Ox). On note vy la
norme de 7.

1. En appliquant la deuxiéme loi de Newton, établir les expressions littérales des compo-
santes a, et a, du vecteur accélération dg du centre de masse du crapaud suivant les axes
(Ox) et (Oz).

2. Etablir les expressions littérales des composantes v.(t) et v.(t) du vecteur vitesse g du
centre de masse du crapaud suivant les axes (Ox) et (Oz).

3. Montrer que les expressions littérales des équations horaires x(t) et z(t) de la position du
centre de masse G du crapaud au cours de son mouvement s’écrivent :

x(t) = vgcos(a) t
et
1, .
z(t) = —Egt + Vg sin(a) £.
4. Etablir 'expression de la durée du saut du crapaud, notée tq.., €n fonction de vy, g et a.
5. En utilisant I'expression de x(t) et 'expression de t,,,; obtenue a la réponse a la ques-

tion 4, montrer que la vitesse vy permettant au crapaud d’effectuer un saut de longueur d est
donnée par la relation :

gd
sin(2a)

6. Les crapauds les plus puissants peuvent faire des sauts d’'une longueur égale a 20 fois
leur taille. Calculer la valeur de vy qu’ils atteignent pour un angle o = 45°.
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La hauteur maximale z,,,, d’un saut est obtenue lorsque ce saut est vertical. La vitesse
initiale est toujours notée vj.
7. Etablir que la hauteur maximale d’un saut a pour expression littérale :

8. En deduire la valeur de la hauteur de barriere minimale, notée Hcpampion, Qui permet
d’arréter les crapauds les plus puissants, capables de sauter verticalement avec une vitesse
initiale v,y de valeur calculée a la question 6.

9. Les barrieres mesurent en réalité 50 a 60 cm de hauteur. Expliquer pourquoi on choisit
d'installer des barrieres d’'une hauteur inférieure a Hcpampion-

Exercice 2 : la gréle

FIGURE 4 — Gauche : cumulonumbus ; droite : gros grélons

La gréle se forme dans les cumulonimbus, entre 1000 m et 10 000 m d’altitude. Un grélon
sphérique de diamétre d = 3,0 cm et de masse m =13 g tombe d’une altitude k= 1500 m (lors-
qu’il n’est plus maintenu au sein du nuage) depuis le point O, choisi comme origine d’'un axe
vertical (Oz) descendant. Sa vitesse peut atteindre 160 km-h~! au niveau du sol.

1. En supposant que le grélon tombe en chute libre, c’est-a-dire uniquement soumis a son
propre poids, calculer la valeur de sa vitesse vy, lorsqu’il atteint le sol. Commenter.

En réalité, le grélon est soumis & deux autres forces : une force de frottement fluide f
quadratique, c’est-a-dire de norme proportionnelle au carré de la vitesse (donc telle que sa
norme est de la forme [|f|| = Av?), et la poussée d’Archiméde Ti. La masse volumique de l'air
vaut pgir =1,2 kg:-m3.

2. Rappeler ce que représente concretement la poussée d’Archiméde et donner son ex-
pression en fonction des données du probléme. Justifier qu’elle est négligeable par rapport au
poids du grélon.

3. Par analyse dimensionnelle, déterminer 'unité de A.

4. Etablir réquation différentielle vérifiée par la vitesse v du grélon. Lécrire sous la forme

dv

— =A-B/’
dt

et préciser les expressions des coefficients A et B.

Léquation différentielle précédente peut se résoudre par la méthode d’Euler. Cette méthode
numérique itérative permet de calculer, pas a pas et de facon approchée, les valeurs de la
vitesse v du grélon a différents instants t, pour ainsi construire la courbe représentative de
v=f(1).

La relation utilisée est la suivante :

V(tps1) = v(En) + Av(ty) = v(t,) + a(ty) x At

avec At =ty — ty.
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Voici un extrait d’'une feuille de calcul des valeurs de la vitesse v du grélon et de son accé-
|ération a = % a différents instants, ot A=9,81 m-s™2,B=1,56x10"2m ' et At=0,50s :

t(s) v(m-s™) | a(m-s?)
0,00 0,00 9.81
0,50 4,90 0,44
1,00 0,62 8.37
1.50 138 az
2.00 Vs 518

5. Expliquer ce que représente At dans 'algorithme.
6. Calculer a3 et vy.

Il vient la courbe d’évolution associée a la vitesse v :

vitesse d'un grélon au cours du temps

25 Xxxxxxxxxxxxxxxxxxxx
X

X
X

20+ ®

tis)

7. Le graphique montre que la vitesse du grélon tend vers une vitesse limite v;;,,. Retrouver
théoriquement sa valeur en exprimant v;;,, en fonction des constantes A et B.

Exercice 3 : mesure de la masse de Jupiter et du Soleil

En 1610, Galilée a été le premier a observer les quatre principaux satellites de la planéte
Jupiter (lo, Europe, Ganyméde et Callisto) en utilisant une lunette astronomique qu’il avait lui-
méme fabriquée.

A la suite de Galilée, les observations de ces quatre satellites ont permis de réaliser les
mesures regroupées dans le tableau ci-dessous :
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Satellite : Période de révolution T en jours Demi-grand axe a de la
; () trajectoire elliptique (x10° km)
lo 1,75 4,22
Europe 3,55 6,71 |
Ganyméde 7,16 10,7 !_
~ Callisto 167 18,8

A I'aide d’un tableur, on a positionné les mesures dans un graphique donnant les variations
de T? en fonction de celles de a® pour les quatre satellites de Jupiter. Le tableur permet de
superposer a ces points de mesure une modélisation par une droite.

300

2501

T2 en j?
—
wn
=

100

50 s

04 0,5 0,6 0,7

a’ ( x10® km?)

0,1 0,2 0,3

==

Exploitation des résultats expérimentaux :

1. A partir des résultats expérimentaux, préciser la relation qui existe entre T2 et a3 pour les
quatre satellites de Jupiter. Donner le nom de la loi correspondante (établie en 1618).

Modélisation du mouvement d’'un satellite de Jupiter

On se place dans le cadre théorique de la mécanique de Newton (publiée en 1687) pour
retrouver la relation évoquée dans la question 1 et déterminer la masse M; de Jupiter.

On étudie le mouvement du satellite dans le référentiel joviocentrique (centré sur Jupiter),
supposé galiléen. On fait I'approximation que le mouvement du centre S du satellite est circu-
laire, centré sur le centre J de Jupiter, et on considére que la seule force qui s’applique sur le
satellite est la force de gravitation Fy/s exercée par Jupiter sur le satellite.

On désigne par r la distance entre les centres des deux astres, par My la masse de Jupiter
et par m la masse du satellite.

Sens du
mouvement
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2. Sur un schéma, reprendre les éléments donnés sur la figure ci-dessus et représenter
sans souci d’échelle :

- Le vecteur vitesse s du satellite ;

- La force de gravitation Fy,s exercée par Jupiter sur le satellite.

3. Donner I'expression de la force de gravitation Fj;s exercée par Jupiter sur le satellite en
fonction de My, m, G, r et 7.

4. Appliquer la deuxiéme loi de Newton et en déduire I'expression de la vitesse vs du satel-
lite en fonction de G, M; et .

5. En déduire que, dans le cadre de I'approximation du mouvement circulaire, le quotient
2—2 est égal a éLNf]

6. A l'aide des résultats expérimentaux, calculer la masse M; de Jupiter. Commenter un
éventuel écart a la valeur tabulée : 1,8986 x 10*7kg.

Donnée : Constante de gravitation universelle G = 6,67 x 10~''m3-kg=!-s72.

La relation établie a la question 5 pour le systéme composé de Jupiter et de ses satellites
est universelle et est applicable a d’autres systemes constitués de satellites en orbite autour
d’un astre central.

7. Déterminer la masse du Soleil.

Donnée : la distance entre la Terre et le Soleil est de 150 millions de kilométres.

Exercice 4 : la mission Rosetta

En 2004, la sonde européenne Rosetta a quitté la Terre pour un voyage long de 10 ans. Sa
destination était la cométe 67P Churyumov-Gerasimenko, dont elle s’est approchée en 2014.
Une fois a proximité de cette derniére, Rosetta a été mise en orbite autour de la cométe et a
débuté ses observations.

Données :

- constante gravitationnelle : G = 6,67 x 10"''N-m?-kg~2;

- masse de la cométe 67P : M¢ =1,0x 10'3kg ;

- masse de Rosetta : M =3,0 x 103kg ;

- distance moyenne Terre-Soleil : une unité astronomique : 1u.a.= 1,50 x 108km;

- dans cet exercice, la cométe 67P est modélisée par une boule de rayon R=2,0 km;

- caractéristiques de la trajectoire de la cométe autour du Soleil : distance au plus prés du
Soleil (périhélie P) : 1,24 u.a.; distance au plus loin du Soleil (aphélie A) : 5,68 u.a.

1. La comete 67P Churyumov-Gerasimenko

La comete 67P Churyumov-Gerasimenko a été découverte en septembre 1969. La valeur
de la vitesse de la cométe varie entre 5 et 35 km-s™! environ dans le référentiel héliocentrique.
Sa trajectoire est représentée ci-dessous (S désigne le Soleil).

1. D’aprés la premiére loi de Kepler, quelle est la nature de la trajectoire de la cométe dans
le référentiel héliocentrique ?
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2. Expliquer, en utilisant une des lois de Kepler, pourquoi la vitesse de la cométe n’est pas
constante sur sa trajectoire. Vous compléterez le schéma fourni pour illustrer cette loi.

3. Enoncer la troisiéme loi de Kepler.

4. Déterminer la valeur de la période de révolution T de la cométe autour du Soleil.

2. Satellisation de Rosetta

Au cours des mois d’aoit et septembre 2014, la sonde Rosetta est arrivée a proximité de la
comeéte et a été mise en orbite autour de celle-ci sur un trajectoire que I'on considére circulaire,
a une altitude h =20 km.

5. Faire un schéma de Rosetta en orbite autour de la comete et y représenter le vecteur
modélisant la force gravitationnelle exercée par la cométe sur Rosetta.

6. Donner I'expression vectorielle de cette force gravitationnelle.

7. Montrer que dans I'approximation d’'un mouvement circulaire, la norme de la vitesse de

Rosetta est constante et s'écrit : v = /<. Calculer sa valeur.

8. Combien de temps Rosetta met-elle pour faire un tour de la comeéte ?

Exercice 5 : un camion qui accélére

Un camion roule en ligne droite sur une route plate.

Pendant toute la durée de I'étude, son accélération est constante dans un référentiel ter-
restre, supposé galiléen. La norme de I'accélération vaut ||| = 0,5 m-s~2.

Une corde est accrochée a l'arriére du toit du camion. A son autre extrémité est accroché
un seau de masse m =1,0 kg.

Le seau est secoué violemment lorsque le camion se met a accélérer, puis atteint un régime
stationnaire au cours duquel il reste a distance fixe du camion. La corde est alors tendue et
forme un angle 0, fixe, avec la verticale descendante.

On supposera que le camion protege le seau du vent, on ne tiendra donc pas compte d’une
éventuelle force de frottement fluide.

On rappelle que I'accélération de la pesanteur a pour norme g = [|g|| = 9,8 m-s~2.

Pour paramétrer le mouvement, on considere un axe des abscisses (Ox) parallele a la route,
orienté vers la droite, et un axe des ordonnées (Oy) perpendiculaire a cette derniére, orienté
vers le haut.

Le systéme étudié est le seau, modélisé par un point matériel.
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1. Caractériser le mouvement du systeme dans le référentiel terrestre.

2. Faire le bilan des principales forces s’exercant sur le systéme et donner leur expression
ou, a défaut, leurs principales caractéristiques. Les représenter sur un schéma sans souci
d’échelle.

3. Appliquer la relation fondamentale de la dynamique au systéme pour obtenir une équa-
tion vectorielle. La projeter sur les axes (Ox) et (Oy) pour obtenir deux équations scalaires.

4. Exprimer tan(0) en fonction de a et g, puis 6 en fonction de a et g.

5. Quelle serait la valeur de I'angle 6 si le camion avait un mouvement rectiligne et uni-
forme ? Commenter.

6. Quelle serait la valeur approximative de I'angle 6 si le camion avait une accélération trés
grande devant celle de la pesanteur ? Commenter.

7. Exprimer puis calculer la valeur de la tension T de la corde.

8. Enoncer le principe d'inertie. Lappliquer pour montrer que le référentiel dans lequel le
seau est immobile n’est pas galiléen.

9. On peut définir une force d’inertie d’entrainement F;., qui est une force fictive & ajouter
aux forces réelles pour que le principe d’inertie soit valide dans le référentiel ou le seau est
immobile. Etablir 'expression de cette force.

4 Résolution de probleme
Etretat est une ville normande connue pour ses falaises. On laisse tomber un gros galet de-
puis le sommet de I'une d’elles. On entend le choc du caillou avec le pied de la falaise environ

cing secondes apres I'avoir laché sans vitesse initiale.

Estimer la hauteur de la falaise.

FIGURE 5 — Gauche : vue de la falaise ; droite : photographie du galet

Données :

> intensité de I'accélération de la pesanteur : g =10 m-s™2;

> célérité du son dans l'air : ¢5op, =340 m-s™!;

> masse volumique du galet : p=3,2 g-cm™3;

> la formule de Stokes s’applique pour un systeme en forme de boule de rayon R, si la force
de frottement fluide est linéaire en la vitesse : f = —6mnRT;

> viscosité dynamique de 'air : n=1,8 x107° kg-m~1.s71,

Page 12



