
TSI1, lycée Doisneau

PHYSIQUE-CHIMIE. DEVOIR SURVEILLÉ 7 (D)
Samedi 31/01/2026. Durée : 2h

CONSIGNES

. La calculatrice est autorisée. Les autres outils électroniques (téléphone, ta-
blette...) et documents papier sont strictement interdits. Un brouillon est autorisé.

. Utiliser uniquement un stylo noir ou bleu foncé non effaçable pour la rédaction
de votre composition ; d’autres couleurs, excepté le vert, peuvent être utilisées, mais
exclusivement pour les schémas et la mise en évidence des résultats.

. Ne pas utiliser de correcteur.

. Écrire le mot FIN à la fin de votre composition.

. Numéroter les pages de votre composition.

Le sujet se compose de trois parties complètement indépendantes.

Partie I - Un lancer de poids

Raven Saunders s’est qualifiée pour la finale du lancer de poids des Jeux Olym-
piques 2024 grâce à un lancer qui fait l’objet de cet exercice.

Le « poids » est une boule métallique lisse de masse m. Le lanceur se trouve dans
une aire de lancement délimitée par un cercle métallique et par un butoir B. La portée
du jet D est mesurée du butoir B au point de chute M comme indiqué sur la figure 1.

FIGURE 1 – Schéma du secteur de lancer, vue de dessus, sans aucun souci d’échelle

À l’issue d’une phase d’élan, la boule métallique est abandonnée en A, à la hauteur
OA = h au-dessus du sol horizontal, à la distance BO du butoir B, comme représenté
sur la figure 2.

Le bras qui lance fait alors un angle α avec l’horizontale ; cet angle α est considéré
comme étant celui de la direction du vecteur vitesse initial ~v0 par rapport à l’horizontale.



FIGURE 2 – Schéma de la situation de lancer, vue de profil, sans aucun souci d’échelle.

Données :
. masse de la boule métallique : m = 4,00 kg ;
. portée du jet : D = 18,62 m;
. hauteur : OA = h = 1,80 m;
. distance : BO = 0,30 m;
. valeur de la vitesse initiale : v0 = 12,8 m·s−1 ;
. angle entre l’horizontale et le bras de la lanceuse : α= 45◦ ;
. intensité de la pesanteur : g = 9,81 m·s−2 ;
. la valeur de la force de frottements −→

f exercée par l’air est donnée par l’ex-
pression : f = 1

2ρCxSv2, avec S l’aire de la section équatoriale de la sphère : S =
7,62× 10−3m2 ; ρ la masse volumique de l’air : ρ = 1,29 kg·m−3 ; Cx un coefficient ca-
ractéristique de la forme de l’objet : Cx = 0,51 ; v la valeur de la vitesse.

. valeur de vitesse maximale : vmax = 14 m·s−1.

Q1. Montrer que la force de frottement est négligeable par rapport au poids de la
boule métallique pendant toute la durée de la chute.

On négligera l’action de l’air dans la suite du problème.

Q2. Montrer que les équations horaires du mouvement de la boule métallique dès
l’instant où cette dernière est abandonnée en A sont :

x(t ) = v0 cos(α)t

et

z(t ) =−1

2
g t 2 + v0 sin(α)t +h.

Q3. Dans le repère (O,~ux ,~uz), montrer que l’expression littérale de l’équation de la
trajectoire du centre de masse de la sphère métallique est :

z(x) =−g (1+ tan2(α))

2v2
0

x2 + tan(α)x +h.
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Q4. Recopier le schéma de la figure 2 sur votre copie et y représenter l’allure de la
trajectoire du centre de masse de la boule métallique.

Q5. Montrer que l’abscisse xM du point de chute M vaut xM = 18,32 m.
Q6. Déterminer l’expression de la vitesse vM au point de chute M ; calculer sa va-

leur.

Partie II - Un viscosimètre à chute de bille

Certains équipements mécaniques, comme les moteurs, nécessitent l’utilisation
d’huiles dont la valeur de la viscosité est contrôlée pour pouvoir fonctionner correc-
tement.

Le but de cet exercice est d’étudier le principe de fonctionnement d’un viscosimètre
à chute de bille permettant de mesurer, à température ambiante, la viscosité d’une
huile appelée « huile C ».

La mesure de la viscosité de l’huile C repose sur l’exploitation de la chute verticale
d’une bille en acier dans un récipient cylindrique, rempli de cette huile, représenté sur
la figure 3. Le mouvement du centre de masse de la bille est étudié dans le référentiel
terrestre supposé galiléen, muni d’un repère d’origine O, d’axe vertical (Oz) orienté
vers le bas et de vecteur unitaire ~uz . La situation est schématisée sur la figure 3.

FIGURE 3 – Schéma du dispositif expérimental de mesure

Données :
. masse volumique de l’huile C : ρh = 8,31×102 kg·m−3 ;
. masse volumique de la bille : ρb = 1,06×103 kg·m−3 ;
. rayon de la bille : r = 0,993 mm;
. intensité de la pesanteur terrestre : g = 9,81 m·s−2 ;
. pour discuter de l’accord du résultat d’une mesure avec une valeur de référence,

on peut utiliser le quotient z = |x−xref|
u(x) , avec x la valeur mesurée, xref la valeur de réfé-

rence et u(x) l’incertitude-type associée à la valeur mesurée x.
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Lors de sa chute verticale dans l’huile C, la bille de masse m est soumise à trois
forces :

. son poids : −→P ;

. la poussée d’Archimède, exercée par l’huile : −→ΠA = −ρhVb g~uz , où Vb désigne le
volume de la bille ;

. la force de frottement exercée par l’huile sur la bille : ~f = −αηCv~uz avec α une
constante homogène à une distance, dépendant des paramètres géométriques du sys-
tème, ηC la viscosité de l’huile C et v la valeur de la vitesse du centre de masse de la
bille. On donne α= 1,92×10−2 m.

Q7. Par analyse dimensionnelle, montrer que la viscosité ηC s’exprime en N·m−2·s.

À la date t = 0, la bille est lâchée avec une vitesse initiale nulle depuis le point
O, situé dans l’huile, en haut du récipient cylindrique. Au bout de quelques instants, le
mouvement de la bille devient rectiligne uniforme, la bille atteint alors une vitesse limite
notée vlim.

Q8. Représenter sur un schéma, sans calcul et en justifiant, l’ensemble des forces
appliquées au système {bille}, lorsque la vitesse limite est atteinte.

Q9. Montrer que la vitesse limite vérifie l’équation :

αηCvlim = 4πr 3g (ρb −ρh)

3
.

Q10. La valeur limite de la vitesse de la bille vaut vlim = 5,37 mm·s−1. Calculer la
valeur de la viscosité ηC de l’huile C.

L’huile C a une viscosité de référence qui vaut ηréf = 0,093 N·m−2·s et l’incertitude-
type sur la valeur de la viscosité ηC obtenue vaut u(ηC) = 0,003 N·m−2·s.

Q11. Déterminer si la valeur de la viscosité ηC obtenue expérimentalement est en
accord avec la valeur de référence.

Q12. Montrer que l’évolution de la coordonnée v du vecteur vitesse ~v de chute de la
bille au cours du temps obéit à l’équation différentielle sous forme canonique suivante :

d v

d t
+ v

τ
= vlim

τ
,

où vous préciserez les expressions de τ et vlim en fonction des données du problème.
Q13. Résoudre cette équation différentielle en tenant compte de la condition initiale

et représenter graphiquement v = f (t ). Représenter sur ce graphique la tangente à
l’origine, l’asymptote aux temps longs et la constante de temps τ.

Q14. Calculer la valeur de τ en utilisant la valeur de la viscosité de référence de
l’huile étudiée. Justifier que l’on peut considérer que la vitesse de la bille est prati-
quement égale à sa valeur limite durant tout le mouvement, sachant que le tube du
viscosimètre a une hauteur d’environ 15 cm.

Partie III - Le Blue Fire

Le Blue Fire est l’une des montagnes russes du parc d’attraction Europa-Park, situé
à Rust, en Allemagne. Elle est en service depuis le 4 avril 2009.
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Cette montagne russe fait partie de la famille des montagnes russes lancées (laun-
ched coaster) : en effet, l’accélération principale du train a lieu dans la zone de départ,
à l’aide d’une longue zone accélératrice rectiligne.

Une fois accéléré, le train aborde la première figure, représentée sur la figure 4 :

FIGURE 4 – La première figure : le « fer à cheval »

Q15. En vous appuyant sur les informations à votre disposition dans les données
en fin d’énoncé, justifier clairement que le train peut a priori franchir cette première
figure. On explicitera les hypothèses adoptées et les lois utilisées.

Juste après cette première figure, le train aborde un looping. On cherche à estimer
à l’aide d’un modèle le temps mis par le train pour effectuer le looping. Pour cela,
on va réduire l’étude du mouvement du train à celui de son centre de gravité, et on
modélisera sa trajectoire par une trajectoire circulaire de rayon R. Cela revient donc
à étudier le mouvement d’un point matériel M confondu avec G. On suppose dans ce
modèle que l’action des rails sur M est normale aux rails pendant tout le mouvement,
et on négligera tous les frottements. Au moment d’aborder le looping, le train possède
la vitesse v0 = 27 m·s−1 orientée comme sur la figure 5. On prendra θ(t = 0) = 0.

FIGURE 5 – Paramétrage du mouvement pour le looping

Q16. Reproduire le schéma simplifié du looping sur votre copie, et y représenter
en M la base polaire (~ur ,~uθ). Établir l’expression du vecteur accélération de M dans la
base polaire (~ur ,~uθ). On l’exprimera en fonction de v = ||~v ||, v̇ et R.
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Q17. Sur le schéma de la question précédente, représenter qualitativement le vec-
teur accélération de M pour θ= π

2 , θ=π et θ= 3π
2 . On justifiera la construction.

Q18. Établir l’équation différentielle liant θ̈ à g , R et θ au cours du looping. Peut-on
déterminer θ(t ) de manière analytique (c’est-à-dire « à la main ») facilement à partir de
cette équation? Pourquoi?

Pour estimer le temps nécessaire à la réalisation complète du looping, on propose
de résoudre cette équation différentielle par un programme python.

En exécutant ce programme, on obtient le graphe suivant pour θ(t ) :

Q19. En déduire la valeur numérique du temps nécessaire pour effectuer le looping.

Données :
. Accélération de la pesanteur : g = 9,81 m·s−2.
. Accélération moyenne du train pendant la phase d’accélération : a = 1,15 g ;
. Durée de la phase d’accélération : ta = 2,5 s ;
. Hauteur maximale de la première figure (« fer à cheval ») par rapport à la zone

de lancement : h = 37 m;
. Rayon du looping : R = 15 m;
. Masse totale d’un train et de ses passagers : m = 10 tonnes.

FIN
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