
TD14 : Énergétique du point matériel
CAPACITÉS TRAVAILLÉES :
. Reconnaître le caractère moteur ou résistant d’une force : TLB1,4, ex2
. Déterminer le travail d’une force au cours d’un déplacement élémentaire : ex1
. Établir et citer les expressions de l’énergie potentielle de pesanteur (champ uniforme) et

de l’énergie potentielle élastique : TLB3,5,6 ex3,5, RP1,2
. Utiliser le théorème énergétique approprié en fonction du contexte : TLB2-5, ex1-6, RP
. Distinguer force conservative et force non conservative : TLB3,5,6.
. Identifier les cas de conservation de l’énergie mécanique. Utiliser les conditions initiales :

TLB3,5,6, ex3,6, RP
. Réaliser le bilan énergétique d’un oscillateur mécanique en absence de frottement en

régime libre : ex5, RP1
. Identifier sur un graphe d’énergie potentielle une barrière et un puits de potentiel : TLB5,

ex6
. Déduire d’un graphe d’énergie potentielle le comportement qualitatif d’un système : tra-

jectoire bornée ou non, mouvement périodique, positions de vitesse nulle : TLB5, ex6
. Déduire d’un graphe d’énergie potentielle l’existence de positions d’équilibre, et le carac-

tère stable ou instable de ces positions : TLB5, ex6

1 Tester les bases
TLB1 : Apoussiak et son traîneau

Dans la situation de gauche, le système est le traîneau. Dans celle de droite, le système
est composé du traîneau et d’Apoussiak.

Dans chacune des situations :
1. Faire la liste des principales forces qui s’exercent sur le système. Les représenter quali-

tativement sur un schéma.
2. Identifier, en justifiant : les forces motrices, les forces résistantes, et celles qui ne tra-

vaillent pas.

TLB2 : un skieur
Un skieur pesant 70 kg descend une piste rectiligne longue de 50 m et inclinée d’un angle

α= 25◦ par rapport à l’horizontale. Il est soumis à son poids −→
P et à la réaction −→

R de la piste, qui
se décompose en une composante normale −→

N perpendiculaire à la piste et une composante
tangentielle −→

T colinéaire et de sens opposé à la vitesse. Les normes de ces deux composantes
sont liées entre elles par la loi de Coulomb, T =µN, avec µ= 0,1.

1. Faire un schéma de la situation et y représenter qualitativement les différentes forces.
2. Exprimer, puis calculer, le travail des trois forces au cours de la descente.
3. En admettant que le skieur part du haut de la piste sans vitesse initiale, appliquer le

théorème de l’énergie cinétique pour déterminer la valeur de sa vitesse en bas de la piste.



TLB3 : un saut à ski

Lors d’un saut à ski, un skieur de masse m = 70 kg prend de l’élan sur un tremplin de
hauteur h = 40 m. Pour simplifier, on supposera que sa vitesse initiale est nulle, et on négligera
les frottements. On note v0 la valeur de la vitesse du skieur au bout du tremplin, au point O, où le
vecteur vitesse est horizontal. La piste d’aterrissage forme un angle α= 30◦ avec l’horizontale.
À l’issue de son saut, le skieur se réceptionne au point noté B sur le schéma, qui se situe à
une distance horizontale L = 100 m du bout du tremplin.

1. Exprimer, puis évaluer, l’énergie cinétique initiale Ec,i et l’énergie potentielle de pesanteur
initiale Epp,i du skieur.

2. Exprimer, puis calculer, l’énergie mécanique initiale Em,i du skieur.
3. En vous appuyant sur la conservation de l’énergie mécanique, que vous justifierez, en

déduire la valeur de l’énergie mécanique Em,s du skieur au début du saut.
4. Calculer l’énergie potentielle de pesanteur Epp,s au moment du saut. En déduire l’expres-

sion de l’énergie cinétique Ec,s du skieur au moment du saut, en fonction de l’énergie mécanique
Em,s .

5. Que vaut la vitesse v0 du skieur au moment du saut?
6. Exprimer l’énergie potentielle de pesanteur du skieur au point B en fonction des données

du problème.
7. Exprimer l’énergie cinétique du skieur au point B, en fonction des données du problème

et de la vitesse vB au point B.
8. En vous appuyant sur la conservation de l’énergie mécanique, calculer vB.

TLB4 : Perseverance (CCINP23)
Lancé depuis la Terre le 30 juillet 2020 grâce à un lanceur Atlas V, le rover Perseve-

rance a atterri sur la planète Mars le 18 février 2021. Le site d’atterrissage, le cratère
Jezero, est une zone présentant une grande diversité géologique et ayant abrité un lac
il y a environ 3,6 milliards d’années. Un des enjeux de cette mission est le prélèvement
d’échantillons destinés à être analysés sur Terre afin de déceler d’éventuelles traces
d’une vie passée.

La sonde spatiale Mars 2020, de masse m, pénètre dans l’atmosphère martienne à
la vitesse de 12 000 km·h−1 (vitesse mesurée par rapport au sol), elle larguera le rover
7 minutes plus tard.
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Après une première phase de freinage grâce au bouclier thermique, le parachute
est déployé à l’altitude d’environ 10,6 km et à la vitesse, notée vA, de 420 m·s−1.

1. Le point A étant l’endroit où le parachute est déployé, donner l’expression litté-
rale de l’énergie cinétique Ec(A) de l’ensemble en se limitant à un simple mouvement
de translation.

Au bout de 20 secondes, la vitesse n’est plus que de 160 m·s−1 et l’altitude de 7,5
km, Mars 2020 largue alors son bouclier thermique.

2. En appelant B le point de largage et en considérant toujours la même masse,
exprimer la variation d’énergie cinétique entre les points A et B.

3. Connaissant la masse de la sonde spatiale de 3000 kg, effectuer le calcul de
cette variation d’énergie cinétique.

4. Énoncer le théorème de l’énergie cinétique.
5. En supposant l’accélération de la pesanteur martienne uniforme et de valeur

g = 3,7 m·s−2, calculer la valeur du travail du poids entre les points A et B, noté WAB(
−→
P ).

6. Ce travail est-il qualifié de moteur ou de résistant? Justifier.
7. Montrer, à partir des questions 4 et 5, que le travail des forces de frottement noté

WAB(~f ) sur le parachute, dont la résultante sera notée ~f , est d’environ −2,5 ·108J.

TLB5 : franchissement d’une barrière de potentiel

On considère le profil d’énergie potentielle représenté ci-dessus, qui peut corres-
pondre à une bille glissant sans frottement sur un sol dont la topographie est celle
du graphique : altitude h1 en x = 0, franchissement d’un col d’altitude hb, puis altitude
nulle lorsque x →+∞. La bille est lancée en x = 0 avec une vitesse v0 en direction des
x croissants.

1. Justifier que l’énergie mécanique de la bille reste constante au cours du temps.
2. Montrer que la bille atteint tout juste le haut du col pour une valeur particulière

de sa vitesse initiale v0, que l’on exprimera en fonction de m, E1 et Eb.
3. Justifier que la bille est alors dans une position d’équilibre, dont vous discuterez

la stabilité.
4. Que se passe-t-il si v0 est inférieure à cette valeur limite? Et supérieure?
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TLB6 : looping dans un parc d’attraction
On étudie numériquement la trajectoire d’un chariot de parc d’attraction, de masse

m = 10 t, modélisé par un point matériel C.

Ce chariot part du point A, descend le long d’un plan incliné et entre ensuite, au
point B, dans un looping circulaire de rayon R = 20 m, dans lequel il peut faire plusieurs
tours avant d’en ressortir.

Les courbes fournies ci-dessus représentent l’évolution au cours du temps de l’éner-
gie cinétique Ec , de l’énergie potentielle de pesanteur Ep , de l’énergie totale Em et de
la norme Rn de la réaction normale des rails sur le chariot (pas nécessairement dans
cet ordre).
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1. Associer à chaque courbe la grandeur représentée. Justifier.
2. Déterminer si la simulation prend en compte le phénomène de frottement.
3. Calculer la hauteur initiale h et la vitesse initiale v0 du chariot, ainsi que la vitesse

maximale vmax qu’il atteint.
4. Indiquer la valeur de Rn lorsque le chariot quitte le looping, et déterminer l’instant

où cela a lieu.
5. Déterminer combien de tours entiers le chariot effectue avant de se décoller du

looping et d’en ressortir.

Données :
. intensité de l’accélération de la pesanteur : g = 10 m·s−2 ;
. une tonne : 1 t = 103 kg.

2 Exercices

Exercice 1 : sécurisation de la zone d’arrivée d’un toboggan aquatique (CCINP25)

Un enfant modélisé par un point matériel M, de masse m = 50 kg, glisse sur un
toboggan schématisé ci-dessous.

L’enfant se laisse glisser sur le toboggan depuis le point A d’altitude H = 21,0 m
sans vitesse initiale. Il termine sa glissade au point B d’altitude h = 1,0 m avec une vi-
tesse horizontale qui lui permet d’atteindre un point C à la surface de l’eau de la piscine.

Une discussion s’engage lors de la conception du toboggan pour savoir dans quelle
zone de la piscine il faudra interdire les baigneurs pour éviter toute collision avec l’en-
fant qui arrive dans la piscine. On suppose tout d’abord qu’un filet d’eau annule les
frottements de l’enfant sur toute la longueur L = 37,5 m de la piste du toboggan.

1. Exprimer, puis calculer, le travail WAB(
−→
P ) du poids de l’enfant lors de cette des-

cente de A vers B.
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2. Citer le théorème de l’énergie cinétique. L’appliquer à l’enfant qui glisse sans
frottement entre les points A et B et en déduire l’expression de la vitesse vB,s f atteinte
au point B en fonction des données. Calculer la valeur de cette vitesse vB,s f .

Du fait des frottements, la vitesse au point B, horizontale, vaut vB = 10 m·s−1.

3. Recopier le schéma. Y faire figurer, sans souci d’échelle, les forces appliquées
sur le point M en un endroit quelconque de la glissade.

4. Exprimer, puis calculer, le travail WAB(
−→
F ) de cette force de frottement −→

F sur
le trajet de A à B (vous vous appuyerez, pour ce faire, sur le théorème de l’énergie
cinétique).

5. Donner l’expression du travail élémentaire de la force de frottement δW(
−→
F ) pour

en déduire une expression du travail WAB(
−→
F ) sur le trajet de A à B, en supposant la

force de frottement de norme F constante sur le trajet.
6. Déduire ainsi la norme F de la force de frottement.

Exercice 2 : mouvement d’un palet sur la glace (CCINP20)

Un palet de hockey sur glace est fabriqué en caoutchouc avec une masse moyenne
de 160 grammes. Sur la glace, le palet peut atteindre des vitesses exceptionnelles du
fait de la puissance des joueurs. En Russie, lors des épreuves d’habileté de la Ligue
continentale de hockey, le défenseur Aleksandr Riazantsev a établi un nouveau record
du monde en janvier 2017 avec une frappe à 183,67 km·h−1 soit environ 50 m·s−1.

Au cours d’une séance d’entraînement à ces épreuves d’habileté, un joueur de ho-
ckey propulse le palet, à l’aide de sa crosse, sur un plan recouvert de glace et incliné
d’un angle α = 20◦ par rapport à l’horizontale. La position du centre d’inertie du palet
est repérée sur un axe (Ox) de même direction que la ligne de plus grande pente et
orienté vers le haut. On note (Oy) l’axe perpendiculaire au plan incliné et orienté vers
le haut. Les vecteurs ~ux et ~uy sont des vecteurs unitaires dirigés respectivement selon
les axes (Ox) et (Oy). Le centre d’inertie du palet est noté G. À l’instant initial, le palet
se trouve à l’origine du repère. L’intensité du champ de pesanteur terrestre g est esti-
mée à 10 m·s−2.

Dans une première phase (propulsion du palet par la crosse sur le plan incliné), on
considère les frottements comme négligeables. La palette de la crosse est en contact
avec le palet.

1. Choisir un référentiel afin d’étudier le mouvement du palet durant la propulsion et
le préciser. Peut-il être considéré comme galiléen dans le cadre de cet entraînement?
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2. Établir un bilan des forces qui s’exercent sur le palet durant la propulsion et les
représenter sur un schéma cohérent sans souci d’échelle.

3. Exprimer l’intensité de la force de propulsion F exercée par le joueur sur le palet
en fonction de l’accélération a du palet, de l’angle d’inclinaison α du plan, de la masse
m du palet et de l’intensité du champ de pesanteur g .

4. Sachant que la propulsion due au joueur de hockey dure 0,5 seconde et que le
mouvement est uniformément accéléré, quelle doit être l’intensité de la force de pro-
pulsion pour que le joueur égale le record du monde de vitesse sur ce plan incliné?

Dans une deuxième phase, le palet n’est plus en contact avec la crosse et est en
mouvement de translation rectiligne vers le haut du plan incliné. On considère les frot-
tements comme négligeables.

5. Sur un schéma, représenter les forces qui s’exercent sur le palet. Ces forces
ont-elles un caractère moteur, résistant ou sont-elles sans effet lors du mouvement du
palet vers le haut du plan incliné?

6. Déterminer l’expression de x(t ), déplacement du palet selon l’axe (Ox).
7. Montrer que la distance d parcourue par le palet avant de s’arrêter est donnée

par la relation :

d = v2
0

2g sin(α)

où v0 est la vitesse initiale selon l’axe (Ox) au début de la deuxième phase.

Exercice 3 : marcher en montagne (CCINP19)

Tout le monde en a déjà fait l’expérience : marcher en montée est plus fatigant que
marcher à plat. Le randonneur est un système articulé complexe. Nous nous conten-
terons ici de réfléchir aux différentes contributions énergétiques mises en jeu lorsqu’il
se déplace.

On considère un randonneur de masse m, de centre d’inertie I, en mouvement
dans le référentiel terrestre supposé galiléen muni d’un repère cartésien (O,~ex ,~ey ,~ez).

L’accélération de la pesanteur, notée ~g =−g~ez , est supposée uniforme.
Le randonneur se déplace d’un point A situé au bas d’une colline à un point B situé

en haut d’une colline, comme indiqué sur la figure ci-dessous.

FIGURE 1 – Base cartésienne et colline

On note h le dénivelé parcouru par le randonneur, h = zB−zA, où zA est la coordon-
née du point A suivant l’axe (O,~ez) et zB celle du point B.
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Les frottements de l’air sur le randonneur seront négligés.

1. Lorsqu’il marche, le randonneur est soumis à la réaction −→
R du sol sous ses

pieds. La réaction du sol s’applique à chaque instant en un point de vitesse nulle (le
point d’appui du pied). On assimile le pied à un point matériel. Que vaut la puissance
de la réaction du sol sur le pied? Justifier.

On cherche la variation d’énergie mécanique du randonneur. Pour cela, on assimile
le randonneur à un point matériel placé en I de coordonnées (xI, yI, zI).

2. Le randonneur est soumis à son poids. Donner sans démonstration l’expression
de l’énergie potentielle de pesanteur Ep du randonneur en fonction de m, g , zI et d’une
constante. Cette énergie potentielle est la seule prise en compte dans notre étude.

3. À l’instant initial, le randonneur est en A et a une vitesse nulle. Il s’arrête à l’arri-
vée en B pour contempler le paysage. Que vaut la variation de son énergie cinétique
entre A et B?

4. Rappeler la définition de l’énergie mécanique. Déterminer la variation d’énergie
mécanique ∆Em du randonneur entre A et B en fonction de m, g et h.

5. Lors d’une randonnée, un individu de 60 kg parcourt une distance de 7 km avec
un dénivelé de 1 km. L’accélération de la pesanteur est approximée à 10 m·s−2. Calcu-
ler numériquement la variation de son énergie mécanique.

6. Calculer à nouveau la variation d’énergie mécanique pour une distance parcou-
rue de 10 km sans dénivelé. Comparer les deux résultats précédent en s’appuyant sur
le texte introductif.

Exercice 4 : des tobbogans sous contrôle (CCS18)
Les toboggans font aujourd’hui parti des incontournables d’un centre aquatique. De

nombreux toboggans présentent des enroulements plus ou moins complexes.
On étudie le toboggan présenté sur la figure ci-dessous et composé d’un enroule-

ment hélicoïdal d’approximativement n = 2,3 tours. Le rayon moyen est estimé à R = 2,0
m et la hauteur de l’ensemble est h = 4,0 m. On néglige les frottements.

On note θ> 0 la position angulaire du baigneur dans le toboggan relativement à la
position de départ, d’altitude h. Le baigneur suit la trajectoire d’équation r = R, z = αθ,
l’axe (Oz) étant orienté selon la verticale descendante.

1. Déterminer la valeur de α.
2. Calculer la valeur de la vitesse atteinte en sortie du toboggan, le départ se faisant

sans vitesse initiale.
3. Afin d’éviter les collisions, le toboggan est équipé au point de départ d’un feu qui

passe au vert toutes les t f secondes. On impose une marge de tm = 5 s en plus de la
durée de parcours dans le toboggan. Calculer t f . On prendra g = 9,8 m·s−2.

Page 8



Exercice 5 : étude énergétique du pendule simple sans frottement

On considère une masse ponctuelle m située en M et suspendue en O par un fil
tendu, de masse négligeable et de longueur l fixe (le fil est inextensible).

On note θ(t ) l’angle algébrique entre la verticale descendante et le fil.

Le champ de pesanteur, noté ~g , de norme g , est supposé uniforme. À l’instant
initial, le pendule est lâché sans vitesse d’un angle θ0.

On néglige tout frottement de la tige sur son axe de rotation et tout frottement dû à
la résistance de l’air. On note Tc la tension du fil.

On commence par établir l’équation du mouvement du pendule simple :

θ̈+ω2
0 sin(θ) = 0,

avec ω0 =
√

g
l .

1. Faire le bilan des principales forces s’exerçant sur la masse. Les représenter
qualitativement sur un schéma. Les exprimer dans la base polaire locale. Établir l’ac-
célération du point M dans la base polaire, puis appliquer la relation fondamentale de
la dynamique et la projeter sur ~ur et ~uθ. En déduire l’équation du mouvement du pen-
dule simple.

2. Exprimer l’énergie potentielle de pesanteur et l’énergie cinétique dans la base
locale polaire. Justifier la conservation de l’énergie mécanique et s’appuyer sur cette
dernière pour montrer que

θ̇2 = 2ω2
0(cos(θ)−cos(θ0)).

En déduire l’équation du mouvement du pendule.

3. En vous appuyant sur l’expression de l’énergie potentielle obtenue à la question
précédente, déterminer la ou les position(s) d’équilibre, dont vous discuterez la stabi-
lité. Commenter.

4. Déduire de ce qui précède que la tension de la corde vaut

Tc = mg (3cos(θ)−2cos(θ0)).
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Exprimer le domaine de valeurs que peut prendre T
mg en fonction de θ0. Quelle valeur

maximale de θ0 permet au fil de rester tendu? À quelle tension le fil doit-il alors résister
pour ne pas rompre, si la masse pèse 1kg? Décrire qualitativement le mouvement de
la masse en cas de rupture du fil.

On souhaite à présent résoudre l’équation du mouvement.

5. À quelle condition sur l’angle initial θ0 le mouvement peut-il être considéré comme
celui d’un oscillateur harmonique? Déterminer alors l’expression de θ(t ) en tenant
compte des conditions initiales et donner l’expression de la période propre T0 du mou-
vement dans cette approximation. Justifier pourquoi on parle d’isochronisme des pe-
tites oscillations. Déterminer la longueur à imposer au fil pour que le pendule batte
la seconde, autrement dit pour qu’une demi-période dure une seconde. On prendra
g = 9,8 m·s−2.

Exercice 6 : potentiel de Lennard-Jones

En tenant compte de toutes les interactions dipolaires pouvant exister entre deux
molécules (London, Debye et Keesom), on modélise l’énergie potentielle d’interaction
par le potentiel de Lennard-Jones, dont l’allure est tracée ci-dessous.

FIGURE 2 – Potentiel de Lennard-Jones

Son expression en fonction de la distance x entre les deux centres des molécules
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est donnée par :

Ep (x) = 4E0

[(
d

x

)12

−
(

d

x

)6]
où E0 est une énergie de référence et d une distance caractéristique du type de molé-
cule. Le terme en puissance 6, attractif, domine à grande distance et correspond aux
interactions de Van der Waals. Le terme en puissance 12, répulsif, domine à courte
distance et rend compte de l’impénétrabilité des nuages électroniques des deux molé-
cules.

On suppose pour toute la suite que le système étudié est conservatif. La molécule,
de masse m, subit une seule force : celle qui correspond à l’énergie potentielle tracée
ci-dessus.

1. Indiquer si le graphe de Ep (x) contient une barrière ou un puits de potentiel.
2. Ce graphe révèle une position d’équilibre notée xeq . La repérer, puis préciser si

cet équilibre est stable ou instable.
3. Obtenir analytiquement (autrement dit par calcul) l’expression de xeq , en fonction

de la distance d .
4. Déterminer l’expression de Ep (xeq ).
5. Quelle est l’énergie mécanique minimale à fournir à une molécule pour qu’elle

puisse s’éloigner à l’infini ? Justifier graphiquement.
6. Montrer que la dérivée seconde de l’énergie potentielle, calculée au niveau de la

position d’équilibre, vaut :

d 2Ep

d x2
(xeq ) = 2E0

a
,

où a est une constante.
7. On donne le développement de Taylor à l’ordre 2 de l’énergie potentielle autour

du point d’abscisse xeq :

Ep (x) ' Ep (xeq )+ (x −xeq )
dEp

d x
(xeq )+ (x −xeq )2

2

d 2Ep

d x2
(xeq ),

Établir l’expression de l’énergie potentielle Ep (x) autour de la position d’équilibre
xeq .

8. Tracer l’allure de la représentation graphique de l’énergie potentielle obtenue à
la question précédente.

9. En fournissant à la molécule une énergie très légèrement supérieure à −E0, et
en la laissant évoluer dans le puit de potentiel précédent, quel sera son mouvement?

10. Que peut-on dire de l’énergie mécanique de la molécule au cours du temps? En
déduire l’équation du mouvement de la molécule dans ce puits de potentiel. Préciser
la période de ce mouvement, en fonction de E0, m et a.

3 Résolution de problèmes :

RP1 : Houba houba c’est lui...
Le Marsupilami est un animal de bande dessinée créé par Franquin. Ses capacités

physiques sont remarquables : il peut notamment sauter en enroulant sa queue comme
un ressort entre lui et le sol.
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On note l0 = 2 m la longueur à vide du ressort équivalent à la queue du Marsupilami.
Lorsqu’il est complètement comprimé, la longueur minimale du ressort est lm = 50 cm.
On suppose que le Marsupilami pèse 50 kg, qu’il est capable de sauter jusqu’à une
hauteur h = 10 m, et que sa queue quitte le sol lorsque le ressort mesure l0.

Quelle est la vitesse du Marsupilami lorsque sa queue quitte le sol ?

RP2 : un crash-test vertical
Lors d’un crash-test frontal, une voiture de masse 1,3 tonne est projetée contre un

obstacle à 50 km·h−1, ce qui simule un accident en milieu urbain.

De combien d’étages devrait-on laisser tomber cette voiture pour observer les mêmes
dommages?
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