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PHYSIQUE-CHIMIE. DEVOIR SURVEILLÉ 7 (N)

Samedi 31/01/2026. Durée : 2h

CONSIGNES

. La calculatrice est interdite. Les autres outils électroniques (téléphone, ta-
blette...) et documents papier sont strictement interdits. Un brouillon est autorisé.

. Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction
de votre composition ; d’autres couleurs, excepté le vert, peuvent être utilisées, mais
exclusivement pour les schémas et la mise en évidence des résultats.

. Ne pas utiliser de correcteur.

. Écrire le mot FIN à la fin de votre composition.

. Numéroter les pages de votre composition.

Le sujet se compose de trois parties complètement indépendantes.

Des aides au calcul sont disponibles en fin de sujet.

Partie I - Un lancer de poids

Raven Saunders s’est qualifiée pour la finale du lancer de poids des Jeux Olym-
piques 2024 grâce à un lancer qui fait l’objet de cet exercice.

Le « poids » est une boule métallique lisse de masse m. Le lanceur se trouve dans
une aire de lancement délimitée par un cercle métallique et par un butoir B. La portée
du jet D est mesurée du butoir B au point de chute M comme indiqué sur la figure 1.

FIGURE 1 – Schéma du secteur de lancer, vue de dessus, sans aucun souci d’échelle

À l’issue d’une phase d’élan, la boule métallique est abandonnée en A, à la hauteur
OA = h au-dessus du sol horizontal, à la distance BO du butoir B, comme représenté
sur la figure 2.



FIGURE 2 – Schéma de la situation de lancer, vue de profil, sans aucun souci d’échelle.

Le bras qui lance fait alors un angle α avec l’horizontale ; cet angle α est considéré
comme étant celui de la direction du vecteur vitesse initial ~v0 par rapport à l’horizontale.

Données :
. masse de la boule métallique : m = 4,00 kg ;
. portée du jet : D = 18,62 m;
. hauteur : OA = h = 1,80 m;
. distance : BO = 0,30 m;
. valeur de la vitesse initiale : v0 = 12,8 m·s−1 ;
. angle entre l’horizontale et le bras de la lanceuse : α= 45◦ ;
. intensité de la pesanteur : g = 9,81 m·s−2.

On négligera l’action de l’air dans tout le problème.

Q1. En appliquant la deuxième loi de Newton à la boule métallique, montrer que
l’accélération de son centre de masse vérifie ~a = ~g . Projeter cette équation sur les
vecteurs unitaires de la base cartésienne pour obtenir ax et az .

Q2. En déduire les expressions des composantes vx et vz du vecteur vitesse dans
la base cartésienne.

Q3. Montrer alors que les équations horaires du mouvement de la boule métallique
dès l’instant où cette dernière est abandonnée en A sont :

x(t ) = v0 cos(α)t

et

z(t ) =−1

2
g t 2 + v0 sin(α)t +h.

Q4. Dans le repère (O,~ux ,~uz), montrer que l’expression littérale de l’équation de la
trajectoire du centre de masse de la boule métallique est :

z(x) =−1

2
g

x2

v2
0 cos2(α)

+ tan(α)x +h.
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Q5. Montrer, en utilisant les données et le schéma de la figure 2, que l’abscisse xM

du point de chute M vaut xM = 18,32 m.

Pour la suite de l’exercice, on admettra que la valeur de la vitesse initiale est égale
à v0 = 12,8 m·s−1.

Q6. Vérifier que la valeur de la durée tM du déplacement de la boule métallique
entre A et M est d’environ 2 s.

Q7. En déduire la valeur vM de la vitesse au moment du contact avec le sol.
Q8. L’origine des énergies potentielles étant fixée au niveau du sol, exprimer l’éner-

gie mécanique Em de la boule métallique au moment du lancer en fonction de sa masse
m, de la hauteur h, de l’intensité de la pesanteur g et de la vitesse initiale v0.

Q9. Déterminer l’expression de la vitesse vM au point de chute M, à l’aide d’un rai-
sonnement énergétique. Calculer sa valeur et vérifier la cohérence avec le résultat de
la question Q7.

Partie II - Un viscosimètre à chute de bille

Certains moteurs nécessitent l’utilisation d’huiles dont la valeur de la viscosité est
contrôlée pour pouvoir fonctionner correctement.

Le but de cet exercice est d’étudier le principe de fonctionnement d’un viscosimètre
à chute de bille permettant de mesurer, à température ambiante, la viscosité d’une
huile appelée « huile C ».

La mesure de la viscosité de l’huile C repose sur l’exploitation de la chute verticale
d’une bille en acier dans un récipient cylindrique, rempli de cette huile. Le mouvement
du centre de masse de la bille est étudié dans le référentiel terrestre supposé galiléen,
muni d’un repère d’origine O, d’axe vertical (Oz) orienté vers le bas et de vecteur uni-
taire ~uz . La situation est schématisée sur la figure 3.

FIGURE 3 – Schéma du dispositif expérimental de mesure
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Données :
. masse volumique de l’huile C : ρh = 8,31×102 kg·m−3 ;
. masse volumique de la bille : ρb = 1,06×103 kg·m−3 ;
. rayon de la bille : r = 0,993 mm;
. valeur tabulée de la viscosité de l’huile C : ηC = 0,093 N·m−2·s ;
. valeur limite de la vitesse de la bille : vlim = 5,37 mm·s−1 ;
. intensité de la pesanteur terrestre : g = 9,81 m·s−2.

Lors de sa chute verticale dans l’huile C, la bille de masse m est soumise à trois
forces :

. son poids : −→P ;

. la poussée d’Archimède, exercée par l’huile : −→ΠA = −ρhVb g~uz , où Vb désigne le
volume de la bille ;

. la force de frottement exercée par l’huile sur la bille : ~f = −αηCv~uz avec α une
constante homogène à une distance, dépendant des paramètres géométriques du sys-
tème, ηC la viscosité de l’huile C et v la valeur de la vitesse du centre de masse de la
bille. On donne α= 1,92×10−2 m.

Q10. Par analyse dimensionnelle, montrer que la viscosité ηC s’exprime en N·m−2·s.

À la date t = 0, la bille est lâchée avec une vitesse initiale nulle depuis le point
O, situé dans l’huile, en haut du récipient cylindrique. Au bout de quelques instants, le
mouvement de la bille devient rectiligne uniforme, la bille atteint alors une vitesse limite
notée vlim.

Q11. Préciser, en justifiant, si la valeur de la force de frottement ~f augmente ou
diminue quand la valeur de la vitesse de la bille augmente.

Q12. Représenter sur un schéma, sans calcul et en justifiant, l’ensemble des forces
appliquées au système {bille}, lorsque la vitesse limite est atteinte.

Q13. Montrer que la vitesse limite vérifie l’équation :

αηCvlim = 4πr 3g (ρb −ρh)

3
.

Q14. Le vecteur accélération ~a du centre de masse de la bille s’écrit : ~a = a~uz . À
l’aide de la deuxième loi de Newton, montrer que l’accélération a peut s’écrire :

a = g

(
1− ρhVb

m

)
− αηC

m
v

où m est la masse de la bille.
Q15. En déduire que l’évolution de la coordonnée v du vecteur vitesse ~v de chute

de la bille au cours du temps obéit à l’équation différentielle suivante :

d v

d t
+ 3αηC

4ρbπr 3
v = g

(
1− ρh

ρb

)
.

Q16. Mettre cette équation différentielle sous la forme canonique :

d v

d t
+ v

τ
= vlim

τ
,

où vous préciserez les expressions de τ et vlim en fonction des données du problème.
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Q17. Résoudre cette équation différentielle en tenant compte de la condition initiale
et représenter graphiquement v = f (t ). Représenter sur ce graphique la tangente à
l’origine, l’asymptote aux temps longs et la constante de temps τ.

Q18. Calculer la valeur de τ en utilisant la valeur de la viscosité de référence de
l’huile étudiée. Justifier que l’on peut considérer que la vitesse de la bille est prati-
quement égale à sa valeur limite durant tout le mouvement, sachant que le tube du
viscosimètre a une hauteur d’environ 15 cm.

Partie III - La station spatiale internationale

La station spatiale internationale ISS (International Space Station), dont la construc-
tion s’est achevée en 2011, est à ce jour le plus grand des objets artificiels jamais
placés en orbite terrestre (elle s’étend sur 110 m de longueur, 74 m de largeur et 30
m de hauteur). Elle est occupée en permanence par un équipage international qui se
consacre à la recherche scientifique dans l’environnement spatial.

FIGURE 4 – L’ISS (vue d’artiste)

La station spatiale internationale évolue sur une orbite basse qu’on admettra circu-
laire.

Données :
. altitude de l’ISS : h = 400 km;
. rayon de la Terre modélisée par une boule : RT = 6380 km;
. masse de l’ISS : m = 435 tonnes ;
. masse de la Terre : MT = 5,98×1024 kg ;
. constante de gravitation universelle : G = 6,67×10−11m3·kg−1·s−2.

Q19. Représenter sur un même schéma, sans souci d’échelle :
— la Terre et l’ISS (la station est modélisée par un point matériel noté S) ;
— la trajectoire de la station autour de la Terre ;
— la force de gravitation −→

F G,T/S exercée par la Terre T sur la station S.
Q20. Donner l’expression de la force d’interaction gravitationnelle −→

F G,T/S en fonction
des données de l’énoncé et du vecteur unitaire radial ~ur en coordonnées polaires.

Q21. En considérant la seule action de la Terre, établir en utilisant la deuxième loi de
Newton, l’expression de l’accélération −→a de la station dans le référentiel géocentrique
en fonction de G, MT, h, RT et ~ur .

Q22. Donner l’expression du vecteur position −→
TS de la station en coordonnées po-

laires. En déduire celles du vecteur vitesse ~v et du vecteur accélération ~a de l’ISS en
coordonnées polaires.

Page 5



Q23. En égalant les deux expressions de l’accélération trouvées aux questions
Q21. et Q22., montrer que la valeur de la vitesse de la station est constante et qu’elle
a pour expression : v =

√
GMT
RT+h .

Q24. Établir une autre expression de la vitesse v , que vous justifierez, et en déduire
l’expression de la troisième loi de Kepler pour le mouvement circulaire de l’ISS autour
de la Terre.

Q25. Calculer la valeur de la vitesse de la station en m·s−1.

Aides au calcul

18,32
12,8 = 1,43

p
2 = 1,41√
(12,8×cos(45◦))2 + (−19,62+12,8× sin(45◦))2 = 13,9√
12,82 +×9,81×3,60 = 14,1

4×1,06×π×0,9933

3×1,92×0,093 = 24,34770565

15
5,37 = 2,79

5,37×5×2,4 = 64,44√
6,67×5,98×10

6,78 = 7,67

FIN
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