TD 6 - Premier principe appliqué à la transformation chimique

1 Détermination de l'état final d'un système chimique

On cherche à évaluer l'avancement final de plusieurs réactions. On définit notamment le taux d'avancement $\tau = \xi_f/\xi_{\text{max}}$. On considère la transformation chimique suivante :

$$HSO_4^-(aq) + H_2O(1) = SO_4^{2-}(aq) + H_3O^+(aq) \quad K^0(25\,^{\circ}C) = 1 \times 10^{-2}$$
 (1)

- 1. Initialement on introduit une quantité de matière $n_0 = 1 \times 10^{-3} \,\mathrm{mol}$ d'ions hydrogénosulfate HSO_4^- . Faire un tableau d'avancement et calculer le quotient de réaction $Q_{r,f}$ à l'état final. En déduire ξ_f puis τ .
- 2. Même question si $n_0 = 1 \times 10^{-4} \,\text{mol.}$
- 3. On considère maintenant la transformation suivante

$$HCOOH(aq) + HSO_3(aq) = HCOO(aq) + H_2SO_3(aq) \quad K^0(25 \, ^{\circ}C) = 1 \times 10^2$$
 (2)

On introduit initialement la même quantité de réactifs $n_0 = 1 \times 10^{-1}$ mol. Déterminer ξ_f puis τ .

2 Rupture d'équilibre

On considère la réaction de dissolution du sulfate de calcium ${\rm CaSO_4}$ pour laquelle $K^0=4.9\times 10^{-5}$ à $T=298\,{\rm K}$:

$$CaSO_4(s) = Ca^{2+}(aq) + SO_4^{2-}(aq)$$
 (3)

Faire un tableau d'avancement, en supposant qu'on a introduit une concentration initiale c_1 de sulfate de calcium. Calculer la concentration en ions calcium et sulfate à l'équilibre. Conclure sur une possible situation de "rupture d'équilibre" en fonction de la valeur de c_1 .

3 Température de flamme du méthane

On effectue la combustion du méthane dans un réacteur calorifugé et on considère la transformation monobare. Pour évaluer la température de flamme adiabatique T_f d'un combustible, on considère que la combustion peut être décomposée en deux transformations fictives : l'une se déroule à la température initiale T_i constante, avec un avancement qui varie de zéro à l'avancement final. L'autre représente l'échauffement du système dans son état final, de la température T_i à la température T_f .

Question : À l'aide des données ci-dessous, calculer la température de flamme T_f du méthane dans l'air. On prendra pour l'état initial $T_i = 298$ K, une mole de méthane, et la quantité d'air tout juste nécessaire pour que tout le méthane soit consumé (proportions sotechiométriques).

	CH ₄ (g)	O ₂ (g)	CO ₂ (g)	H₂O (g)	N ₂ (g)
Δ _f H ⁰ en kJ·mol ⁻¹	- 74,4	0	-393,5	-241,8	0
$C_{p,m}^0$ en J·mol ⁻¹ ·K ⁻¹	35,3	29,5	38,7	37,7	30,6