CHAPITRE 15

Oscillateurs en régime libre

Dans toutes les branches de la physique on rencontre des systémes, appelés os-
cillateurs, pour lesquels une grandeur physique oscille, c’est-a-dire varie de fagon
alternative et éventuellement périodique, autour de sa valeur moyenne.

Ces oscillations peuvent étre :

> forcées par une intervention externe qui reste activée tout au long du mouve-
ment : une excitation de nature sinusoidale permet d’entretenir les oscillations, ce qui
fera I'objet d’'un chapitre ultérieur;

> provoquées par un écartement du systeme par rapport a sa position d’équi-
libre : il oscille alors pendant un certain temps autour de I'’équilibre avant d’y revenir a
I'issue d’'un régime qu’on qualifie de libre, car I'oscillateur n’est soumis a aucune exci-
tation extérieure pendant cette phase.

Un régime libre peut étre observé par exemple lorsqu’un pendule simple est écarté
de sa position d’équilibre. La masse oscille avant de revenir a la verticale : on observe
des oscillations amorties.

On devine que ce sont les phénomeénes dissipatifs qui provoquent le retour a la
position d’équilibre, et qu’en les rendant moins intenses les oscillations dureront plus
longtemps avant de s’amortir.

Dans le cas limite, purement théorique, ou il N’y aurait aucun phénomeéne dissipatif,
les oscillations continueraient pendant une durée infinie et seraient régulieres. Le mo-
déle le plus universel d’'un tel comportement est celui de 'oscillateur harmonique.

Dans ce chapitre :

> nous étudierons 'oscillateur harmonique et sa version amortie ;

> nous mettrons en évidence les analogies entre un oscillateur électrique et un
oscillateur mécanique.

1 Oscillateur harmonique en régime libre

1.1 Définition et propriétés
En physique, on qualifie d’'oscillateur harmonique tout systéme dont I'évolution
temporelle est décrite par une grandeur x(¢) solution de I'équation différentielle :

X 2.
ﬁ+w0x—0.

Le nombre strictement positif w3 est le carré de la pulsation propre de I'oscillateur,
wo, qui s’exprime en rad-s~!. Cette pulsation est dite propre car sa valeur est reliée aux
caractéristiques du dispositif oscillant.

La solution de I'équation différentielle peut s’écrire sous la forme

x(t) =X cos(wt+ ¢),



avec X,, = 0 'amplitude des oscillations, qui correspond a la valeur maximale de x().
La grandeur ® = wt + ¢ est la phase a un instant quelconque, et ¢ est la phase a
I’origine, qui impose la valeur de x(#) a l'instant initial : x(0) = X,,, cos(¢).

Dans cette formulation, 'amplitude et la phase a 'origine sont les deux constantes
d’intégration.

La grandeur

27
To=—

Wo
est la période propre de l'oscillateur harmonique, telle que pour tout instant ¢, x(r +
To) = x(2) : elle correspond a la plus petite durée au bout de laquelle le signal x(r)
se répete identiquement a lui-méme. La valeur de la période propre d’un oscillateur
harmonique est indépendante des conditions initiales : on parle alors d'isochronisme
des oscillations.

La fréquence propre est le nombre de répétitions du signal par unité de temps :

l_u)o

fo:T_O_ZJT'

Elle s’exprime en hertz (Hz) dans le systéme international d’unités, avec 1 Hz=1 s™.

Exercice d’application 1 :

CAPACITE TRAVAILLEE :

Caractériser I'évolution en utilisant les notions d’amplitude, de phase, de période,
de fréquence, de pulsation.

On enregistre le signal sinusoidal ci-dessus, qui représente le déplacement du
centre de masse d’un mobile lors d’'un mouvement a un degré de liberté, par rapport a
sa position d’équilibre le long d’un axe (Ox).

1. Déterminer son amplitude, sa période, sa fréquence propre, sa pulsation et sa
phase a l'origine.

2. Ecrire explicitement I'expression mathématique de ce signal.
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On voit sur cet exemple qu’écrire la solution de I'équation différentielle associée a
un oscillateur harmonique sous la forme

x(t) =X, cos(wof +P)

n’est pas trés pratique si cela demande de déterminer la phase a l'origine.

En général, les conditions initiales sont connues : x(t =0) = xy et x(t = 0) = vy. La
forme suivante est bien plus pratique pour tenir compte de telles conditions :

x(t) = Acos(wgt) + Bsin(wg1).

Exercice d’application 2 :

CAPACITE TRAVAILLEE :

Résoudre I'équation différentielle qui caractérise un oscillateur harmonique compte
tenu des conditions initiales.

1. Vérifier que x(r) = Acos(wot) + Bsin(wgr) est solution de I'équation différentielle
qui caractérise un oscillateur harmonique.

2. Exprimer les deux constantes d’'intégration A et B en fonction de xy = x(¢ = 0) et
de vo = x(r=0).

3. Faire explicitement le lien entre les deux expressions possibles d’'un signal har-
monique, en exprimant A et B en fonction de X, et ¢.

1.2 Exemples d’oscillateurs harmoniques en physique
1.2.1 Circuit LC en régime libre

Exercice d’application 3 :

CAPACITES TRAVAILLEES :

Etablir et reconnaitre I'équation différentielle qui caractérise un oscillateur harmo-
nique; la résoudre compte tenu des conditions initiales.

Réaliser le bilan énergétique du circuit LC.

On consideére un circuit LC, constitué d’'une bobine d’inductance L branchée en série
avec un condensateur de capacité C. On note u la tension aux bornes du condensa-
teur, en convention récepteur.

k4

£ <L

1. En appliquant la loi des mailles au circuit et en utilisant les lois de comporte-
ment des dipbles, montrer que la charge g = Cu est solution de I'équation différentielle
caractéristique d’'un oscillateur harmonique, de pulsation propre

1

wg=—.
°” VIC
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2. Retrouver le méme résultat par un bilan énergétique. On exprimera I'énergie
électrique stockée dans le condensateur, I'énergie magnétique stockée dans la bobine,
et on s’appuiera sur la conservation de I'énergie totale.

3. Le condensateur est initialement déchargé, 'intensité du courant qui circule dans
le circuit vaut alors i(r = 0) =y a l'instant initial. Résoudre I'équation différentielle en
tenant compte des conditions initiales.

4. Le graphique ci-dessous représente I'évolution temporelle des énergies élec-
trique et magnétigue emmagasinées dans le circuit, ainsi que celle de I'énergie totale.
Identifier ce que représente chacune des courbes et commenter.

1.2.2 Masse accrochée a un ressort linéaire en I’'absence de frottement

Une approche dynamique permet d’établir qu’en I'absence de frottement, une masse
accrochée horizontalement a un ressort sans masse de raideur k et de longueur a vide
Iy oscille sinusoidalement autour de sa position d’équilibre,

leq = lO)
avec une pulsation propre
k
Wo = —.
m

Exercice d’application 4 :

CAPACITE TRAVAILLEE :

Reéaliser le bilan énergétique d’'un oscillateur mécanique en absence de frottement
en régime libre.

On considére le systéme décrit dans le paragraphe ci-dessus.

1. Exprimer I'énergie mécanique du systéeme.

2. Justifier que I'énergie mécanique du systeme est conservée.

3. En déduire I'équation du mouvement. La mettre sous forme canonique.

4. Résoudre cette équation différentielle en tenant compte des conditions initiales :
on impose une vitesse initiale vy a la masse afin de I'écarter de sa position d’équilibre.

5. Le graphique ci-dessous représente I'évolution temporelle de I'énergie poten-
tielle élastique, de I'énergie cinétique et de I'énergie mécanique. ldentifier chacune
des courbes et commenter.
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6. Dresser un tableau d’analogies entre ce systeme et le circuit LC.

Exercice d’application 5 :
CAPACITES TRAVAILLEES :

Déterminer, en s’appuyant sur des arguments physiques et une analyse dimension-
nelle, la position d’équilibre et le mouvement d’'une masse fixée a un ressort vertical.

Un ressort linéaire sans masse de raideur k et de longueur a vide I, peut étre sus-
pendu verticalement a un bati ou accroché a la verticale au-dessus d’un béati, au choix.

On décide d’accrocher ou non une masse m a ce ressort. On suppose que le mouve-
ment est a un degré de liberté.

Les trois situations envisagées dans cet exercice sont schématisées ci-dessous :
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1. En vous appuyant sur des arguments physiques et une analyse dimensionnelle,
proposer une expression pour la longueur I, du ressort a I'equilibre dans chacune des
trois situations.

2. Proposer, sans faire de calcul, une description mathématique du mouvement du
centre de masse de la masse dans chacune des trois situations, en négligeant les
frottements de l'air.

2 Oscillateur amorti en régime libre

Les situations dans lesquelles on rencontre le modéle de I'oscillateur harmonique
en physique théorique ont en commun I'absence de prise en compte des phénoménes
dissipatifs (frottements, effet Joule, etc...). Pour un meilleur accord avec I'expérience,
il faut les ajouter, ce qui rend la résolution sensiblement plus complexe.

2.1 Régimes d’amortissement pour un oscillateur amorti
2.1.1 Analyse qualitative

Un systeme amorti non oscillant en régime libre (circuit RC lors de la phase de
décharge, par exemple) est régi par une équation différentielle de la forme

dx x
—+—=0,
dt 1

tandis qu’un systeme oscillant idéal modélisé par un oscillateur harmonique en régime
libre (circuit LC par exemple) est régi par une équation différentielle de la forme

x| o _
T +wpx =0.
La présence d’'une dérivée d’ordre 1 dans la premiere équation différentielle traduit
I'existence d’'un phénoméne dissipatif.
On devine alors que si on incorpore ce phénomene dissipatif a la description d’'un
oscillateur harmonique, on obtiendra une équation différentielle contenant a la fois une
dérivée d’ordre 1 et d’ordre 2.

Lequation différentielle qui régit I'évolution temporelle d’'une grandeur associée a
une version amortie de l'oscillateur harmonique en régime libre peut étre mise sous la
forme canonique suivante :

d2x+w0 dx+ 220
_ _ w =0,
2 Qdt °

ou Q est une grandeur positive sans unité appelée facteur de qualité de I'oscillateur
amorti.

> On retrouve I'’équation d’un oscillateur harmonique lorsque Q — +oo. Les oscilla-
tions ne sont pas amorties et ont lieu pendant un temps infini.

> Une valeur de Q "élevée" est la marque d’un systeme fortement amorti. On s’at-
tend a rencontrer un régime quasiment sinusoidal, ou des oscillations existent mais
s’amortissent progressivement jusqu’a ne plus étre visibles, au bout d’un temps "long".

> Une valeur de Q "faible" est la marque d’'un systéme fortement amorti. On s’attend
a ce que le systeme retourne a I'équilibre rapidement, sans osciller.
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Pour visualiser 'effet du facteur de qualité sur I'évolution temporelle de x(t), on
résout numériquement I'équation différentielle ci-dessus, pour des conditions initiales
données.
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FIGURE 1 — Evolution temporelle d’un oscillateur amorti en régime libre pour différentes
valeurs du facteur de qualité Q

On retrouve bien les comportements qualitatifs prédits plus haut. A cela s’ajoute
gu’il existe apparemment une valeur de transition (Q = 1/2?) pour laquelle le retour a
I'équilibre est le plus rapide.

2.1.2 Analyse quantitative par résolution de I’équation différentielle

On cherche a présent a résoudre explicitement I'équation différentielle associée a
un oscillateur amorti.

On s’attend a avoir une combinaison de termes exponentiels (a priori décroissants
en régime libre) et de termes oscillants, qui sont la partie réelle ou imaginaire d’'une
exponentielle avec un argument imaginaire pur (on rappelle que cos(x) = Re(e'¥) et
sin(x) = Im(e'")).

La linéarité de I'équation suggeére alors de chercher des solutions sous la forme

x(t)=e'’,

avec r un nombre complexe, et d’en écrire une combinaison linéaire a deux termes
(car 'équation différentielle est du deuxiéme ordre) pour former des solutions réelles,
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ce qui est une condition nécessaire pour qu’elles aient un sens physique.

En injectant cette forme dans I'équation différentielle, on se raméne a une équation
polynomiale, appelée équation caractéristique associée a I'équation différentielle :

Wo
r2+—r+w(2):0.
Q

La nature (réelle ou complexe) des racines de ce polynédme de degré deux dépend
du signe du discriminant

sl

et donc de la valeur du facteur de qualité Q.

2.1.3 Régime pseudo-périodique

> Le cas ou A <0, soit Q > 1/2, correspond a un régime peu amorti que I'on quali-
fiera de pseudo-périodique.

Les deux solutions de I'équation caractéristique sont alors de la forme

—%iiv—A 1
r1/2=——2 :_;ii(l)p)

avec i le nombre complexe imaginaire pur tel que i> = -1 et ou

1_(1)0
T_ZQ
et
Wy =W 1 L
p— 0 4Q2

est une grandeur appelée pseudo-pulsation de l'oscillateur amorti.
La grandeur

T _271
p—
Wp

appelée pseudo-période de l'oscillateur amorti, représente la durée de ses oscilla-
tions : elles sont régulieres dans le temps mais d’amplitude décroissante.

La combinaison linéaire qui permet d’obtenir une solution réelle de I'équation diffé-
rentielle est de la forme :
Lz
T

x(#) = (Acos(w,t) +Bsin(w, 1)) e 7.

Les valeurs des constantes d’intégration A et B s’obtiennent a partir des conditions ini-
tiales.

On peut faire les remarques suivantes :
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> En régime pseudo-périodique, on observe des oscillations (comme dans le cas
harmonique) a lintérieur d’'une enveloppe exponentielle décroissante qui traduit un
amortissement progressif.

> On peut vérifier que la solution est bien de la forme proposée ci-dessus a titre
d’exercice. Si on n’avait pas construit méthodiquement la solution mais deviné sa
forme, on trouverait les expressions les expressions de w, et T en imposant que le
membre de droite de I'équation différentielle s’annule.

> Comme dans le cas de l'oscillateur harmonique, il existe une forme alternative
équivalente :

x(t) = Ccos(wptﬂ-q))e_%.

On peut la voir comme un signal sinusoidal de (pseudo-)période T, = f)—’; d’amplitude

variable (et décroissante) C(r) = Ce .

> La pseudo-période, qui représente la durée des oscillations, est plus longue que
la période propre en I'absence d’amortissement. Si Q > 1 on n’observe quasiment
aucune différence entre les deux : T, = Ty.

> La durée t,, du régime transitoire, ou les oscillations sont suffisamment fortes
pour qu’on pwsse les observer, est de I'ordre de 51, avec T = iQ Ainsi, le nombre
d’oscillations qu’on peut observer avant amortissement complet est de I'ordre de

N~ Q
Tp

siQ>1.

2.1.4 Régime apériodique

> Le cas ou A >0, soit Q < 1/2, correspond a un régime que I'on qualifiera d’apériodique,
car il n’y a pas de périodicité en I'absence d’oscillations. Il correspond a un régime for-
tement amorti.

Les deux solutions réelles de I'équation caractéristique sont de la forme :

w
T1/2——2 __E 1+4/1-4Q4]<0.

La solution de I'équation différentielle est de la forme :
_L _L
x(t) =Ae"! +Be?' =Ae T +Be T2

avec A et Bdes constantes d’intégration qu’on détermine grace aux conditions initiales

etolionaposé 1,=—;-etto=—.

r2

2.1.5 Régime apériodique critique

> Le cas ou A =0, soit Q = 1/2, est purement théorique. On qualifie ce régime
d’apériodique critique. C’est dans ce cas-la que 'amortissement est le plus rapide, on
trouve alors que la solution est de la forme :

x(£) = (At + B)e 0,
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2.1.6 Résumé

Facteur de qualité | Q> 1/2 Q=1/2 Q<1/2
Régime pseudo-périodique critique apériodique
x(1) = (Acos(u)pt)+Bsin(mpt))e‘”T (At+B)e"t | Ae T +Be @
x(t AR 8
®y  apériodique

critique

pseudo-périodique

FIGURE 2 — Les trois régimes d’un oscillateur amorti

Exercice d’application 6 :
CAPACITE TRAVAILLEE :
Déterminer un ordre de grandeur de la durée du régime transitoire selon la valeur

du facteur de qualité.

Un diapason peut étre modélisé par un systéme masse-ressort amorti. Lamortisse-
ment provient principalement de la transmission des oscillations des tiges métalliques
a I'air sous forme de vibration sonore. On a enregistré les vibrations des branches, un
signal u(¢) proportionnel au déplacement de ces derniéres s’affiche sur I'écran d’un

oscilloscope.
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1. Rappeler I'équation différentielle qui régit un oscillateur amorti sous forme cano-
nique, en faisant apparaitre la pulsation propre w, et le facteur de qualité Q.

2. A partir de I'enregistrement représenté ci-dessus, identifier le type de régime
amorti et estimer le facteur de qualité Q.

3. Déterminer graphiquement la pseudo-période T, et en déduire la valeur de la
pseudo-pulsation w,.

4. Relier la pseudo-pulsation a la pulsation propre. Calculer wo puis la période
propre Ty et la fréquence fy ; commenter.

5. Déterminer par le calcul 'ordre de grandeur de la durée du régime transitoire et
comparer a une valeur estimée expérimentalement.

2.2 Autres exemples d’oscillateurs amortis en physique
2.2.1 Circuit RLC

Exercice d’application 7 :

CAPACITES TRAVAILLEES :

Ecrire sous forme canonique I'équation différentielle afin d’identifier la pulsation
propre et le facteur de qualité.

Décrire la nature de la réponse en fonction du facteur de qualité.

Etablir I'expression de la réponse dans le cas d’'un régime libre.

Réaliser le bilan énergétique du circuit RLC série.

Prévoir I'évolution du systeme a partir de considérations énergétiques.

Soit un circuit RLC série en régime libre (ce qui se traduit par 'absence de géné-
rateur dans le circuit).

upr ur,
< <+

R L (

o
|
| |

Uc

1. En vous appuyant sur la loi des mailles, montrer que I'équation différentielle que
vérifie la tension uc peut s’écrire sous la forme canonique

Exprimer la pulsation propre wo en fonction de L et C, puis le facteur de qualité Q en
fonction de R, L et C.
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FIGURE 3 — Décharge du condensateur : tension en fonction du temps pour Q =4. Les
échelles sont normalisées : uc(t)/(qo/C) en ordonnée, et wyt en abscisse.

2. Résoudre I'équation différentielle dans le cas ou le facteur de qualité vaut Q = 4.
Vous tiendrez compte des conditions initiales, qui sont (¢ =0) = go et i(t =0) = 0.
3. Réaliser le bilan énergétique du circuit RLC série. Vous montrerez que

1 1 g?
4 (—Li2 + —q—) - _Ri?
dr\2 2C

et interpréterez chacun des termes. Prévoir qualitativement I'évolution de I'énergie to-
tale stockée dans le systeme.

FIGURE 4 — Décroissance de I'énergie dans un circuit RLC série. Les échelles sont
normalisées : énergie E/E(f = 0) en ordonnée, et wyt en abscisse
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4. On a représenté ci-dessus I'évolution de I'énergie totale, de I'énergie stockée
dans le condensateur et de I'énergie stockée dans la bobine. Identifier chacune des
trois courbes, en justifiant votre réponse.

2.2.2 Mouvement amorti par frottement visqueux d’'une masse accrochée a un
ressort

On considéere un objet de masse m modélisé par un point matériel M, relié a un
ressort sans masse de raideur k et de longueur a vide [y, lui-méme accroché a un bati
au point O. Pour simplifier I'analyse, on considére que ce ressort est horizontal et que
le point M se déplace le long d’'un axe (Ox) au cours de son mouvement.

Pour tenir compte de I'amortissement, on ne néglige pas les frottements fluides,
qui sont modélisés par une force de frottement de la forme f = —A#, ou ¥ désigne le
vecteur vitesse du point M dans le référentiel du laboratoire.

On néglige les frottements solides.

On écarte la masse de sa position d’équilibre de uy = xo - l.4, puis on la lache sans
vitesse initiale.

1. Montrer que I'équation différentielle qui régit le mouvement est celle d’'un os-
cillateur amorti, la mettre sous forme canonique en identifiant les expressions de la
pulsation propre et du facteur de qualité en fonction des données du probléme.

2. Construire un tableau d’analogies avec le circuit RLC.
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