
TD13 : Dynamique du point matériel

CAPACITÉS TRAVAILLÉES :
. Énoncer la définition du barycentre. Utiliser son associativité. Exploiter les symétries pour

prévoir la position du barycentre d’un système homogène : TLB1.
. Décrire le mouvement relatif de deux référentiels galiléens : TLB2, ex5.
. Établir un bilan des forces et en rendre compte sur un schéma : TLB3,4,5,6,7, ex1,2,3,4,5.
. Déterminer les équations du mouvement d’un point matériel : TLB4,5,6,7, ex1,2,3,4,5.
. Mettre en équation le mouvement sans frottement d’un point matériel et le caractériser

comme un mouvement à vecteur accélération constant : TLB4,5, ex1,2.
. Exploiter, sans la résoudre analytiquement, une équation différentielle : analyse en ordres

de grandeur, détermination de la vitesse limite, utilisation des résultats obtenus par simulation
numérique : TLB5, ex2.

. Établir l’équation du mouvement du pendule simple. Justifier l’analogie avec l’oscillateur
harmonique dans le cadre de l’approximation linéaire : TLB6.

. Établir et exploiter la troisième loi de Kepler dans le cas d’un mouvement circulaire : TLB7,
ex3,4.

1 Questions de cours
QC1 : Modèle du point matériel.
QC2 : Centre de masse d’un système.
QC3 : Méthode de résolution d’un problème de dynamique.
QC4 : Lois de force.
QC5 : Lois de Newton.
QC6 : Lois de Kepler.

2 Tester les bases
TLB1 : position d’un barycentre
1. Énoncer la définition du barycentre (centre de masse) d’un système de points matériels.
2. On place quatre boules supposées ponctuelles M1, M2, M3 et M4 de masses respectives

m1, m2, m3 et m4 aux sommets d’une planche horizontale carrée dont l’arête vaut 2 mètres,
centrée sur l’origine d’un repère cartésien (Oxy).



Déterminer la position du barycentre dans les cas suivants :
- m1 = m2 = m3 = m4 = 10 g ;
- m1 = m2 = m3 = m4 = 100 g ;
- m1 = 200 g ; m2 = m3 = m4 = 100 g ;
- m2 = 200 g ; m1 = m3 = m4 = 100 g.

3. Déterminer ou justifier qualitativement la position du centre de masse des systèmes
suivants :

a. une boule de billard ;
b. le rateau dont la photographie est donnée ci-dessous ;
c. les deux masses sur les plateaux de la balance ci-dessous ;
d. le skieur muni de son matériel, dont la chronophotographie est donnée ci-dessous ;
e. le gadget en forme d’aigle ci-dessous ;
f. le croissant ci-dessous, obtenu en découpant un cercle dans un matériau homogène.

TLB2 : mouvement relatif de deux référentiels galiléens
1. Énoncer la première loi de Newton.
2. Rappeler la définition d’un mouvement rectiligne et uniforme.
3. Quelle propriété possède le vecteur vitesse ~v d’un point matériel M dans un référentiel

où il est en mouvement rectiligne et uniforme? Comment cela se traduit-il sur la dérivée de
cette vitesse par rapport à la variable temps?

4. Si un système possède une vitesse ~v par rapport à un référentiel R, lui-même en mou-
vement de translation à la vitesse ~V par rapport à un référentiel R’, exprimer la vitesse ~v ′ de ce
système par rapport au référentiel R’ en fonction de ~v et ~V.

5. En déduire une condition sur ~V pour que R’ soit galiléen si R est galiléen.
6. En conclusion, décrire le mouvement relatif de deux référentiels galiléens.

TLB3 : une descente tout schuss
Un skieur de masse m = 60 kg descend en ligne droite, à vitesse constante, une piste

enneigée faisant un angle α= 10◦ avec l’horizontale.
L’intensité de la pesanteur vaut g = 10N·kg−1.
1. Faire l’inventaire des principales forces qui s’exercent sur le skieur et les représenter

qualitativement sur un schéma.
2. Établir la relation vectorielle que vérifient ces forces, dans un référentiel que vous préci-

serez.
3. Expliquer pourquoi la force de frottement peut être considérée constante au cours du

mouvement, puis déterminer sa valeur.
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TLB4 : la panenka
En 1976, lors de la finale de l’Euro, le match est serré et doit se décider aux tirs aux buts.

Antonín Panenka, joueur tchécoslovaque, doit effectuer un tir décisif. Il prend une longue course
d’élan et frappe. . . mollement et en plein milieu du but. Le gardien allemand Sepp Maier, qui
a plongé sur sa gauche, regarde impuissant ce ballon qui retombe doucement dans ses filets.
Panenka vient de donner à la fois le titre à son équipe et naissance à une véritable oeuvre
d’art : « la panenka ».

En 2015 Panenka raconte comment lui est venue cette idée : « Une nuit où je ne dormais
pas, je me suis dit que les gardiens choisissaient généralement de partir sur un côté. Mais si
on frappait très fort au centre, ils pouvaient quand même arrêter la balle en tendant le pied. En
revanche, si le contact avec le ballon était plus léger, il serait impossible au gardien de faire
demi-tour pour repousser le ballon. »

Cette technique demeure longtemps confidentielle car le championnat tchécoslovaque reste
secret, cloîtré derrière le « rideau de fer ». La spéciale de Panenka est donc totalement incon-
nue des Occidentaux, d’où la surprise totale en finale de l’Euro 76 !

D’après Jérôme BERGOT, La dure épreuve du penalty : Antonin Panenka, un geste caché
derrière le rideau, Ouest France 2021

On cherche à étudier la trajectoire du ballon lors du tir au but à partir de la vidéo de la finale
de 1976. Malheureusement, le zoom progressif de la vidéo ne permet pas de faire des mesures
de vitesse très précises. En revanche, on peut faire des chronométrages à l’aide d’un logiciel
de pointage. On étudie le mouvement à partir de l’instant, choisi comme origine des temps, où
le ballon ne touche plus ni le sol ni le pied de Panenka.

Les informations extraites de la vidéo sont les suivantes :
. le ballon traverse la ligne de but à tb = 0,96 s ;
. le ballon semble traverser la ligne de but en plein milieu de la cage à la fois dans le sens

de la hauteur et de la largeur.

Données :
. intensité du champ de pesanteur terrestre : g = 9,81 m· s−2 ;
. distance jusqu’à la ligne de but lors d’un tir au but : D = 11 m;
. dimensions de la cage de but : L = 7,32 m en largeur et h = 2,44 m en hauteur ;
. vitesse initiale moyenne d’un tir au but lors d’un penalty « classique » : 120 km·h−1 ;
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FIGURE 1 – Schéma de la situation

Le ballon est choisi comme système d’étude. Le référentiel terrestre est supposé galiléen.

1. Représenter sur un schéma le ballon et la ou les force(s) qui s’exerce(nt) sur lui entre
l’instant de la frappe et celui de l’impact avec le sol (on néglige l’influence de l’air).

2. Déterminer l’expression des coordonnées du vecteur accélération dans le repère pro-
posé sur la figure ci-dessous.

3. Montrer que les équations horaires du mouvement sont les suivantes :

x(t ) = v0x t

y(t ) = −1

2
g t 2 + v0y t .

4. Reproduire la figure et y tracer l’allure de la trajectoire du ballon.
5. Déterminer les valeurs de v0x et de v0y .
6. Vérifier que Panenka frappe « mollement » dans le ballon.

TLB5 : chute d’une sonde sur la planète Mars (CCINP 2023)
Une sonde chute dans l’atmosphère de la planète Mars. Un parachute ouvert ralentit sa

chute, ce qui occasionne une force de type frottement fluide ~f =−h~v , où h est le coefficient de
frottement fluide et ~v est le vecteur vitesse.

1. Soit l’axe (Oz), vertical et orienté vers le bas, dont l’origine O se situe au point d’ouverture
du parachute. Faites un schéma sur lequel figurent la sonde spatiale matérialisée par son
centre de gravité G à une altitude quelconque après ouverture du parachute, l’axe (Oz) et les
deux forces s’exerçant sur la sonde.

2. La descente de la sonde peut-elle être qualifiée de chute libre? Justifier.
3. À partir de la seconde loi de Newton, établir l’équation différentielle vérifiée par la projec-

tion de la vitesse v de la sonde sur l’axe vertical et la mettre sous la forme : d v
d t +Av = B, où A et

B représentent deux constantes dont on précisera les expressions.
4. Sans résoudre l’équation, déduire de la question précédente l’expression de la vitesse

limite théorique pouvant être atteinte par la sonde avec cette hypothèse, au bout d’un temps
infiniment long.

TLB6 : pendule simple non amorti
Un pendule simple est constitué d’un système, modélisé par un point matériel M de masse

m, suspendu à l’extrémité d’un fil inextensible de masse négligeable et de longueur l. L’autre
extrémité est fixée en un point O, choisi comme origine d’un repère cartésien associé au réfé-
rentiel (R) terrestre, considéré galiléen. L’axe (Ox) est selon la verticale descendante.

L’angle formé par la verticale descendante et le fil est une fonction de la variable temps θ(t ).
À l’instant initial, le système est lâché sans vitesse initiale dans le plan Oxy (défini alors par le
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fil et la verticale), depuis la position θ(t = 0) = θ0, avec θ0 = 15◦. On considère que le système
est soumis uniquement à la force de tension du fil et à l’attraction terrestre dans le champ de
pesanteur uniforme ~g = g~ux , avec g = 9,8 m·s−2.

1. Écrire la deuxième loi de Newton dans la base cartésienne. Commenter.
2. Écrire la deuxième loi de Newton dans la base polaire. Commenter.
3. Déterminer l’équation différentielle vérifiée par θ, et expliquer ce qui rend a priori sa

résolution analytique (autrement dit, à la main) complexe.
4. Simplifier cette équation différentielle dans le cadre de l’approximation des petits angles,

et expliquer pourquoi on peut la qualifier d’approximation linéaire. Commenter.
5. Déterminer la période T0 des oscillations de faible amplitude. Faire l’application numé-

rique pour l = 1,00 m. Commenter.

TLB7 : localisation d’un flotteur par satellite (d’après CCS 2025)
Un flotteur à la surface de l’océan est suivi et localisé par nano-satellite.
Le nano-satellite ms = 25 kg est placé sur une orbite terrestre circulaire à une altitude hs =

650 km. On se place dans le référentiel géocentrique supposé galiléen et on suppose que la
Terre est sphérique, homogène et sans rotation perceptible sur les durées mises en jeu ici.

1. Exprimer la force gravitationnelle exercée par la Terre sur un nano-satellite.
2. En déduire l’expression de la vitesse vs du satellite dans le référentiel géocentrique.

Calculer vs .
3. Vérifier que dans le référentiel géocentrique, la vitesse du satellite est nettement supé-

rieure à celle du flotteur.
Données :
. Rayon de la Terre : RT = 6371 km;
. Masse de la Terre : MT = 5,97×1024 kg ;
. Constante gravitationnelle : G = 6,67×10−11 m3·kg−1·s−2 ;
. Période de rotation sidérale de la Terre TT = 86164 s.

3 Exercices
Exercice 1 : protection des crapauds
Dans le sud de la Seine-et-Marne, la plaine de Sorques est une zone naturelle protégée

qui abrite de nombreux amphibiens (crapauds, grenouilles, tritons). Les crapauds Bufo bufo
ont pour habitat la forêt de Fontainebleau la majeure partie de l’année. Une fois par an, au
printemps, ces amphibiens migrent vers les plans d’eau pour se reproduire.

FIGURE 2 – Gauche : barrière de protection le long d’une route ; droite : crapaud

Pour éviter qu’ils ne se fassent écraser en passant sur la route qui traverse cette zone de
migration, un dispositif a été installé : des barrières en bois, suffisamment hautes pour empê-
cher le saut sur la route, sont placées de chaque côté, obligeant les amphibiens à emprunter
des passages souterrains appelés « crapauducs ».
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Dans cet exercice, on se propose d’étudier le mouvement lors d’un saut d’un crapaud Bufo
bufo afin de déterminer la hauteur minimale des barrières de protection.

Le système considéré est un crapaud dont on étudie le mouvement du centre de masse,
noté G. Le champ de pesanteur terrestre local ~g est considéré uniforme et les frottements liés
à l’action de l’air sont supposés négligeables face au poids.

Données :
. intensité de la pesanteur terrestre : g = 9,81 m·s−2 ;
. taille moyenne d’un crapaud Bufo bufo : 10 cm.

Le mouvement du centre de masse G du crapaud est étudié dans le référentiel terrestre
supposé galiléen et muni du système d’axes (Ox) et (Oz), respectivement horizontal muni du
vecteur unitaire~i et vertical muni du vecteur unitaire ~j .

FIGURE 3 – Modélisation du saut du crapaud

À la date t = 0, le centre de masse G est placé à l’origine du repère O et son vecteur vitesse
initiale, noté ~v0, a une direction faisant un angle α avec l’axe horizontal (Ox). On note v0 la
norme de ~v0.

1. En appliquant la deuxième loi de Newton, établir les expressions littérales des compo-
santes ax et az du vecteur accélération ~aG du centre de masse du crapaud suivant les axes
(Ox) et (Oz).

2. Établir les expressions littérales des composantes vx(t) et vz(t) du vecteur vitesse ~vG du
centre de masse du crapaud suivant les axes (Ox) et (Oz).

3. Montrer que les expressions littérales des équations horaires x(t) et z(t) de la position du
centre de masse G du crapaud au cours de son mouvement s’écrivent :

x(t ) = v0 cos(α)t

et

z(t ) =−1

2
g t 2 + v0 sin(α)t .

4. Établir l’expression de la durée du saut du crapaud, notée tsaut , en fonction de v0, g et α.
5. En utilisant l’expression de x(t) et l’expression de tsaut obtenue à la réponse à la ques-

tion 4, montrer que la vitesse v0 permettant au crapaud d’effectuer un saut de longueur d est
donnée par la relation :

v0 =
√

g d

sin(2α)
.

6. Les crapauds les plus puissants peuvent faire des sauts d’une longueur égale à 20 fois
leur taille. Calculer la valeur de v0 qu’ils atteignent pour un angle α= 45◦.
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La hauteur maximale zmax d’un saut est obtenue lorsque ce saut est vertical. La vitesse
initiale est toujours notée v0.

7. Établir que la hauteur maximale d’un saut a pour expression littérale :

zmax = v2
0

2g
.

8. En déduire la valeur de la hauteur de barrière minimale, notée Hchampi on , qui permet
d’arrêter les crapauds les plus puissants, capables de sauter verticalement avec une vitesse
initiale v0 de valeur calculée à la question 6.

9. Les barrières mesurent en réalité 50 à 60 cm de hauteur. Expliquer pourquoi on choisit
d’installer des barrières d’une hauteur inférieure à Hchampi on .

Exercice 2 : la grêle

FIGURE 4 – Gauche : cumulonumbus ; droite : gros grêlons

La grêle se forme dans les cumulonimbus, entre 1000 m et 10 000 m d’altitude. Un grêlon
sphérique de diamètre d = 3,0 cm et de masse m = 13 g tombe d’une altitude h = 1500 m (lors-
qu’il n’est plus maintenu au sein du nuage) depuis le point O, choisi comme origine d’un axe
vertical (Oz) descendant. Sa vitesse peut atteindre 160 km·h−1 au niveau du sol.

1. En supposant que le grêlon tombe en chute libre, c’est-à-dire uniquement soumis à son
propre poids, calculer la valeur de sa vitesse vh lorsqu’il atteint le sol. Commenter.

En réalité, le grêlon est soumis à deux autres forces : une force de frottement fluide ~f
quadratique, c’est-à-dire de norme proportionnelle au carré de la vitesse (donc telle que sa
norme est de la forme ||~f || = λv2), et la poussée d’Archimède −→

Π . La masse volumique de l’air
vaut µai r = 1,2 kg·m−3.

2. Rappeler ce que représente concrètement la poussée d’Archimède et donner son ex-
pression en fonction des données du problème. Justifier qu’elle est négligeable par rapport au
poids du grêlon.

3. Par analyse dimensionnelle, déterminer l’unité de λ.
4. Établir l’équation différentielle vérifiée par la vitesse v du grêlon. L’écrire sous la forme

d v

d t
= A−Bv2

et préciser les expressions des coefficients A et B.

L’équation différentielle précédente peut se résoudre par la méthode d’Euler. Cette méthode
numérique itérative permet de calculer, pas à pas et de façon approchée, les valeurs de la
vitesse v du grêlon à différents instants t, pour ainsi construire la courbe représentative de
v = f (t ).

La relation utilisée est la suivante :

v(tn+1) = v(tn)+∆v(tn) = v(tn)+a(tn)×∆t

avec ∆t = tn+1 − tn .
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Voici un extrait d’une feuille de calcul des valeurs de la vitesse v du grêlon et de son accé-
lération a = d v

d t à différents instants, où A = 9,81 m·s−2, B = 1,56×10−2 m−1 et ∆t = 0,50 s :

5. Expliquer ce que représente ∆t dans l’algorithme.
6. Calculer a3 et v4.

Il vient la courbe d’évolution associée à la vitesse v :

7. Le graphique montre que la vitesse du grêlon tend vers une vitesse limite vl i m . Retrouver
théoriquement sa valeur en exprimant vl i m en fonction des constantes A et B.

Exercice 3 : mesure de la masse de Jupiter et du Soleil

En 1610, Galilée a été le premier à observer les quatre principaux satellites de la planète
Jupiter (Io, Europe, Ganymède et Callisto) en utilisant une lunette astronomique qu’il avait lui-
même fabriquée.

À la suite de Galilée, les observations de ces quatre satellites ont permis de réaliser les
mesures regroupées dans le tableau ci-dessous :
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À l’aide d’un tableur, on a positionné les mesures dans un graphique donnant les variations
de T2 en fonction de celles de a3 pour les quatre satellites de Jupiter. Le tableur permet de
superposer à ces points de mesure une modélisation par une droite.

Exploitation des résultats expérimentaux :
1. À partir des résultats expérimentaux, préciser la relation qui existe entre T2 et a3 pour les

quatre satellites de Jupiter. Donner le nom de la loi correspondante (établie en 1618).

Modélisation du mouvement d’un satellite de Jupiter
On se place dans le cadre théorique de la mécanique de Newton (publiée en 1687) pour

retrouver la relation évoquée dans la question 1 et déterminer la masse MJ de Jupiter.
On étudie le mouvement du satellite dans le référentiel joviocentrique (centré sur Jupiter),

supposé galiléen. On fait l’approximation que le mouvement du centre S du satellite est circu-
laire, centré sur le centre J de Jupiter, et on considère que la seule force qui s’applique sur le
satellite est la force de gravitation −→

F J/S exercée par Jupiter sur le satellite.
On désigne par r la distance entre les centres des deux astres, par MJ la masse de Jupiter

et par m la masse du satellite.
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2. Sur un schéma, reprendre les éléments donnés sur la figure ci-dessus et représenter
sans souci d’échelle :

- Le vecteur vitesse ~vS du satellite ;
- La force de gravitation −→

F J/S exercée par Jupiter sur le satellite.
3. Donner l’expression de la force de gravitation −→

F J/S exercée par Jupiter sur le satellite en
fonction de MJ, m, G, r et ~n.

4. Appliquer la deuxième loi de Newton et en déduire l’expression de la vitesse vS du satel-
lite en fonction de G, MJ et r.

5. En déduire que, dans le cadre de l’approximation du mouvement circulaire, le quotient
T2

a3 est égal à 4π2

GMJ
.

6. À l’aide des résultats expérimentaux, calculer la masse MJ de Jupiter. Commenter un
éventuel écart à la valeur tabulée : 1,8986×1027kg.

Donnée : Constante de gravitation universelle G = 6,67×10−11m3·kg−1·s−2.

La relation établie à la question 5 pour le système composé de Jupiter et de ses satellites
est universelle et est applicable à d’autres systèmes constitués de satellites en orbite autour
d’un astre central.

7. Déterminer la masse du Soleil.
Donnée : la distance entre la Terre et le Soleil est de 150 millions de kilomètres.

Exercice 4 : la mission Rosetta

En 2004, la sonde européenne Rosetta a quitté la Terre pour un voyage long de 10 ans. Sa
destination était la comète 67P Churyumov-Gerasimenko, dont elle s’est approchée en 2014.
Une fois à proximité de cette dernière, Rosetta a été mise en orbite autour de la comète et a
débuté ses observations.

Données :
- constante gravitationnelle : G = 6,67×10−11N·m2·kg−2 ;
- masse de la comète 67P : MC = 1,0×1013kg ;
- masse de Rosetta : M = 3,0×103kg ;
- distance moyenne Terre-Soleil : une unité astronomique : 1u.a.= 1,50×108km;
- dans cet exercice, la comète 67P est modélisée par une boule de rayon R = 2,0 km;
- caractéristiques de la trajectoire de la comète autour du Soleil : distance au plus près du

Soleil (périhélie P) : 1,24 u.a. ; distance au plus loin du Soleil (aphélie A) : 5,68 u.a.

1. La comète 67P Churyumov-Gerasimenko
La comète 67P Churyumov-Gerasimenko a été découverte en septembre 1969. La valeur

de la vitesse de la comète varie entre 5 et 35 km·s−1 environ dans le référentiel héliocentrique.
Sa trajectoire est représentée ci-dessous (S désigne le Soleil).

1. D’après la première loi de Kepler, quelle est la nature de la trajectoire de la comète dans
le référentiel héliocentrique?
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2. Expliquer, en utilisant une des lois de Kepler, pourquoi la vitesse de la comète n’est pas
constante sur sa trajectoire. Vous compléterez le schéma fourni pour illustrer cette loi.

3. Énoncer la troisième loi de Kepler.
4. Déterminer la valeur de la période de révolution T de la comète autour du Soleil.

2. Satellisation de Rosetta
Au cours des mois d’août et septembre 2014, la sonde Rosetta est arrivée à proximité de la

comète et a été mise en orbite autour de celle-ci sur un trajectoire que l’on considère circulaire,
à une altitude h = 20 km.

5. Faire un schéma de Rosetta en orbite autour de la comète et y représenter le vecteur
modélisant la force gravitationnelle exercée par la comète sur Rosetta.

6. Donner l’expression vectorielle de cette force gravitationnelle.
7. Montrer que dans l’approximation d’un mouvement circulaire, la norme de la vitesse de

Rosetta est constante et s’écrit : v =
√

GMC
R+h . Calculer sa valeur.

8. Combien de temps Rosetta met-elle pour faire un tour de la comète?

Exercice 5 : un camion qui accélère

Un camion roule en ligne droite sur une route plate.
Pendant toute la durée de l’étude, son accélération est constante dans un référentiel ter-

restre, supposé galiléen. La norme de l’accélération vaut ||~a|| = 0,5 m·s−2.
Une corde est accrochée à l’arrière du toit du camion. À son autre extrémité est accroché

un seau de masse m = 1,0 kg.
Le seau est secoué violemment lorsque le camion se met à accélérer, puis atteint un régime

stationnaire au cours duquel il reste à distance fixe du camion. La corde est alors tendue et
forme un angle θ, fixe, avec la verticale descendante.

On supposera que le camion protège le seau du vent, on ne tiendra donc pas compte d’une
éventuelle force de frottement fluide.

On rappelle que l’accélération de la pesanteur a pour norme g = ||~g || = 9,8 m·s−2.
Pour paramétrer le mouvement, on considère un axe des abscisses (Ox) parallèle à la route,

orienté vers la droite, et un axe des ordonnées (Oy) perpendiculaire à cette dernière, orienté
vers le haut.

Le système étudié est le seau, modélisé par un point matériel.
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1. Caractériser le mouvement du système dans le référentiel terrestre.
2. Faire le bilan des principales forces s’exerçant sur le système et donner leur expression

ou, à défaut, leurs principales caractéristiques. Les représenter sur un schéma sans souci
d’échelle.

3. Appliquer la relation fondamentale de la dynamique au système pour obtenir une équa-
tion vectorielle. La projeter sur les axes (Ox) et (Oy) pour obtenir deux équations scalaires.

4. Exprimer tan(θ) en fonction de a et g , puis θ en fonction de a et g .
5. Quelle serait la valeur de l’angle θ si le camion avait un mouvement rectiligne et uni-

forme? Commenter.
6. Quelle serait la valeur approximative de l’angle θ si le camion avait une accélération très

grande devant celle de la pesanteur? Commenter.
7. Exprimer puis calculer la valeur de la tension T de la corde.
8. Énoncer le principe d’inertie. L’appliquer pour montrer que le référentiel dans lequel le

seau est immobile n’est pas galiléen.
9. On peut définir une force d’inertie d’entraînement ~Fi e , qui est une force fictive à ajouter

aux forces réelles pour que le principe d’inertie soit valide dans le référentiel où le seau est
immobile. Établir l’expression de cette force.

4 Résolution de problème
Etretat est une ville normande connue pour ses falaises. On laisse tomber un gros galet de-

puis le sommet de l’une d’elles. On entend le choc du caillou avec le pied de la falaise environ
cinq secondes après l’avoir lâché sans vitesse initiale.

Estimer la hauteur de la falaise.

FIGURE 5 – Gauche : vue de la falaise ; droite : photographie du galet

Données :
. intensité de l’accélération de la pesanteur : g = 10 m·s−2 ;
. célérité du son dans l’air : cson = 340 m·s−1 ;
. masse volumique du galet : ρ= 3,2 g·cm−3 ;
. la formule de Stokes s’applique pour un système en forme de boule de rayon R, si la force

de frottement fluide est linéaire en la vitesse : ~f =−6πηR~v ;
. viscosité dynamique de l’air : η= 1,8×10−5 kg·m−1·s−1.
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