
CHAPITRE 15

Oscillateurs en régime libre

Dans toutes les branches de la physique on rencontre des systèmes, appelés os-
cillateurs, pour lesquels une grandeur physique oscille, c’est-à-dire varie de façon
alternative et éventuellement périodique, autour de sa valeur moyenne.

Ces oscillations peuvent être :
. forcées par une intervention externe qui reste activée tout au long du mouve-

ment : une excitation de nature sinusoïdale permet d’entretenir les oscillations, ce qui
fera l’objet d’un chapitre ultérieur ;

. provoquées par un écartement du système par rapport à sa position d’équi-
libre : il oscille alors pendant un certain temps autour de l’équilibre avant d’y revenir à
l’issue d’un régime qu’on qualifie de libre, car l’oscillateur n’est soumis à aucune exci-
tation extérieure pendant cette phase.

Un régime libre peut être observé par exemple lorsqu’un pendule simple est écarté
de sa position d’équilibre. La masse oscille avant de revenir à la verticale : on observe
des oscillations amorties.

On devine que ce sont les phénomènes dissipatifs qui provoquent le retour à la
position d’équilibre, et qu’en les rendant moins intenses les oscillations dureront plus
longtemps avant de s’amortir.

Dans le cas limite, purement théorique, où il n’y aurait aucun phénomène dissipatif,
les oscillations continueraient pendant une durée infinie et seraient régulières. Le mo-
dèle le plus universel d’un tel comportement est celui de l’oscillateur harmonique.

Dans ce chapitre :
. nous étudierons l’oscillateur harmonique et sa version amortie ;
. nous mettrons en évidence les analogies entre un oscillateur électrique et un

oscillateur mécanique.

1 Oscillateur harmonique en régime libre

1.1 Définition et propriétés

En physique, on qualifie d’oscillateur harmonique tout système dont l’évolution
temporelle est décrite par une grandeur x(t ) solution de l’équation différentielle :

d 2x

d t 2
+ω2

0x = 0.

Le nombre strictement positif ω2
0 est le carré de la pulsation propre de l’oscillateur,

ω0, qui s’exprime en rad·s−1. Cette pulsation est dite propre car sa valeur est reliée aux
caractéristiques du dispositif oscillant.

La solution de l’équation différentielle peut s’écrire sous la forme

x(t ) = Xm cos(ωt +φ),



avec Xm ≥ 0 l’amplitude des oscillations, qui correspond à la valeur maximale de x(t ).
La grandeur Φ = ωt +φ est la phase à un instant quelconque, et φ est la phase à
l’origine, qui impose la valeur de x(t ) à l’instant initial : x(0) = Xm cos(φ).

Dans cette formulation, l’amplitude et la phase à l’origine sont les deux constantes
d’intégration.

La grandeur

T0 = 2π

ω0

est la période propre de l’oscillateur harmonique, telle que pour tout instant t , x(t +
T0) = x(t ) : elle correspond à la plus petite durée au bout de laquelle le signal x(t )
se répète identiquement à lui-même. La valeur de la période propre d’un oscillateur
harmonique est indépendante des conditions initiales : on parle alors d’isochronisme
des oscillations.

La fréquence propre est le nombre de répétitions du signal par unité de temps :

f0 = 1

T0
= ω0

2π
.

Elle s’exprime en hertz (Hz) dans le système international d’unités, avec 1 Hz= 1 s−1.

Exercice d’application 1 :
CAPACITÉ TRAVAILLÉE :
Caractériser l’évolution en utilisant les notions d’amplitude, de phase, de période,

de fréquence, de pulsation.

On enregistre le signal sinusoïdal ci-dessus, qui représente le déplacement du
centre de masse d’un mobile lors d’un mouvement à un degré de liberté, par rapport à
sa position d’équilibre le long d’un axe (Ox).

1. Déterminer son amplitude, sa période, sa fréquence propre, sa pulsation et sa
phase à l’origine.

2. Écrire explicitement l’expression mathématique de ce signal.
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On voit sur cet exemple qu’écrire la solution de l’équation différentielle associée à
un oscillateur harmonique sous la forme

x(t ) = Xm cos(ω0t +φ)

n’est pas très pratique si cela demande de déterminer la phase à l’origine.

En général, les conditions initiales sont connues : x(t = 0) = x0 et ẋ(t = 0) = v0. La
forme suivante est bien plus pratique pour tenir compte de telles conditions :

x(t ) = Acos(ω0t )+Bsin(ω0t ).

Exercice d’application 2 :
CAPACITÉ TRAVAILLÉE :
Résoudre l’équation différentielle qui caractérise un oscillateur harmonique compte

tenu des conditions initiales.

1. Vérifier que x(t ) = Acos(ω0t )+Bsin(ω0t ) est solution de l’équation différentielle
qui caractérise un oscillateur harmonique.

2. Exprimer les deux constantes d’intégration A et B en fonction de x0 = x(t = 0) et
de v0 = ẋ(t = 0).

3. Faire explicitement le lien entre les deux expressions possibles d’un signal har-
monique, en exprimant A et B en fonction de Xm et φ.

1.2 Exemples d’oscillateurs harmoniques en physique

1.2.1 Circuit LC en régime libre

Exercice d’application 3 :
CAPACITÉS TRAVAILLÉES :
Établir et reconnaître l’équation différentielle qui caractérise un oscillateur harmo-

nique ; la résoudre compte tenu des conditions initiales.
Réaliser le bilan énergétique du circuit LC.

On considère un circuit LC, constitué d’une bobine d’inductance L branchée en série
avec un condensateur de capacité C. On note u la tension aux bornes du condensa-
teur, en convention récepteur.

1. En appliquant la loi des mailles au circuit et en utilisant les lois de comporte-
ment des dipôles, montrer que la charge q = Cu est solution de l’équation différentielle
caractéristique d’un oscillateur harmonique, de pulsation propre

ω0 = 1p
LC

.
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2. Retrouver le même résultat par un bilan énergétique. On exprimera l’énergie
électrique stockée dans le condensateur, l’énergie magnétique stockée dans la bobine,
et on s’appuiera sur la conservation de l’énergie totale.

3. Le condensateur est initialement déchargé, l’intensité du courant qui circule dans
le circuit vaut alors i (t = 0) = I0 à l’instant initial. Résoudre l’équation différentielle en
tenant compte des conditions initiales.

4. Le graphique ci-dessous représente l’évolution temporelle des énergies élec-
trique et magnétique emmagasinées dans le circuit, ainsi que celle de l’énergie totale.
Identifier ce que représente chacune des courbes et commenter.

1.2.2 Masse accrochée à un ressort linéaire en l’absence de frottement

Une approche dynamique permet d’établir qu’en l’absence de frottement, une masse
accrochée horizontalement à un ressort sans masse de raideur k et de longueur à vide
l0 oscille sinusoïdalement autour de sa position d’équilibre,

leq = l0,

avec une pulsation propre

ω0 =
√

k

m
.

Exercice d’application 4 :
CAPACITÉ TRAVAILLÉE :
Réaliser le bilan énergétique d’un oscillateur mécanique en absence de frottement

en régime libre.

On considère le système décrit dans le paragraphe ci-dessus.
1. Exprimer l’énergie mécanique du système.
2. Justifier que l’énergie mécanique du système est conservée.
3. En déduire l’équation du mouvement. La mettre sous forme canonique.
4. Résoudre cette équation différentielle en tenant compte des conditions initiales :

on impose une vitesse initiale v0 à la masse afin de l’écarter de sa position d’équilibre.
5. Le graphique ci-dessous représente l’évolution temporelle de l’énergie poten-

tielle élastique, de l’énergie cinétique et de l’énergie mécanique. Identifier chacune
des courbes et commenter.
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6. Dresser un tableau d’analogies entre ce système et le circuit LC.

Exercice d’application 5 :
CAPACITÉS TRAVAILLÉES :
Déterminer, en s’appuyant sur des arguments physiques et une analyse dimension-

nelle, la position d’équilibre et le mouvement d’une masse fixée à un ressort vertical.

Un ressort linéaire sans masse de raideur k et de longueur à vide l0 peut être sus-
pendu verticalement à un bâti ou accroché à la verticale au-dessus d’un bâti, au choix.
On décide d’accrocher ou non une masse m à ce ressort. On suppose que le mouve-
ment est à un degré de liberté.

Les trois situations envisagées dans cet exercice sont schématisées ci-dessous :
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1. En vous appuyant sur des arguments physiques et une analyse dimensionnelle,
proposer une expression pour la longueur leq du ressort à l’équilibre dans chacune des
trois situations.

2. Proposer, sans faire de calcul, une description mathématique du mouvement du
centre de masse de la masse dans chacune des trois situations, en négligeant les
frottements de l’air.

2 Oscillateur amorti en régime libre

Les situations dans lesquelles on rencontre le modèle de l’oscillateur harmonique
en physique théorique ont en commun l’absence de prise en compte des phénomènes
dissipatifs (frottements, effet Joule, etc...). Pour un meilleur accord avec l’expérience,
il faut les ajouter, ce qui rend la résolution sensiblement plus complexe.

2.1 Régimes d’amortissement pour un oscillateur amorti

2.1.1 Analyse qualitative

Un système amorti non oscillant en régime libre (circuit RC lors de la phase de
décharge, par exemple) est régi par une équation différentielle de la forme

d x

d t
+ x

τ
= 0,

tandis qu’un système oscillant idéal modélisé par un oscillateur harmonique en régime
libre (circuit LC par exemple) est régi par une équation différentielle de la forme

d 2x

d t 2
+ω2

0x = 0.

La présence d’une dérivée d’ordre 1 dans la première équation différentielle traduit
l’existence d’un phénomène dissipatif.

On devine alors que si on incorpore ce phénomène dissipatif à la description d’un
oscillateur harmonique, on obtiendra une équation différentielle contenant à la fois une
dérivée d’ordre 1 et d’ordre 2.

L’équation différentielle qui régit l’évolution temporelle d’une grandeur associée à
une version amortie de l’oscillateur harmonique en régime libre peut être mise sous la
forme canonique suivante :

d 2x

d t 2
+ ω0

Q

d x

d t
+ω2

0x = 0,

où Q est une grandeur positive sans unité appelée facteur de qualité de l’oscillateur
amorti.

. On retrouve l’équation d’un oscillateur harmonique lorsque Q →+∞. Les oscilla-
tions ne sont pas amorties et ont lieu pendant un temps infini.

. Une valeur de Q "élevée" est la marque d’un système fortement amorti. On s’at-
tend à rencontrer un régime quasiment sinusoïdal, où des oscillations existent mais
s’amortissent progressivement jusqu’à ne plus être visibles, au bout d’un temps "long".

. Une valeur de Q "faible" est la marque d’un système fortement amorti. On s’attend
à ce que le système retourne à l’équilibre rapidement, sans osciller.
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Pour visualiser l’effet du facteur de qualité sur l’évolution temporelle de x(t), on
résout numériquement l’équation différentielle ci-dessus, pour des conditions initiales
données.

FIGURE 1 – Évolution temporelle d’un oscillateur amorti en régime libre pour différentes
valeurs du facteur de qualité Q

On retrouve bien les comportements qualitatifs prédits plus haut. À cela s’ajoute
qu’il existe apparemment une valeur de transition (Q = 1/2?) pour laquelle le retour à
l’équilibre est le plus rapide.

2.1.2 Analyse quantitative par résolution de l’équation différentielle

On cherche à présent à résoudre explicitement l’équation différentielle associée à
un oscillateur amorti.

On s’attend à avoir une combinaison de termes exponentiels (a priori décroissants
en régime libre) et de termes oscillants, qui sont la partie réelle ou imaginaire d’une
exponentielle avec un argument imaginaire pur (on rappelle que cos(x) = Re(e i x) et
sin(x) = Im(e i x)).

La linéarité de l’équation suggère alors de chercher des solutions sous la forme

x(t ) = er t ,

avec r un nombre complexe, et d’en écrire une combinaison linéaire à deux termes
(car l’équation différentielle est du deuxième ordre) pour former des solutions réelles,
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ce qui est une condition nécessaire pour qu’elles aient un sens physique.

En injectant cette forme dans l’équation différentielle, on se ramène à une équation
polynomiale, appelée équation caractéristique associée à l’équation différentielle :

r 2 + ω0

Q
r +ω2

0 = 0.

La nature (réelle ou complexe) des racines de ce polynôme de degré deux dépend
du signe du discriminant

∆=ω2
0

(
1

Q2
−4

)
,

et donc de la valeur du facteur de qualité Q.

2.1.3 Régime pseudo-périodique

. Le cas où ∆< 0, soit Q > 1/2, correspond à un régime peu amorti que l’on quali-
fiera de pseudo-périodique.

Les deux solutions de l’équation caractéristique sont alors de la forme

r1/2 =−
−ω0

Q ± i
p−∆

2
=−1

τ
± iωp ,

avec i le nombre complexe imaginaire pur tel que i 2 =−1 et où

1

τ
= ω0

2Q

et

ωp =ω0

√
1− 1

4Q2

est une grandeur appelée pseudo-pulsation de l’oscillateur amorti.
La grandeur

Tp = 2π

ωp
,

appelée pseudo-période de l’oscillateur amorti, représente la durée de ses oscilla-
tions : elles sont régulières dans le temps mais d’amplitude décroissante.

La combinaison linéaire qui permet d’obtenir une solution réelle de l’équation diffé-
rentielle est de la forme :

x(t ) = (
Acos(ωp t )+Bsin(ωp t )

)
e− t

τ .

Les valeurs des constantes d’intégration A et B s’obtiennent à partir des conditions ini-
tiales.

On peut faire les remarques suivantes :
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. En régime pseudo-périodique, on observe des oscillations (comme dans le cas
harmonique) à l’intérieur d’une enveloppe exponentielle décroissante qui traduit un
amortissement progressif.

. On peut vérifier que la solution est bien de la forme proposée ci-dessus à titre
d’exercice. Si on n’avait pas construit méthodiquement la solution mais deviné sa
forme, on trouverait les expressions les expressions de ωp et τ en imposant que le
membre de droite de l’équation différentielle s’annule.

. Comme dans le cas de l’oscillateur harmonique, il existe une forme alternative
équivalente :

x(t ) = C cos(ωp t +φ)e− t
τ .

On peut la voir comme un signal sinusoïdal de (pseudo-)période Tp = 2π
ωp

, d’amplitude

variable (et décroissante) C(t ) = Ce− t
τ .

. La pseudo-période, qui représente la durée des oscillations, est plus longue que
la période propre en l’absence d’amortissement. Si Q À 1 on n’observe quasiment
aucune différence entre les deux : Tp ' T0.

. La durée τr t du régime transitoire, où les oscillations sont suffisamment fortes
pour qu’on puisse les observer, est de l’ordre de 5τ, avec τ = 2Q

ω0
. Ainsi, le nombre

d’oscillations qu’on peut observer avant amortissement complet est de l’ordre de

N ∼ τr t

Tp
∼ Q

si Q À 1.

2.1.4 Régime apériodique

. Le cas où ∆> 0, soit Q < 1/2, correspond à un régime que l’on qualifiera d’apériodique,
car il n’y a pas de périodicité en l’absence d’oscillations. Il correspond à un régime for-
tement amorti.

Les deux solutions réelles de l’équation caractéristique sont de la forme :

r1/2 =
−ω0

Q ±p
∆

2
=−ω0

2Q

(
1±

√
1−4Q2

)
< 0.

La solution de l’équation différentielle est de la forme :

x(t ) = Aer1t +Ber2t = Ae− t
τ1 +Be− t

τ2

avec A et B des constantes d’intégration qu’on détermine grâce aux conditions initiales
et où on a posé τ1 =− 1

r1
et τ2 =− 1

r2
.

2.1.5 Régime apériodique critique

. Le cas où ∆ = 0, soit Q = 1/2, est purement théorique. On qualifie ce régime
d’apériodique critique. C’est dans ce cas-là que l’amortissement est le plus rapide, on
trouve alors que la solution est de la forme :

x(t ) = (At +B)e−ω0t .
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2.1.6 Résumé

Facteur de qualité Q > 1/2 Q = 1/2 Q < 1/2
Régime pseudo-périodique critique apériodique
x(t ) = (Acos(ωp t )+Bsin(ωp t ))e−t/τ (At +B)e− t

τ Ae− t
τ1 +Be− t

τ2

FIGURE 2 – Les trois régimes d’un oscillateur amorti

Exercice d’application 6 :
CAPACITÉ TRAVAILLÉE :
Déterminer un ordre de grandeur de la durée du régime transitoire selon la valeur

du facteur de qualité.

Un diapason peut être modélisé par un système masse-ressort amorti. L’amortisse-
ment provient principalement de la transmission des oscillations des tiges métalliques
à l’air sous forme de vibration sonore. On a enregistré les vibrations des branches, un
signal u(t ) proportionnel au déplacement de ces dernières s’affiche sur l’écran d’un
oscilloscope.
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1. Rappeler l’équation différentielle qui régit un oscillateur amorti sous forme cano-
nique, en faisant apparaître la pulsation propre ω0 et le facteur de qualité Q.

2. À partir de l’enregistrement représenté ci-dessus, identifier le type de régime
amorti et estimer le facteur de qualité Q.

3. Déterminer graphiquement la pseudo-période Tp et en déduire la valeur de la
pseudo-pulsation ωp .

4. Relier la pseudo-pulsation à la pulsation propre. Calculer ω0 puis la période
propre T0 et la fréquence f0 ; commenter.

5. Déterminer par le calcul l’ordre de grandeur de la durée du régime transitoire et
comparer à une valeur estimée expérimentalement.

2.2 Autres exemples d’oscillateurs amortis en physique

2.2.1 Circuit RLC

Exercice d’application 7 :
CAPACITÉS TRAVAILLÉES :
Écrire sous forme canonique l’équation différentielle afin d’identifier la pulsation

propre et le facteur de qualité.
Décrire la nature de la réponse en fonction du facteur de qualité.
Établir l’expression de la réponse dans le cas d’un régime libre.
Réaliser le bilan énergétique du circuit RLC série.
Prévoir l’évolution du système à partir de considérations énergétiques.

Soit un circuit RLC série en régime libre (ce qui se traduit par l’absence de géné-
rateur dans le circuit).

1. En vous appuyant sur la loi des mailles, montrer que l’équation différentielle que
vérifie la tension uC peut s’écrire sous la forme canonique

d 2uc

d t 2
+ ω0

Q

duC

d t
+ω2

0uC = 0.

Exprimer la pulsation propre ω0 en fonction de L et C, puis le facteur de qualité Q en
fonction de R, L et C.
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FIGURE 3 – Décharge du condensateur : tension en fonction du temps pour Q = 4. Les
échelles sont normalisées : uC(t )/(q0/C) en ordonnée, et ω0t en abscisse.

2. Résoudre l’équation différentielle dans le cas où le facteur de qualité vaut Q = 4.
Vous tiendrez compte des conditions initiales, qui sont q(t = 0) = q0 et i (t = 0) = 0.

3. Réaliser le bilan énergétique du circuit RLC série. Vous montrerez que

d

d t

(
1

2
Li 2 + 1

2

q2

C

)
=−Ri 2

et interpréterez chacun des termes. Prévoir qualitativement l’évolution de l’énergie to-
tale stockée dans le système.

FIGURE 4 – Décroissance de l’énergie dans un circuit RLC série. Les échelles sont
normalisées : énergie E/E(t = 0) en ordonnée, et ω0t en abscisse
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4. On a représenté ci-dessus l’évolution de l’énergie totale, de l’énergie stockée
dans le condensateur et de l’énergie stockée dans la bobine. Identifier chacune des
trois courbes, en justifiant votre réponse.

2.2.2 Mouvement amorti par frottement visqueux d’une masse accrochée à un
ressort

On considère un objet de masse m modélisé par un point matériel M, relié à un
ressort sans masse de raideur k et de longueur à vide l0, lui-même accroché à un bâti
au point O. Pour simplifier l’analyse, on considère que ce ressort est horizontal et que
le point M se déplace le long d’un axe (Ox) au cours de son mouvement.

Pour tenir compte de l’amortissement, on ne néglige pas les frottements fluides,
qui sont modélisés par une force de frottement de la forme ~f = −λ~v , où ~v désigne le
vecteur vitesse du point M dans le référentiel du laboratoire.

On néglige les frottements solides.

On écarte la masse de sa position d’équilibre de u0 = x0− leq , puis on la lâche sans
vitesse initiale.

1. Montrer que l’équation différentielle qui régit le mouvement est celle d’un os-
cillateur amorti, la mettre sous forme canonique en identifiant les expressions de la
pulsation propre et du facteur de qualité en fonction des données du problème.

2. Construire un tableau d’analogies avec le circuit RLC.
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