TD 8 - Déplacement d'équilibre / ALI en régime linéaire

12/11/2025

1 Pression et déplacement d'équilibre - II

On va étudier l'équilibre des réactions de combustion du méthane $CH_4(g)$ et de l'éthane $C_2H_6(g)$, sous une pression P.

- 1. Écrire l'équation de réaction de combustion du méthane.
- 2. Calculer, pour cette réaction, $\sum_{i} \nu_{i,\text{gaz}}$
- 3. En déduire à l'aide de la Loi de le Chatelier comment l'équilibre sera déplacé suite à une diminution de pression à température constante.
- 4. On considère qu'on mélange initialement le méthane et le dioxygène en proportions stœchiométriques. Exprimer le quotient réactionnel $Q_{r,f}$ à l'état final. À l'aide de cette expression, retrouver l'évolution de l'équilibre lors d'une diminution de pression.
- 5. Refaire les mêmes questions pour la réaction de combustion de l'éthane.

2 Étude de circuits classiques - II

On se placera toujours dans l'approximation de l'ALI idéal, et on supposera que les ALI fonctionnent en régime linéaire.

1. Pour le circuit n°1 figure 1, on se place dans l'approximation de l'ALI de gain infini. Exprimer v_s en fonction de v_1 et v_2 . Quel nom donner à ce circuit?

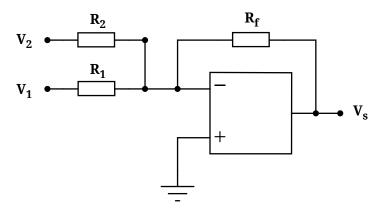


Figure 1 - Circuit n°1

- 2. Pour les circuits n° 2 et 3 (figure 2) on se place en notation complexe. On se place également dans l'approximation de l'ALI de gain infini. Déterminer la fonction de transfert $H(\omega)$ de chacun de ces circuits.
- 3. Exprimer, en notation réelle, v_s en fonction de v_e pour les circuits n° 2 et 3. Quel nom peut on donner à chacun d'entre eux?

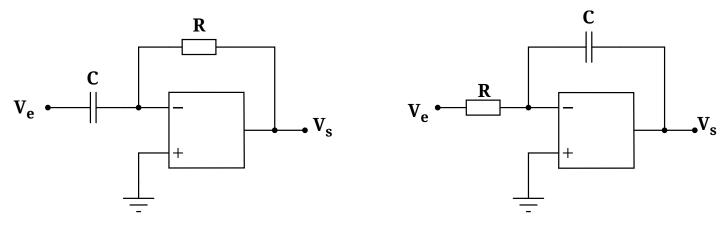


Figure 2 – Circuits n°2 et 3

- 4. (En seconde lecture) Quitter l'approximation de l'ALI de gain infini et déterminer l'expression générale de la fonction de transfert $H(\omega)$ pour les circuits n°2 et 3. Montrer que pour $\mu_0 \to +\infty$, on retrouve les expressions obtenues à la question 2.
- 5. Pour le circuit n°4 figure 3, on se place dans l'approximation de l'ALI de gain infini. En déduire alors v_s en fonciton de v_e . On prends typiquement $R_2/R_1 = 100$. Quel nom donne-t-on alors à ce montage?

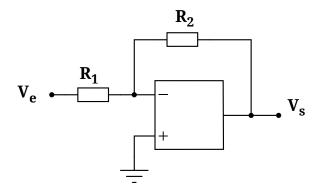


Figure 3 – Circuit n°4