
TD15 : Oscillateurs en régime libre

CAPACITÉS TRAVAILLÉES :
. Établir et reconnaître l’équation différentielle qui caractérise un oscillateur harmonique ;

la résoudre compte tenu des conditions initiales : TLB1,3, ex1,3
. Réaliser le bilan énergétique du circuit LC : TLB1
. Caractériser l’évolution en utilisant les notions d’amplitude, de phase, de période, de

fréquence, de pulsation : TLB2,3
. Déterminer, en s’appuyant sur des arguments physiques et une analyse dimensionnelle,

la position d’équilibre et le mouvement d’une masse fixée à un ressort vertical : ex1
. Écrire sous forme canonique l’équation différentielle d’un oscillateur amorti afin d’identifier

la pulsation propre et le facteur de qualité : TLB4, ex4,6
. Prévoir l’évolution du système à partir de considérations énergétiques : TLB4
. Réaliser le bilan énergétique du circuit RLC série : TLB4
. Décrire la nature de la réponse en fonction du facteur de qualité : TLB4, ex4,6
. Établir l’expression de la réponse dans le cas d’un régime libre ou d’un système soumis

à un échelon : TLB4, ex4,5,6
. Déterminer un ordre de grandeur de la durée du régime transitoire, selon la valeur du

facteur de qualité : ex5,6
. Réaliser le bilan énergétique d’un oscillateur mécanique en absence, puis en présence,

de frottement en régime libre : ex1,4,5,6
. Analyser, sur des relevés expérimentaux, l’évolution de la forme des régimes transitoires

en fonction des paramètres caractéristiques : ex4,5,6, RP

1 Tester les bases
TLB1 : étude énergétique d’un oscillateur harmonique électrique
Dans le circuit schématisé ci-dessous, le générateur de courant supposé idéal est brusque-

ment éteint.

On modélise l’action de ce générateur par un échelon de courant η(t ) passant de I0 à 0 à
l’instant t = 0, ce qui revient à débrancher soudainement le générateur. On note Etot = EC +EL

l’énergie électrique totale stockée dans le condensateur et la bobine.
1. Représenter graphiquement η(t ).
2. Exprimer Etot.
3. Exprimer la dérivée dEtot

d t en fonction de i et di
d t .

4. Justifier que Etot est constante. En déduire l’équation différentielle vérifiée par i et la
mettre sous forme canonique.

5. Établir les conditions initiales sur i et sa dérivée.
6. En déduire l’expression de i (t ).

TLB2 : caractéristiques d’un oscillateur harmonique



1. Déterminer l’amplitude, la période, la fréquence et la valeur moyenne du signal sinusoï-
dal représenté ci-dessous. Écrire explicitement l’expression mathématique de ce signal.

2. Il s’agit en fait de la longueur x(t ) = l (t ) d’un ressort de constante de raideur k, relié à un
objet modélisé par un point matériel M de masse m = 20 kg qui oscille horizontalement.

a. Déterminer sa position d’équilibre xeq .
b. Estimer la valeur maximale de la vitesse du mobile.
c. Estimer la valeur de l’énergie mécanique.
d. Estimer la valeur de la constante de raideur du ressort.

TLB3 : oscillations d’un pendule simple
Un pendule simple est constitué d’un fil inextensible de longueur l auquel est attachée une

masse m assimilée à un point matériel.
On note g = 9,8 m·s−2 l’intensité du champ de pesanteur. L’évolution de l’angle θ que fait le

pendule avec la verticale, pour de petits angles, est régie par l’équation différentielle

θ̈+ g

l
θ= 0.

1. Commenter ce résultat et mettre l’équation différentielle sous forme canonique.
2. Exprimer la période T du mouvement, puis sa fréquence f , en fonction des données.
3. L’évolution de θ(t ) est donnée sur le graphe suivant :

3.a. Déterminer numériquement la période T du mouvement. En déduire la longueur l du
pendule utilisé.
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3.b. Déterminer la valeur de l’amplitude θm et de la phase à l’origine φ du signal.
3.c. Déterminer graphiquement θ(0) et θ̇(0). En déduire simplement θ̈(0).

TLB4 : circuit RLC soumis à un échelon de tension (CCINP23, sans calculatrice)
On considère le circuit RLC schématisé ci-dessous.
Le condensateur est initialement déchargé et le circuit est alimenté par une source de

tension continue notée E.
On considérera les valeurs suivantes : R = 2,0 kΩ, C = 10 nF et L = 40 mH.
À l’instant t = 0, on ferme l’interrupteur.

FIGURE 1 – Circuit RLC série alimenté par une tension continue

1. Déterminer la tension aux bornes du condensateur uC(0+) et l’intensité dans le circuit
i (0+) juste après la fermeture de l’interrupteur. Justifier.

2. Établir l’équation différentielle vérifiée par la tension aux bornes du condensateur uC(t ).
3. En écrivant cette équation sous la forme canonique :

d 2uC

d t 2 + ω0

Q

duC

d t
+ω2

0uC =ω2
0E,

en déduire l’expression de la pulsation propre ω0 et du facteur de qualité Q.
4. Déterminer la valeur de la fréquence propre f0. Faire l’application numérique à un chiffre

significatif (faire l’approximation π' 3).
5. Déterminer la valeur du facteur de qualité Q. Préciser le régime d’oscillation associé à

cette valeur.

2 Exercices
Exercice 1 : masse accrochée à un ressort vertical

On considère le dispositif suivant : une masse m modélisée par un point matériel M est
suspendue à un ressort vertical de masse négligeable et de constante de raideur k (en N·m−1).
L’extrémité supérieure du ressort est fixe et attachée au point O du bâti. L’axe (Ox) est vertical
et orienté vers le bas, on note ~ux un vecteur unitaire orienté suivant cet axe. La position de l’ex-
trémité du ressort attachée à la masse est repérée par son abscisse x. On note x0 la longueur
à vide du ressort et xéq sa longueur lorsque la masse m est à l’équilibre.

L’accélération de la pesanteur, supposée uniforme, est notée ~g .

1. Faire un schéma paramétré de la situation dans la situation particulière où la masse est
à l’équilibre.

2. Déterminer, en vous appuyant sur une analyse dimensionnelle et des arguments phy-
siques, l’expression de la longueur xéq du ressort à l’équilibre en fonction de x0, m, g et k.

3. Exprimer le travail δW(
−→
P ) de la force de pesanteur lors d’un déplacement infinitésimal

d−−→OM =dx~ux . En déduire que l’énergie potentielle de pesanteur est de la forme Epp (x) =−mg x+

Page 3



C, où C est une constante d’intégration. On choisit l’origine de l’énergie potentielle de pesanteur
au niveau du point d’accroche du ressort sur le bâti. En déduire la valeur de la constante
d’intégration C.

4. Exprimer la force de rappel −→F R que le ressort exerce sur la masse en fonction de k, x, x0

et ~ux , dans le cadre de la loi de Hooke.
5. Exprimer le travail δW(

−→
FR) de la force de rappel lors d’un déplacement infinitésimal

d−−→OM =dx~ux . En déduire que l’énergie potentielle élastique est de la forme Epe (x) = 1
2 k(x−x0)2+

C′, où C′ est une constante d’intégration. Dans la suite, on choisira arbitrairement C′ = 0.
6. Exprimer l’énergie potentielle totale du système.
7. Justifier que l’énergie mécanique se conserve au cours du mouvement si on néglige les

frottements fluides.
8. Par un raisonnement énergétique portant sur l’énergie potentielle dans le cadre d’un

mouvement conservatif à un degré de liberté, retrouver le résultat de la question 1.
9. En vous appuyant sur la conservation de l’énergie mécanique, établir l’équation différen-

tielle vérifiée par x. La mettre sous la forme canonique

ẍ +ω2
0x =ω2

0xéq ,

en précisant l’expression de la pulsation propre ω0. Commenter. Exprimer la période propre T0

en fonction de m et k.
10. Résoudre cette équation différentielle en tenant compte des conditions initiales sui-

vantes : à l’instant t = 0, la masse m est dans la position d’équilibre ; on lui communique alors
une vitesse initiale v0 verticale et dirigée vers le bas.

Exercice 2 : oscillateur à filtre de Wien (CCINP18)

Un amplificateur linéaire intégré (ALI) est un composant électronique qui a les propriétés
suivantes :

. C’est un composant actif, qui doit être alimenté en tension par un générateur de tension
continue externe pour fonctionner. Ce générateur n’est pas représenté sur le schéma du circuit.

. Dans le cadre du modèle de l’ALI idéal, aucun courant ne peut entrer par ses bornes
inverseuse (−) et non inverseuse (+).

. En régime linéaire, les potentiels à ses bornes inverseuse et non inverseuse sont égaux :
v− = v+.

Dans la suite, on fait l’hypothèse que l’ALI est idéal et fonctionne en régime linéaire.
On considère le circuit schématisé ci-dessous, appelé oscillateur à filtre de Wien :
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1. Justifier pourquoi le courant noté ie sur le schéma peut être considéré comme nul dans
la suite de l’étude.

2. Quelle est la relation entre la dérivée de la tension vc aux bornes du condensateur par
rapport au temps et le courant i le traversant? Cette équation sera nommée « E1 » sur votre
copie.

3. Par une loi des noeuds au point A, exprimer le courant i en fonction de la tension ve et
de sa dérivée par rapport au temps. Cette équation sera nommée « E2 » sur votre copie.

4. Par une loi des mailles, exprimer la tension vs en fonction de ve , i et vc . Cette équation
sera numérotée « E3 » sur votre copie.

5. En utilisant les équations E1 et E2, montrer que l’on obtient l’expression suivante en
précisant l’expression de la constante de temps τ :

d vs

d t
= τd 2ve

d t 2 +3
d ve

d t
+ ve

τ
.

6. En étudiant le fonctionnement de l’amplificateur linéaire intégré, en déduire la valeur de
l’amplification A = vs

ve
en fonction des résistances 1 et 2.

7. Montrer que l’on obtient l’équation différentielle suivante vérifiée par la tension vs en
fonction de τ et de l’amplification A :

τ2 d 2vs

d t 2 +τ(3−A)
d vs

d t
+ vs = 0.

8. Par analyse de cette équation, quelle condition doit-on satisfaire pour obtenir une oscil-
lation harmonique?

9. Quelle est alors la fréquence d’oscillation que l’on notera f0 ?
10. D’où provient l’énergie nécessaire pour garantir l’oscillation?

Exercice 3 : une masse et deux ressorts

Considérons un point matériel M de masse m glissant horizontalement et sans
frottement, repéré par son abscisse x telle que −−→

OM = x~ux . Ce solide est relié à deux
ressorts placés sur un même axe, eux-mêmes fixés en O et O′. Le solide étudié se
trouve entre O et O′. La longueur OO′ est notée L. Les ressorts ont pour raideur res-
pective k1 et k2, et pour longueur à vide l01 et l02.

1. Représenter la situation sur un schéma.
2. Établir l’équation différentielle vérifiée par x(t ), appelée équation du mouvement.
3. Montrer que la position d’équilibre est donnée par :

xéq = k1l01 +k2(L− l02)

k1 +k2
.

4. En déduire la forme générale des solutions de l’équation du mouvement.
5. Supposons qu’à l’instant t = 0, M est placé en x = x0 > xéq et lancé avec une

vitesse initiale v0 vers la gauche. Établir la loi horaire x(t ) et représenter son allure.
6. Supposons maintenant x0 = xéq et v0 = 0. Que vérifie-t-on?

Exercice 4 : vibrations d’un verre à pied (CCS 2018)

Un verre à pied est frappé, à l’instant t = 0, au niveau du bord supérieur à l’aide
d’un petit marteau. Le son émis est enregistré, le signal est affiché sur l’écran d’un
ordinateur.
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Quand le verre est en vibration, son bord supérieur oscille autour de sa position au
repos. Afin d’estimer le facteur de qualité du verre, on le modélise par une masse m
mobile sur l’axe (Ox) horizontal associée à un ressort de raideur k, de longueur à vide
nulle.

Les frottements seront, quant à eux, modélisés par un frottement fluide de type
~f =−α~v où ~v désigne le vecteur vitesse de la masse m.

FIGURE 2 – Modèle mécanique du déplacement

1. Montrer que l’équation différentielle traduisant l’évolution temporelle de x(t ) s’écrit
de la façon suivante, avec ω0 et Q deux constantes que l’on exprimera en fonction de
α, k et m :

d 2x

d t 2
+ ω0

Q

d x

d t
+ω2

0x = 0.

2. Quelle est la signification physique de ω0 et de Q ? Quelles sont les unités de ces
deux grandeurs?

3. Compte tenu du choc initial avec le marteau, déterminer, dans le cas d’un frotte-
ment « faible », l’expression approchée de la solution x(t) avec les conditions initiales
x(0) = 0 et d x

d t (0) = V0. Représenter son allure.
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4. En quoi l’enregistrement est-il en accord avec la modélisation par un frottement
fluide?

Exercice 5 : fourche de VTT

La fourche de VTT peut être modélisée par un ressort de constante de raideur k et
de longueur à vide l0, associé à un amortisseur dont la force de frottement est ~f =−α~v .
On note m la masse appuyant sur la fourche lorsque le vététiste appuie sur le guidon
(par exemple en descente).

Données : m = 20 kg ; k = 2,5×103 N·m−1 ; α= 5,0×102 N·s·m−1 ; l0 = 1,3 m; g = 9,8
m·s−2 ; v0 = 5,0 m·s−1.

1. Le cycliste appuie sur le guidon, avec une masse m. Exprimer la longueur leq du
ressort à l’équilibre en fonction de m, g, k et l0. La calculer. Le ressort est-il comprimé
ou étiré?

Le vététiste se réceptionne après un dénivelé. On souhaite établir la forme du mou-
vement du cycliste suite à ce saut. Les conditions initiales sont z(0) = 0 et ż(0) =−v0 (
avec v0 > 0, ż(0) < 0 car dirigé vers le sol).

2. Établir l’équation différentielle vérifiée par la position verticale z(t ) = l − leq et la
mettre sous la forme canonique

d 2z

d t 2
+ ω0

Q

d z

d t
+ω2

0z = 0,

en exprimant ω0 et Q.
3. Calculer Q et ω0 (en précisant leur unité). Quelle est la nature du mouvement

du vététiste (régime pseudo-périodique, critique ou apériodique)? Calculer le temps
d’amortissement caractéristique compte tenu du régime.

4. Déterminer la solution z(t ) en tenant compte des conditions initiales. On pourra
introduire la grandeur γ=ω0

√
1

4Q2 −1.
5. La figure ci-dessous représente z(t ). De quelle longueur la fourche s’enfonce-t-

elle approximativement?
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Exercice 6 : réponse percussionnelle d’un diapason

Ce problème porte sur l’étude d’un oscillateur mécanique faiblement amorti très
utilisé en musique : le diapason.

FIGURE 3 – Gauche : diapason de musicien. Droite : diapason (avec son marteau)
muni d’une caisse de résonance pour améliorer l’émission sonore

Les branches du diapason sont modélisée par un oscillateur masse-ressort oscil-
lant selon un axe horizontal, amorti par frottement fluide linéaire en la vitesse ~v .

On note m la masse de la masselotte, k la constante de raideur du ressort, l0 sa
longueur à vide et l (t ) sa longueur à l’instant t. La masselotte est en outre soumise à
une force ~f =−λ~v .

1. Quel phénomène physique la force ~f modélise-t-elle? Justifier par un argument
énergétique le signe de la constante λ.

À l’instant t = 0, on percute l’une des branches du diapason, ce qui provoque la
mise en mouvement de chaque branche. On suppose le choc instantané, c’est-à-dire
que les branches pseudo-oscillent librement pour t > 0. Une note est alors émise.
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2. On note z(t ) = l (t )− l0 la position de la masselotte. Établir l’équation différentielle
dont z(t ) est solution pour t > 0.

3. Mettre cette équation sous forme canonique, puis exprimer la fréquence propre
f0 et le facteur de qualité Q de ce système en fonction de k, m et λ.

4. Justifier brièvement qu’ici le facteur de qualité vérifie Q > 1/2.
5. Établir l’expression littérale de z(t ) en fonction de k, m et λ et de constantes d’in-

tégration que l’on ne cherchera pas à déterminer.

La masse de certains diapasons, utilisés par les musiciens, de fréquence propre
voisine de 500 Hz, vaut 30 g. Pour un diapason sans caisse de résonance, l’émission
sonore est détectable à l’oreille pendant environ une trentaine de secondes.

6. Estimer la constante de raideur du ressort équivalent. Donner un ordre de gran-
deur de la constante de raideur de ressorts utilisés en travaux pratiques. Commenter.

7. Proposer une estimation du facteur de qualité du diapason. Comparer cette va-
leur à celle d’un oscillateur masse-ressort de travaux pratiques.

Pour préciser l’estimation précédente du facteur de qualité du diapason, on réa-
lise un enregistrement à l’aide d’un microphone en utilisant un diapason équipé d’une
caisse de résonance en bois permettant d’augmenter l’intensité de l’émission sonore
(voir schéma du montage ci-dessous).

On obtient les deux enregistrements présentés ci-dessous.
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8. Exploiter les graphiques pour estimer au mieux la fréquence propre et le facteur
de qualité du diapason. Comparer la valeur du facteur de qualité mesuré en présence
de la caisse de résonance à celui du diapason en son absence. Commenter.

3 Résolution de problème :

La courbe ci-dessous représente l’intensité du courant mesurée dans un circuit
formé d’une bobine et d’un condensateur montés en série avec un générateur impo-
sant un échelon de tension. On admet que la bobine est très bien décrite par une
bobine idéale, mais pas le générateur.

Analyser la courbe pour déterminer la hauteur E de l’échelon de tension, l’induc-
tance L et la capacité C.
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